Extrusion Simulation for the Design of Cereal and Legume Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Building Database
2.1.1. Raw Materials
2.1.2. Extrusion Trials
2.2. Simulation of Extrusion Trials Using Ludovic® Software
2.2.1. Extrusion Modelling
2.2.2. Input Variables
- (1)
- Physical and thermal properties
- (2)
- Rheological properties of molten starchy foods
2.2.3. Output Variables
3. Results and Discussion
3.1. Validation of Extrusion Simulation
3.1.1. Comparison between Experimental and Simulation Results
3.1.2. Axial Profile of Predicted Flow Variables
3.1.3. Sensitivity Analysis
3.2. Application in Food Design
3.2.1. Intrinsic Viscosity of Expanded Starches
3.2.2. Partially Melted Non-Expanded Starches: Study of Starch Structural Modification
3.2.3. Legumes Based Snacks: Compromise between Protein Transformation and Expansion
3.2.4. Expansion of Wheat Snacks Enriched with Wheat Bran (Fiber)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Nomenclature
, | parameters in viscosity model |
, | coefficients depending on screw geometry for an equation expressing volumetric flow rate through a screw channel |
AF4 | asymmetrical flow field flow fractionation |
CB | cacao-based extruded breakfast cereals |
specific heat of hydrated molten starch (J kg−1·°C−1) | |
specific heat of anhydrous starch (J·kg−1·°C−1) | |
specific heat of water (J·kg−1·°C−1) | |
D | die or screw diameter (mm) |
DSC | differential scanning calorimetry |
DTE | dithioerythritol |
activation energy (J·mol−1) | |
specific energy dissipated by molten starch (kJ·kg−1) | |
specific energy supplied by conduction from the surfaces of the barrels and screws (kJ·kg−1) | |
FF | fava bean flour |
FSC | fava bean starch concentrate |
HB | malt-based extruded breakfast cereals |
Insol | total amount of in-extractable proteins in SDS and DTE (%) |
flow consistency index (Pa·sn) | |
consistency at reference temperature and reference moisture content (Pa sn) | |
thermal conductivity of hydrated starch (W·m−1 K−1) | |
thermal conductivity of anhydrous starch (W·m−1 K−1) | |
thermal conductivity of water (W·m−1 K−1) | |
L | die or screw length (mm) |
L/D | length to diameter ratio (dimensionless) |
Maize A | high amylose maize starch (Eurylon 7) |
Maize B | blend of Euroylon 7 and Waxilys 100 with a ratio 2 to 1 |
Maize C | blend of Euroylon 7 and Waxilys 100 with a ratio 1 to 1 |
Maize D | waxy maize starch (Waxilys 100) |
MALLS | multi-angle laser light scattering |
MC | moisture content (% in wet basis) |
reference moisture content (%) | |
flow behavior index (dimensionless) | |
N | screw speed (rpm) |
NC | cell density (cm−3) |
Ng | starch granule number per unit area (mm−2) |
Nu | Nusselt number (dimensionless) |
P_mes | pressure, measured at die entrance of extruder (Pa) |
P_com | computed pressure at die entrance (Pa) |
PF | pea flour |
Potato A | potato starch studied in Della Valle et al. [31] |
Potato B | potato starch studied in Logié et al. [32] |
PS | pea starch |
gas constant (J·mol−1·K−1) | |
SDS | sodium dodecyl sulphate |
SE-HPLC | size-exclusion high-performance liquid chromatography |
RM | starch residual molecular mass (%) |
Q | total feed flow rate (kg·h−1) |
volumetric flow rate in a screw channel (m3·s−1) | |
Q/N | filling ratio of extruder |
SEI | sectional expansion index |
SME | specific mechanical energy (kJ·kg−1) |
SME_mes | predicted SME (kJ·kg−1) |
SME_com | specific mechanical energy, retrieved experimentally (kJ·kg−1) |
T | melt temperature (°C) |
absolute temperature (K) | |
Tb | imposed barrel temperature (°C) |
Td | imposed die temperature (°C) |
Tm | melting temperature (°C) |
reference temperature (°C) | |
T_mes | melt temperature, measured at die exit (°C) |
T_com | predicted melt temperature at die exit (°C) |
free volume of a screw element (m3) | |
w.b. | wet basis |
WF | refined wheat flour |
WF-LB | refined wheat flour containing low content of wheat bran (12.6%) |
WF-HB | refined wheat flour containing high content of wheat bran (24.4%) |
power dissipated in the volume V of a screw element (Watt) | |
WSIstarch | water solubility index of starch (in kg/kg dry starch in flour or %) |
mass fraction of water (kg·kg−1) | |
mass fraction of starch (kg·kg−1) | |
water plasticization coefficient (dimensionless) | |
thermomechanical history coefficient (kg·kJ−1) | |
melt viscosity (Pa·s) | |
η_com | predicted melt viscosity at die exit (Pa·s) |
local or true shear rate (s−1) | |
pressure variation along angular screw section (Pa) | |
temperature change in a screw section (°C) | |
ΔVis | drop of intrinsic viscosity (%) |
screw speed (rad·s−1) | |
density of snack or molten feed (kg·m−3) | |
density of anhydrous starch or flour (kg·m−3) | |
density of water (kg·m−3) | |
water volume fraction |
Appendix A
Appendix A.1. Extruder Configuration
Appendix A.2. Supplementary Experiment
Appendix A.3. Melting Transition
Appendix A.4. Data Set of Product Properties in Function of Measured Processing Variables
Appendix A.5. Supplementary Data Set
Properties | Granular State | Molten State | Reference |
---|---|---|---|
Density (kg/m3) | 700 | [42] | |
s = 1450 kg/m3 | |||
w = 1000 kg/m3 | |||
Specific heat (J/(kg °C)) | 1700 | [42] | |
= 4188 kg/m3 | |||
= 1328 + 5.737 T | |||
T in °C | |||
Thermal conductivity (W/(m K)) | [41,42,43] | ||
= mass fraction of component i | = mass fraction of component i | ||
Melting latent heat (J/g) | 5–20 | [42,58,59] |
Feeds | Equation | R2 |
---|---|---|
Melt temperature | ||
All | T_com = 1.02 × T_mes | 0.88 |
SME | ||
Extruded starches | ||
(Expanded and Dense) | ||
Maizes A, B, C, D | SME_com = 0.34 × SME_mes + 156.14 | 0.71 |
Potato 1, Potato 2 | SME_com = 0.28 × SME_mes + 108.14 | 0.96 |
Expanded snacks | ||
Starch-protein blends | SME_com = 0.61 × SME_mes + 49.44 | 0.86 |
(PF, FF, FSC) | ||
Bran enriched | SME_com = 0.31 × SME_mes + 173.45 | 0.53 |
wheat flour (WF, WF-LB, WF-HB) |
References
- Ek, P.; Baner, J.M.; Ganjyal, G.M. Chapter 8—Extrusion Processing of Cereal Grains, Tubers, and Seeds. In Extrusion Cooking: Cereal Grains Processing; Ganjyal, G.M., Ed.; Woodhead Publishing: Cambridge, MA, USA, 2020; pp. 225–263. ISBN 978-0-12-815360-4. [Google Scholar]
- Markets and Markets. Extruded Snacks Market by Type (Simply Extruded, Expanded, Co-Extruded), Raw Material (Wheat, Potato, Corn, Oats, Rice, Multigrain), Manufacturing Method (Single-Screw, Twin-Screw), Distribution Channel, and Region–Global Forecast to 2026; Markets and Markets: Pune, India, 2020. [Google Scholar]
- Li, M.; Hasjim, J.; Xie, F.; Halley, P.J.; Gilbert, R.G. Shear Degradation of Molecular, Crystalline, and Granular Structures of Starch during Extrusion. Starch Stärke 2014, 66, 595–605. [Google Scholar] [CrossRef]
- Ralet, M.C.; Della Valle, G.; Thibault, J.F. Raw and Extruded Fibre from Pea Hulls. Part I: Composition and Physico-Chemical Properties. Carbohydr. Polym. 1993, 20, 17–23. [Google Scholar] [CrossRef]
- Stanley, W.D. Protein Reactions during Extrusion Processing. In Extrusion Cooking; Mercier, C., Linko, P., Harper, J.M., Eds.; American Association of Cereal Chemists, Inc.: St. Paul, MN, USA, 1989; pp. 321–341. [Google Scholar]
- Alam, S.A.; Pentikäinen, S.; Närväinen, J.; Holopainen-Mantila, U.; Poutanen, K.; Sozer, N. Effects of Structural and Textural Properties of Brittle Cereal Foams on Mechanisms of Oral Breakdown and in Vitro Starch Digestibility. Food Res. Int. 2017, 96, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jebalia, I.; Maigret, J.-E.; Réguerre, A.-L.; Novales, B.; Guessasma, S.; Lourdin, D.; Della Valle, G.; Kristiawan, M. Morphology and Mechanical Behaviour of Pea-Based Starch-Protein Composites Obtained by Extrusion. Carbohydr. Polym. 2019, 223, 115086. [Google Scholar] [CrossRef]
- Karkle, E.L.; Alavi, S.; Dogan, H. Cellular Architecture and Its Relationship with Mechanical Properties in Expanded Extrudates Containing Apple Pomace. Food Res. Int. 2012, 46, 10–21. [Google Scholar] [CrossRef]
- Kristiawan, M.; Della Valle, G.; Réguerre, A.L.; Micard, V.; Salles, C. Artificial Oral Processing of Extruded Pea Flour Snacks. Food Eng. Rev. 2021, 13, 247–261. [Google Scholar] [CrossRef]
- Laleg, K.; Barron, C.; Santé-Lhoutellier, V.; Walrand, S.; Micard, V. Protein Enriched Pasta: Structure and Digestibility of Its Protein Network. Food Funct. 2016, 7, 1196–1207. [Google Scholar] [CrossRef]
- Li, C.; Kowalski, R.J.; Li, L.; Ganjyal, G.M. Extrusion Expansion Characteristics of Samples of Select Varieties of Whole Yellow and Green Dry Pea Flours. Cereal Chem. J. 2016, 94, 385–391. [Google Scholar] [CrossRef]
- Robin, F.; Schuchmann, H.P.; Palzer, S. Dietary Fiber in Extruded Cereals: Limitations and Opportunities. Trends Food Sci. Technol. 2012, 28, 23–32. [Google Scholar] [CrossRef]
- Guessasma, S.; Chaunier, L.; Della Valle, G.; Lourdin, D. Mechanical Modelling of Cereal Solid Foods. Trends Food Sci. Technol. 2011, 22, 142–153. [Google Scholar] [CrossRef]
- Kristiawan, M.; Chaunier, L.; Della Valle, G.; Ndiaye, A.; Vergnes, B. Modeling of Starchy Melts Expansion by Extrusion. Trends Food Sci. Technol. 2016, 48, 13–26. [Google Scholar] [CrossRef]
- Kristiawan, M.; Della Valle, G.; Kansou, K.; Ndiaye, A.; Vergnes, B. Validation and Use for Product Optimization of a Phenomenological Model of Starch Foods Expansion by Extrusion. J. Food Eng. 2019, 246, 160–178. [Google Scholar] [CrossRef]
- Kristiawan, M.; Della Valle, G. Chapter 6–Transport Phenomena and Material Changes during Extrusion. In Extrusion Cooking: Cereal Grains Processing; Ganjyal, G.M., Ed.; Woodhead Publishing: Cambridge, MA, USA, 2020; pp. 179–204. ISBN 978-0-12-815360-4. [Google Scholar]
- Connelly, R.; Kokini, J. Examination of the Mixing Ability of Single and Twin Screw Mixers Using 2D Finite Element Method Simulation with Particle Tracking. J. Food Eng. 2007, 79, 956–969. [Google Scholar] [CrossRef]
- Durin, A.; De Micheli, P.; Nguyen, H.C.; David, C.; Valette, R.; Vergnes, B. Comparison between 1D and 3D Approaches for Twin-Screw Extrusion Simulation. Int. Polym. Process. 2014, 29, 641–648. [Google Scholar] [CrossRef]
- Emin, M.A.; Schuchmann, H.P. Analysis of the Dispersive Mixing Efficiency in a Twin-Screw Extrusion Processing of Starch Based Matrix. J. Food Eng. 2013, 115, 132–143. [Google Scholar] [CrossRef]
- Emin, M.A.; Karbstein, H. Droplet Breakup and Coalescence in a Twin-Screw Extrusion Processing of Starch Based Matrix. J. Food Eng. 2013, 116, 118–129. [Google Scholar] [CrossRef]
- Ficarella, A.; Milanese, M.; Laforgia, D. Numerical Study of the Extrusion Process in Cereals Production: Part I. Fluid-Dynamic Analysis of the Extrusion System. J. Food Eng. 2006, 73, 103–111. [Google Scholar] [CrossRef]
- Valette, R.; Coupez, T.; David, C.; Vergnes, B. A Direct 3D Numerical Simulation Code for Extrusion and Mixing Processes. Int. Polym. Process. 2009, 24, 141–147. [Google Scholar] [CrossRef]
- Tayeb, J.; Vergnes, B.; Della Valle, G. A Basic Model for a Twin-Screw Extruder. J. Food Sci. 1989, 54, 1047–1056. [Google Scholar] [CrossRef]
- Vergnes, B.; Della Valle, G.; Delamare, L. A Global Computer Software for Polymer Flows in Corotating Twin Screw Extruders. Polym. Eng. Sci. 1998, 38, 1781–1792. [Google Scholar] [CrossRef]
- Xie, F.; Halley, P.J.; Avérous, L. Rheology to Understand and Optimize Processibility, Structures and Properties of Starch Polymeric Materials. Prog. Polym. Sci. 2012, 37, 595–623. [Google Scholar] [CrossRef]
- Horvat, M.; Emin, M.A.; Hochstein, B.; Willenbacher, N.; Schuchmann, H.P. A Multiple-Step Slit Die Rheometer for Rheological Characterization of Extruded Starch Melts. J. Food Eng. 2013, 116, 398–403. [Google Scholar] [CrossRef]
- Della Valle, G.; Colonna, P.; Patria, A.; Vergnes, B. Influence of Amylose Content on the Viscous Behavior of Low Hydrated Molten Starches. J. Rheol. 1996, 40, 347–362. [Google Scholar] [CrossRef]
- Berzin, F.; Tara, A.; Tighzert, L.; Vergnes, B. Importance of Coupling between Specific Energy and Viscosity in the Modeling of Twin-Screw Extrusion of Starchy Products. Polym. Eng. Sci. 2010, 50, 1758–1766. [Google Scholar] [CrossRef]
- Della Valle, G.; Barrès, C.; Plewa, J.; Tayeb, J.; Vergnes, B. Computer Simulation of Starchy Products’ Transformation by Twin-Screw Extrusion. J. Food Eng. 1993, 19, 1–31. [Google Scholar] [CrossRef]
- Robin, F.; Engmann, J.; Pineau, N.; Chanvrier, H.; Bovet, N.; Valle, G. Della Extrusion, Structure and Mechanical Properties of Complex Starchy Foams. J. Food Eng. 2010, 98, 19–27. [Google Scholar] [CrossRef]
- Della Valle, G.; Boché, Y.; Colonna, P.; Vergnes, B. The Extrusion Behaviour of Potato Starch. Carbohydr. Polym. 1995, 28, 255–264. [Google Scholar] [CrossRef]
- Logié, N.; Della Valle, G.; Rolland-Sabaté, A.; Descamps, N.; Soulestin, J. How Does Temperature Govern Mechanisms of Starch Changes during Extrusion? Carbohydr. Polym. 2018, 184, 57–65. [Google Scholar] [CrossRef]
- Della Valle, G.; Vergnes, B.; Colonna, P.; Patria, A. Relations between Rheological Properties of Molten Starches and Their Expansion Behaviour in Extrusion. J. Food Eng. 1997, 31, 277–295. [Google Scholar] [CrossRef]
- Kristiawan, M.; Micard, V.; Maladira, P.; Alchamieh, C.; Maigret, J.-E.; Réguerre, A.-L.; Emin, M.A.; Della Valle, G. Multi-Scale Structural Changes of Starch and Proteins during Pea Flour Extrusion. Food Res. Int. 2018, 108, 203–215. [Google Scholar] [CrossRef]
- Robin, F.; Dubois, C.; Pineau, N.; Schuchmann, H.P.; Palzer, S. Expansion Mechanism of Extruded Foams Supplemented with Wheat Bran. J. Food Eng. 2011, 107, 80–89. [Google Scholar] [CrossRef]
- Robin, F.; Théoduloz, C.; Gianfrancesco, A.; Pineau, N.; Schuchmann, H.P.; Palzer, S. Starch Transformation in Bran-Enriched Extruded Wheat Flour. Carbohydr. Polym. 2011, 85, 65–74. [Google Scholar] [CrossRef]
- Robin, F.; Bovet, N.; Pineau, N.; Schuchmann, H.P.; Palzer, S. Online Shear Viscosity Measurement of Starchy Melts Enriched in Wheat Bran. J. Food Sci. 2011, 76, E405–E412. [Google Scholar] [CrossRef] [PubMed]
- Tayeb, J.; Vergnes, B.; Della Valle, G. Theoretical Computation of the Isothermal Flow through the Reverse Screw Element of a Twin Screw Extrusion Cooker. J. Food Sci. 1988, 53, 616–625. [Google Scholar] [CrossRef]
- Noe, I. Etude Des Écoulements de Polymères Dans Une Extrudeuse Bivis Corotative. Ph.D. Thesis, École Nationale Supérieure des Mines de Paris, Paris, France, 1992. [Google Scholar]
- Tayeb, J.; Della Valle, G.; Vergnes, B. Modélisation Thermomécanique Du Procédé d’extrusion Bi-Vis. Exemples d’applications. In La Cuisson-Extrusion; Colonna, P., Della Valle, G., Eds.; Lavoisier Tec & Doc: Paris, France, 1994; pp. 489–536. [Google Scholar]
- Choi, Y.; Okos, M.R. Effects of Temperature and Composition on the Thermal Properties of Foods. In Food Engineering and Process Applications, Vol. 1. Transport Phenomena; Maguer, M.L., Jelen, P., Eds.; Elsevier Applied Science Publishers: New York, NY, USA, 1986; pp. 93–101. [Google Scholar]
- Della Valle, G.; Vergnes, B. Propriétés Thermophysiques et Rhéologiques Des Substrats Utilisés En Cuisson-Extrusion. In La Cuisson-Extrusion; Colonna, P., Della Valle, G., Eds.; Lavoisier Tec & Doc: Paris, France, 1994; pp. 440–467. [Google Scholar]
- Muramatsu, Y.; Tagawa, A.; Kasai, T. Effective Thermal Vonductivity of Rice Flour and Whole and Skim Milk Powder. J. Food Sci. 2005, 70, E279–E287. [Google Scholar] [CrossRef]
- Barron, C. Déstructuration d’amidons Peu Hydratés Sous Cisaillement. Ph.D. Thesis, Université de Nantes, Nantes, France, 1999. [Google Scholar]
- Bouvier, J.M.; Campanella, O.H. The Generic Extrusion Process. III. Thermomechanical Cooking and Food Product Texturation. In Extrusion Processing Technology: Food and Non-Food Biomaterials; John Wiley and Sons.: Hoboken, NJ, USA, 2014; pp. 243–310. [Google Scholar]
- Colonna, P.; Buléon, A. Transformations Structurales d’amidons. In La Cuisson-Extrusion; Colonna, P., Della Valle, G., Eds.; Lavoisier Tec & Doc: Paris, France, 1994; pp. 18–43. [Google Scholar]
- Logié, N. Modifications Structurales et Comportement Rhéologique d’amidons Faiblement Hydratés Sous Traitement Thermomécanique. Ph.D. Thesis, Université de Lille 1, Lille, France, 2017. [Google Scholar]
- Núñez, M.; Sandoval, A.J.; Müller, A.J.; Della Valle, G.; Lourdin, D. Thermal Characterization and Phase Behavior of a Ready-to-Eat Breakfast Cereal Formulation and Its Starchy Components. Food Biophys. 2009, 4, 291–303. [Google Scholar] [CrossRef]
- Jebalia, I. Elaboration et Comportement Mécanique de Matériaux Composites Amylo-Protéiques. Ph.D. Thesis, Université de Nantes, Nantes, France, 2020. [Google Scholar]
- Brugger, A.; Chaunier, L.; Della Valle, G.; Dellemann, J.-P.; Kristiawan, M. Détermination de Comportements Visqueux Pour l’extrusion de Formulations de Céréales Petit-Déjeuner. Ind. Des Céréales 2013, Aout 2013, 18–22. [Google Scholar]
- Vergnes, B.; Della Valle, G.; Tayeb, J. A Specific Slit Die Rheometer for Extruded Starchy Products. Design, Validation and Application to Maize Starch. Rheol. Acta 1993, 32, 465–476. [Google Scholar] [CrossRef]
- Barron, C.; Buleon, A.; Colonna, P.; Della Valle, G. Structural Modifications of Low Hydrated Pea Starch Subjected to High Thermomechanical Processing. Carbohydr. Polym. 2000, 43, 171–181. [Google Scholar] [CrossRef]
- Rolland-Sabaté, A.; Colonna, P.; Mendez-Montealvo, M.G.; Planchot, V. Branching Features of Amylopectins and Glycogen Determined by Asymmetrical Flow Field Flow Fractionation Coupled with Multiangle Laser Light Scattering. Biomacromolecules 2007, 8, 2520–2532. [Google Scholar] [CrossRef]
- Vergnes, B.; Villemaire, J.P. Rheological Behaviour of Low Moisture Molten Maize Starch. Rheol. Acta 1987, 26, 570–576. [Google Scholar] [CrossRef]
- Morel, M.H.; Dehlon, P.; Autran, J.C.; Leygue, J.P.; Bar-L’Helgouac’h, C. Effects of Temperature, Sonication Time, and Power Settings on Size Distribution and Extractability of Total Wheat Flour Proteins as Determined by Size-Exclusion High-Performance Liquid Chromatography. Cereal Chem. 2000, 77, 685–691. [Google Scholar] [CrossRef]
- Berzin, F.; Tara, A.; Tighzert, L. In-Line Measurement of the Viscous Behaviour of Wheat Starch during Extrusion. Application to Starch Cationisation. Appl. Rheol. 2007, 17, 21221–21222. [Google Scholar] [CrossRef]
- Donovan, J.W. Phase Transitions of the Starch–Water System. Biopolymers 1979, 18, 263–275. [Google Scholar] [CrossRef]
- Maache-Rezzoug, Z.; Zarguili, I.; Loisel, C.; Queveau, D.; Buléon, A. Structural Modifications and Thermal Transitions of Standard Maize Starch after DIC Hydrothermal Treatment. Carbohydr. Polym. 2008, 74, 802–812. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Yu, L.; Xie, F.; Chen, L. Gelatinization of Cornstarch with Different Amylose/Amylopectin Content. Carbohydr. Polym. 2006, 65, 357–363. [Google Scholar] [CrossRef]
No | Formulation | Supplier | Chemical Composition | Starch Components | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Starch | Protein | Fiber | Lipid | Ash | Sugar | Salt | Amylose | Amylopectin | |||
Expanded starches | |||||||||||
1 | Blends of high amylose Eurylon 7 (Maize A) and waxy maize Waxilys 100 (Maize D) starches [27,33] | ||||||||||
Maize A | Roquette (France) | 93.4% | 0.15% | <1% | 1.3% | 0.15% | n.g. | <0.01% | 70% | 30% | |
Maize B: A/D = 2/1 | 93.0% | 0.18% | <1% | 1.1% | 0.13% | n.g. | <0.01% | 47% | 53% | ||
Maize C: A/D = 1/1 | 92.9% | 0.20% | <1% | 0.67% | 0.13% | n.g. | <0.01% | 23.5% | 76.5% | ||
Maize D | Roquette (France) | 92.3% | 0.25% | <1% | 0.20% | 0.10% | n.g. | <0.01% | 1% | 99% | |
2 | Potato starch: Potato 1 [31] | Roquette (France) | 95.7% | 0.08% | <1% | 0.06% | 0.60% | n.g. | <0.01% | 21% | 79% |
Dense starch | |||||||||||
3 | Potato starch (Potato 2) [32] | Roquette (France) | 95.7% | 0.08% | <1% | 0.06% | 0.6% | n.g. | <0.01% | 21% | 79% |
Pea starch [32] | Roquette (France) | 97.7% | 0.49% | <1% | 0.79% | 0.5% | n.g | <0.01% | 35% | 65% | |
4 | Breakfast cereals (this work; confidential) | ||||||||||
Malt extract-based (HB) | 82.3% | 4.6% | 0.52% | 1.4% | 0.17% | 10.0% | 1.0% | 20–28% | 72–80% | ||
Cacao based (CB) | 72.7% | 6.3% | 1.3% | 2.8% | 0.8% | 10.0% | 1.0% | 20–28% | 72–80% | ||
Expanded snacks | |||||||||||
a) Leguminous starch-protein blends | |||||||||||
5 | Pea flour (PF) [34] | Sotexpro (France) | 46.3% | 23.9% | 25.7% | 2.0% | 2.1% | n.g. | n.g. | 35.0% | 65.0% |
6 | Fava bean ingredients (this work) | ||||||||||
Fava bean flour (FF) | Valorex (France) | 45.3% | 32.8% | 6.3% | 4.0% | 3.7% | 3.0% | n.g. | 33.5% | 66.5% | |
Fava bean starch concentrate (FSC) | Valorex (France) | 59.2% | 20.6% | 7.3% | 1.7% | 2.7% | 2.8% | n.g. | 39.9% | 60.1% | |
7 | Cereal based: Wheat flour type 550 enriched with wheat bran [35,36] | ||||||||||
WF: Wheat flour | Provimi Kliba S.A. (Switzerland) | 78.5% | 13.0% | 2.8% | 1.1% | 0.8% | n.g. | n.g. | n.g. | n.g. | |
WF-LB: WF + low bran content | Provimi Kliba S.A. (Switzerland) | 69.7% | 13.9% | 12.6% | 1.6% | 1.8% | n.g. | n.g. | n.g. | n.g. | |
WF-HB: WF + high bran content | Provimi Kliba S.A. (Switzerland) | 55.5% | 15.0% | 24.4% | 2.2% | 3.2% | n.g. | n.g. | n.g. | n.g. |
Formulation Number and Products Code | ||||
Specifications | 1 | 2 | 3 | 4 |
Expanded starch | Dense extruded starch | Breakfast cereal | ||
Maize A | Potato 1 | Potato 2 | CB | |
Maize B | PS | HB | ||
Maize C | ||||
Maize D | ||||
References | [27,33] | [31] | [32] | This work |
Extruder brand | Clextral | Clextral | Thermo-scientific | Coperion Werner & Pfleiderer |
BC 45 | BC 45 | HAAKE™ Polysoft OS | ZSK 26Mc | |
Screw diameter D (mm) | 55.5 | 55.5 | 16 | 25.5 |
Screw length (L) | 1000 | 1000 | 632 | 740 |
Screw profile | conveying elements | conveying elements | conveying elements | conveying elements |
from hopper to die | reverse screw element | reverse screw element | 90° bilobal kneading discs | three blocks of 45° kneading discs |
reverse screw element | three reverse screw elements | |||
conveying element | conveying elements | |||
Die configuration | a twin-slit | two circular dies | conical die | circular die |
rheometric die | ||||
Moisture content MC (w.b.) | 20 < MC < 36% | 22 < MC < 35% | 25 and 30% | 15; 19; 23% |
Melt temperature °C | 135 < T < 190 | 120 < T < 190 | 85 < T < 105 | confidential |
SME (kJ/kg) | 250 < SME < 2000 | 350 < SME < 1250 | 850 < SME < 5500 | confidential |
Formulation Number and Products Code | ||||
Specifications | 5 | 6 | 7 | |
Expanded snacks | ||||
PF | FF | WF | ||
FSC | WF-LB | |||
WF-HB | ||||
References | [34] | This work | [35,36] | |
Extruder brand | Coperion Werner & Pfleiderer | Thermo Scientific™ | Clextral | |
ZSK 26Mc | Process 11 | Evolum 25 | ||
Screw diameter D (mm) | 25.5 | 11 | 25 | |
Screw length (L) | 740 | 269.5 | 400 | |
Screw profile | conveying elements | conveying elements | conveying elements | |
from hopper to die | three blocks of 45° kneading discs | 90° bilobal kneading discs | mixing elements | |
three reverse screw elements | reverse screw element | reverse screw element | ||
conveying elements | conveying element | |||
Die configuration | (a) multiple slit die + circular die | circular die | circular die | |
(b) circular die | ||||
Moisture content MC (w.b.) | 18% ≤ MC ≤ 26% | 15; 25; 35% | 18 and 22% | |
Melt temperature °C | 120 < T < 165 | 120 < T < 165 | n.g. | |
SME (kJ/kg) | 450 < SME < 1200 | 135 < SME < 3500 | n.g. |
Coefficients | Maize Starch with Amylose Content of | Potato | Breakfast Cereals | Pea Flour | Wheat Flour + Wheat Bran * | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
70% | 47% | 23.50% | 1% | Starch | |||||||
Product Code | Maize A | Maize B | Maize C | Maize D | Potato 1 | CB | HB | PF | WF | LB | HB |
References | [27] | [31] | [50] | [49] | [37] | ||||||
(Pa·sn) | 1.21 × 107 | 1.91 × 106 | 4.57 × 107 | 4.72 × 106 | 3.67 × 106 | 1.71 × 106 | 1.22 × 107 | 8.1 × 105 | 8.10 × 10−2 | 1.60 × 10−1 | 2.00 × 10−3 |
(K) | 11,440 | 7983 | 10,850 | 9235 | 6421 | 6765 | 11,153 | 4210 | 7343 | 7553 | 11,201 |
14.6 | 17.9 | 29.5 | 26.1 | 14.9 | 13.6 | 13.7 | 11.4 | 23.5 | 27.4 | 34.5 | |
(kg kJ−1) | - | 7.44 × 10−5 | 1.06 × 10−3 | 1.65 × 10−3 | 3.08 × 10−3 | - | - | - | 1.67 × 10−3 | 1.94 × 10−3 | 7.50 × 10−3 |
−1.16 | 1.81 | 3.54 | −1.02 | 1 × 10−2 | - | - | 0.29 | 0.166 | 0.165 | 0.129 | |
(°C)−1 | 7.93 × 10−3 | −7.36 × 10−3 | −1.54 × 10−2 | 7.20 × 10−3 | 1.55 × 10−3 | 3.28 × 10−3 | 3.70 × 10−3 | - | - | - | - |
1.31 | −1.93 | −3.19 | 2.54 | 9.96 × 10−2 | −2.18 | −2.55 | - | - | - | - | |
(kg·kJ−1) | - | −4.89 × 10−3 | −8.72 × 10−3 | 1.56 × 10−4 | 2.75 × 10−4 | - | - | - | - | - | - |
(°C)−1 | - | - | - | - | 1.53 × 10−1 | 8.05 × 10−3 | 9.5 × 10−3 | - | - | - | - |
(kg·°C−1·kJ−1) | - | 1.98 × 10−5 | 4.10 × 10−5 | - | −3.47 × 10−5 | - | - | - | - | - | - |
(kg·kJ−1) | - | 9.19 × 10−3 | 1.12 × 10−2 | - | −1.27 × 10−7 | - | - | - | - | - | - |
No | Product Code | Product Features | Measurement Method and Reference | Database Source | |
---|---|---|---|---|---|
Expanded starches | Starch destructuration | Ubbelhode viscometer | [27] | [27] | |
1 | Maize A | Intrinsic viscosity | |||
Maize B | Melt rheology | ||||
Maize C | Shear viscosity | On-line twin-slit rheometer | [51] | [27] | |
Maize D | (Rheopac) | ||||
Melting temperature | DSC | [52] | [45,46] * | ||
2 | Potato 1 | Intrinsic viscosity | Ubbelhode viscometer | [31] | [31] |
Dense starch | Starch depolymerization | ||||
3 | Potato 2 | Residual molar | Asymmetrical flow field | [32,53] | [32] |
Pea (PS) | mass | flow fractionation (AF4) | |||
coupled to MALLS | |||||
Starch melting | |||||
Granule number | Light microscopy and image | [32] | |||
per unit area | analysis | ||||
Melting temperature | DSC | [32] | |||
4 | Breakfast cereals | Melt rheology | |||
Malt-based (HB) | Shear viscosity | Off-line preshearing | [54] | [50] | |
Cacao-based (CB) | capillary rheometer | ||||
(Rheoplast®) | |||||
Melting temperature | DSC | [48] | This work | ||
Expanded snacks | |||||
Legume-based | |||||
5 | Pea flour (PF) | Protein aggregation | |||
In-extractible proteins | Protein solubility in | [55] | [34] | ||
SDS + DTE reagents | |||||
Structure | |||||
Density | Bead displacement | [34] | [34] | ||
Melt rheology | |||||
Shear viscosity | Rheoplast® rheometer | [54] | [49] | ||
Melting temperature | DSC | [52] | [34] | ||
6 | Fava bean ingredients | Structure | |||
FF, FSC | Density | Bead displacement | [34] | This work | |
Melt rheology | |||||
Shear viscosity | Rheoplast® rheometer | [54] | [49] | ||
Melting temperature | DSC | [32] | This work | ||
Cereal-based | |||||
7 | Wheat flour enriched | Structure | |||
with wheat bran | Radial expansion | Measurement of diameter | [35] | [35] | |
WF, WF-LB, WF-HB | index (SEI) | of extrudate by Caliper | |||
Cellular structure | X-ray microtomography and | [35] | [35] | ||
(Cell number | 3D image analyze | ||||
per cm3) | (Component labeling operation) | ||||
Functional property | |||||
Water solubility | Solubilisation and centrifugation | [36] | [36] | ||
index of starch | |||||
Melt rheology | |||||
Shear viscosity | On-line twin-slit | [37] | [37] | ||
rheometer (TSAR) | |||||
Melting temperature | DSC | [52] | [42] ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kristiawan, M.; Della Valle, G.; Berzin, F. Extrusion Simulation for the Design of Cereal and Legume Foods. Foods 2022, 11, 1780. https://doi.org/10.3390/foods11121780
Kristiawan M, Della Valle G, Berzin F. Extrusion Simulation for the Design of Cereal and Legume Foods. Foods. 2022; 11(12):1780. https://doi.org/10.3390/foods11121780
Chicago/Turabian StyleKristiawan, Magdalena, Guy Della Valle, and Françoise Berzin. 2022. "Extrusion Simulation for the Design of Cereal and Legume Foods" Foods 11, no. 12: 1780. https://doi.org/10.3390/foods11121780
APA StyleKristiawan, M., Della Valle, G., & Berzin, F. (2022). Extrusion Simulation for the Design of Cereal and Legume Foods. Foods, 11(12), 1780. https://doi.org/10.3390/foods11121780