A Genetic Toxicology Study of the Rapid Detection of Nitrosamine Compounds by the rpsL Gene Mutation Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Plasmids
2.2. Determination of the Mutation Rate of the rpsL Gene at the Cellular Level
2.3. Determination of the rpsL Gene Mutation Rate in the PCR Amplification System
2.4. Determination of the rpsL Gene Mutation Rate in the RCA Reaction System
3. Results and Discussion
3.1. Determination of the rpsL Gene Replication Spontaneous Mutation Rate in E. coli MF101
3.2. Statistics of Spontaneous Mutation Types of rpsL Gene Duplication
3.3. Detection of the Induced Mutation Rate of rpsL Gene Replication at the Cellular Level
3.4. Detection of the Spontaneous Mutation Rate of rpsL Gene Replication in the PCR System
3.5. Detection of the Induced Mutation Rate of rpsL Gene Replication in the PCR System
3.6. Determination of the Spontaneous Mutation Rate of rpsL in the RCA System
3.7. Detection of the Induced Mutation Rate of the rpsL Gene in the RCA System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hotchkiss, J.H. Sources of N-Nitrosamine Contamination in Foods. Adv. Exp. Med. Biol. 1984, 177, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Elder, D.P.; Johnson, G.E.; Snodin, D.J. Tolerability of risk: A commentary on the nitrosamine contamination issue. J. Pharm. Sci. 2021, 110, 2311–2328. [Google Scholar] [CrossRef] [PubMed]
- Karwowska, M.; Kononiuk, A. Nitrates/Nitrites in Food—Risk for Nitrosative Stress and Benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecht, S. Approaches to Cancer Prevention Based on an Understanding of N-Nitrosamine Carcinogenesis. Exp. Biol. Med. 1997, 216, 181–191. [Google Scholar] [CrossRef]
- De Mey, E.; De Maere, H.; Paelinck, H.; Fraeye, I. Volatile N-nitrosamines in meat products: Potential precursors, influence of processing, and mitigation strategies. Crit. Rev. Food Sci. Nutr. 2017, 57, 2909–2923. [Google Scholar] [CrossRef]
- Özbay, S.; Şireli, U.T. Volatile N-nitrosamines in processed meat products and salami from Turkey. Food Addit. Contam. Part B 2021, 14, 110–114. [Google Scholar] [CrossRef]
- Jakszyn, P.; Gonzalez, C.A. Nitrosamine and related food intake and gastric and oesophageal cancer risk: A systematic review of the epidemiological evidence. World J. Gastroenterol. 2006, 12, 4296–4303. [Google Scholar] [CrossRef]
- Di, M.E.; Kahkonen, B.; Liu, C.-H.; Di, Y.P. Lung carcinomas induced by NNK and LPS. Methods Cell Biol. 2021, 163, 175–185. [Google Scholar] [CrossRef]
- Carlson, E.S.; Upadhyaya, P.; Hecht, S.S. A General Method for Detecting Nitrosamide Formation in the In Vitro Metabolism of Nitrosamines by Cytochrome P450s. J. Vis. Exp. 2017, 127, e56312. [Google Scholar] [CrossRef]
- Zeiger, E. The test that changed the world: The Ames test and the regulation of chemicals. Mutat. Res./Genet. Toxicol. Environ. Mutagenesis 2019, 841, 43–48. [Google Scholar] [CrossRef]
- Shemediuk, A.L.; Dolia, B.S.; Ochi, K.; Fedorenko, V.O.; Ostash, B.O. Properties of Spontaneous rpsL Mutant of Streptomyces albus KO-1297. Cytol. Genet. 2022, 56, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-K.; Liou, C.-H.; Lin, J.-C.; Ma, L.; Fung, C.-P.; Chang, F.-Y.; Siu, L.K. A Suitable Streptomycin-Resistant Mutant for Constructing Unmarked In-Frame Gene Deletions Using rpsL as a Counter-Selection Marker. PLoS ONE 2014, 9, e109258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, Q.; Bai, K.; Kan, Y.; Jiang, N.; Thapa, S.P.; Coaker, G.; Li, J.; Luo, L. Variation in Streptomycin Resistance Mechanisms in Clavibacter michiganensis. Phytopathology 2019, 109, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Shen, C.; Ji, Q.; An, H.; Wang, J.; Liu, Q.; Zhang, Z. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 2009, 20, 085102. [Google Scholar] [CrossRef]
- Kushida, H.; Fujita, K.I.; Suzuki, A.; Yamada, M.; Endo, T.; Nohmi, T.; Kamataki, T. Metabolic activation of N-alkylnitrosamines in genetically engineered Salmonella typhimurium expressing CYP2E1 or CYP2A6 together with human NADPH-cytochrome P450 reductase. Carcinogenesis 2000, 21, 1227–1232. [Google Scholar] [PubMed]
- Fujii, S.; Akiyama, M.; Aoki, K.; Sugaya, Y.; Higuchi, K.; Hiraoka, M.; Miki, Y.; Saitoh, N.; Yoshiyama, K.; Ihara, K.; et al. DNA Replication Errors Produced by the Replicative Apparatus of Escherichia coli. J. Mol. Biol. 1999, 289, 835–850. [Google Scholar] [CrossRef] [PubMed]
- Kaoru, Y.; Kumiko, H.; Hironobu, M.; Hisaji, M. Directionality of DNA replication fork movement strongly affects the generation of spontaneous mutations in Escherichia coli. J. Mol. Biol. 2001, 307, 1195–1206. [Google Scholar]
- Sankar, P.S.; Citartan, M.; Siti, A.A.; Skryabin, B.V.; Rozhdestvensky, T.S.; Khor, G.H.; Tang, T.H. A simple method for in-house Pfu DNA polymerase purification for high-fidelity PCR amplification. Iran. J. Microbiol. 2019, 11, 181–186. [Google Scholar] [CrossRef]
- Ali, M.M.; Li, F.; Zhang, Z.; Zhang, K.; Kang, D.-K.; Ankrum, J.A.; Le, X.C.; Zhao, W. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 2014, 43, 3324–3341. [Google Scholar] [CrossRef]
- Hutchison, C.A., III; Smith, H.O.; Pfannkoch, C.; Venter, J.C. Cell-free cloning using phi29 DNA polymerase. Proc. Natl. Acad. Sci. USA 2005, 102, 17332–17336. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Ye, J.; Yang, D.; Al-Maskri, A.A.A.; Hu, H.; Jung, C.; Cai, S.; Zeng, S. Ultrasensitive detection of miRNA via one-step rolling circle-quantitative PCR (RC-qPCR). Anal. Chim. Acta 2019, 1077, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Cui, J.; Zhou, Y.; Chen, L.; Zhang, C.; Chen, K.; Lian, C.; Li, L.; Li, H.; Liang, J. A strategy for sequencing based on rolling-circle amplification on a microarray. J. Biomed. Nanotechnol. 2013, 9, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Dean, F.B.; Nelson, J.R.; Giesler, T.L.; Lasken, R.S. Rapid Amplification of Plasmid and Phage DNA Using Phi29 DNA Polymerase and Multiply-Primed Rolling Circle Amplification. Genome Res. 2001, 11, 1095–1099. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Duan, J.; Chen, J.; Ding, S.; Cheng, W. Recent advances in rolling circle amplification-based biosensing strategies-A review. Anal. Chim. Acta 2020, 1148, 238187. [Google Scholar] [CrossRef]
- Shi, H.; Cui, J.; Sulemana, H.; Wang, W.; Gao, L. Protein detection based on rolling circle amplification sensors. Luminescence 2021, 36, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, H.; Cao, H.; Jiang, Y.; Mao, K.; Yang, Z. Rolling circle amplification as an efficient analytical tool for rapid detection of contaminants in aqueous environments. Biosensors 2021, 11, 352. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, K.S.; Shoemaker, D.D.; Adams, M.W.; Short, J.M.; Sorge, J.A.; Mathur, E.J. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 1991, 108, 1–6. [Google Scholar] [CrossRef]
- Fan, C.-C.; Lin, T.-F. N-nitrosamines in drinking water and beer: Detection and risk assessment. Chemosphere 2018, 200, 48–56. [Google Scholar] [CrossRef]
- Liu, Y.; Guttenplan, J. Mutational specificities of N-nitrosamines in a host-mediated assay: Comparison with direct-acting N-nitroso compounds in vitro and an approach to deducing the mature of ultimate mutagens in vivo. Mol. Carcinog. 1992, 6, 232–237. [Google Scholar] [CrossRef]
- Mestankova, H.; Schirmer, K.; Canonica, S.; von Gunten, U. Development of mutagenicity during degradation of N-nitrosamines by advanced oxidation processes. Water Res. 2014, 66, 399–410. [Google Scholar] [CrossRef]
- Yoshihara, R.; Nakane, C.; Takimoto, K. A new system for detecting mutations in arabidopsis thaliana and the mutational spectra resulting from ethylmethanesulfonate treatment. J. Radiat. Res. 2006, 47, 223–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amanuma, K.; Takeda, H.; Amanuma, H.; Aoki, Y. Transgenic zebrafish for detecting mutations caused by compounds in aquatic environments. Nat. Biotechnol. 2000, 18, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.E. Mammalian Cell HPRT Gene Mutation Assay: Test Methods. Methods Mol. Biol. 2011, 817, 55–67. [Google Scholar] [CrossRef]
Total Strain (×106) | Mutant Strain | Ratio (×10−6) | |
---|---|---|---|
121 | 98 | 0.81 | 0.70 ± 0.322 |
257 | 153 | 0.60 | |
94 | 102 | 1.09 | |
205 | 67 | 0.33 |
Types | Mutant Strains | Ratio (%) |
---|---|---|
Base substitution | 120 | 24 |
Sequence replacement | 56 | 11.2 |
Single base frameshift | 27 | 5.4 |
Double base frameshift | 1 | 0.2 |
Large segment deletion | 280 | 56.1 |
Fragment insertion | 15 | 3 |
Concentration | Mutagen | Mutant Strains | Total Strains (105) | Mutation Rate (10−6) | |
---|---|---|---|---|---|
10 ppm | NDEA | 120 | 832 | 1.44 | 2.42 ± 0.717 |
129 | 552 | 2.34 | |||
104 | 352 | 2.95 | |||
40 | 135 | 2.96 | |||
NDPA | 125 | 735 | 1.70 | 2.67 ± 0.909 | |
182 | 650 | 2.80 | |||
265 | 687 | 3.86 | |||
200 | 856 | 2.34 | |||
EB | 307 | 840 | 3.65 | 3.71 ± 0.502 | |
310 | 708 | 4.38 | |||
224 | 616 | 3.64 | |||
245 | 775 | 3.16 | |||
100 ppm | NDEA | 250 | 752 | 3.32 | 3.76 ± 0.852 |
159 | 566 | 2.81 | |||
208 | 492 | 4.23 | |||
304 | 648 | 4.69 | |||
NDPA | 332 | 580 | 5.72 | 4.75 ± 1.417 | |
213 | 800 | 2.66 | |||
344 | 676 | 5.09 | |||
420 | 760 | 5.53 | |||
EB | 330 | 508 | 6.50 | 5.78 ± 0.728 | |
184 | 304 | 6.05 | |||
260 | 544 | 4.78 | |||
272 | 470 | 5.79 | |||
1000 ppm | NDEA | 140 | 484 | 2.89 | 4.82 ± 1.738 |
140 | 364 | 3.85 | |||
272 | 452 | 6.02 | |||
280 | 428 | 6.54 | |||
NDPA | 289 | 410 | 7.05 | 5.14 ± 1.433 | |
136 | 324 | 4.20 | |||
160 | 296 | 5.41 | |||
218 | 560 | 3.89 | |||
EB | 110 | 112 | 9.82 | 7.87 ± 1.842 | |
51 | 76 | 6.71 | |||
76 | 128 | 5.94 | |||
109 | 121 | 9.01 |
Total Strains (106) | Mutant Strains (×10) | Mutant Rate (10−6) | |
---|---|---|---|
87 | 70 | 0.80 | 1.30 ± 0.635 |
27 | 41 | 1.52 | |
23 | 18 | 0.78 | |
19 | 40 | 2.11 |
Concentration | Mutagen | Mutant Strains | Total Strains (105) | Mutation Rate (10−6) | |
---|---|---|---|---|---|
10 ppm | NDEA | 90 | 705 | 1.28 | 2.83 ± 1.197 |
163 | 614 | 2.65 | |||
173 | 421 | 4.11 | |||
60 | 182 | 3.30 | |||
NDPA | 148 | 769 | 1.92 | 2.93 ± 1.430 | |
204 | 668 | 3.05 | |||
340 | 693 | 4.91 | |||
175 | 954 | 1.83 | |||
EB | 356 | 841 | 4.23 | 4.06 ± 0.471 | |
346 | 774 | 4.47 | |||
275 | 662 | 4.15 | |||
273 | 807 | 3.38 | |||
100 ppm | NDEA | 315 | 851 | 3.70 | 4.51 ± 1.314 |
185 | 599 | 3.09 | |||
272 | 497 | 5.47 | |||
403 | 699 | 5.77 | |||
NDPA | 387 | 628 | 6.16 | 4.98 ± 1.330 | |
258 | 839 | 3.08 | |||
391 | 717 | 5.45 | |||
427 | 819 | 5.21 | |||
EB | 363 | 606 | 5.99 | 6.01 ± 1.319 | |
273 | 355 | 7.69 | |||
281 | 629 | 4.47 | |||
334 | 568 | 5.88 | |||
1000 ppm | NDEA | 168 | 531 | 3.16 | 5.02 ± 1.890 |
156 | 424 | 3.68 | |||
343 | 551 | 6.23 | |||
307 | 437 | 7.03 | |||
NDPA | 321 | 416 | 7.72 | 6.85 ± 1.316 | |
342 | 421 | 8.12 | |||
191 | 302 | 6.32 | |||
310 | 590 | 5.25 | |||
EB | 206 | 172 | 11.98 | 10.35 ± 1.143 | |
64 | 176 | 9.32 | |||
137 | 135 | 10.15 | |||
169 | 170 | 9.94 |
Total Strains (106) | Mutant Strains | Mutation Rate (10−6) | |
---|---|---|---|
113 | 74 | 1.53 | 1.09 ± 0.456 |
61 | 45 | 1.36 | |
42 | 84 | 0.50 | |
60 | 62 | 0.97 |
Concentration | Mutagen | Mutant Strains | Total Strains (105) | Mutation Rate (10−6) | |
---|---|---|---|---|---|
10 ppm | NDEA | 158 | 881 | 1.79 | 2.49 ± 0.692 |
174 | 863 | 2.02 | |||
191 | 597 | 3.20 | |||
212 | 716 | 2.96 | |||
NDPA | 264 | 735 | 3.59 | 2.98 ± 0.585 | |
251 | 823 | 3.05 | |||
305 | 985 | 3.10 | |||
187 | 856 | 2.18 | |||
EB | 317 | 876 | 3.62 | 3.81 ± 0.335 | |
343 | 796 | 4.31 | |||
242 | 669 | 3.62 | |||
303 | 821 | 3.69 | |||
100 ppm | NDEA | 261 | 753 | 3.47 | 3.62 ± 0.316 |
231 | 683 | 3.38 | |||
210 | 592 | 3.55 | |||
240 | 588 | 4.08 | |||
NDPA | 354 | 722 | 4.90 | 5.59 ± 2.287 | |
268 | 697 | 3.85 | |||
489 | 546 | 8.96 | |||
351 | 751 | 4.67 | |||
EB | 393 | 541 | 7.26 | 6.38 ± 0.915 | |
263 | 395 | 6.66 | |||
283 | 555 | 5.10 | |||
310 | 478 | 6.49 | |||
1000 ppm | NDEA | 132 | 421 | 3.14 | 5.54 ± 2.444 |
141 | 356 | 3.96 | |||
191 | 290 | 6.59 | |||
270 | 319 | 8.46 | |||
NDPA | 301 | 387 | 7.78 | 6.20 ± 1.110 | |
187 | 361 | 5.18 | |||
242 | 406 | 5.96 | |||
257 | 438 | 5.87 | |||
EB | 127 | 185 | 6.86 | 7.35 ± 2.615 | |
59 | 145 | 4.07 | |||
152 | 147 | 10.34 | |||
159 | 196 | 8.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Zhang, J.; Liu, Q. A Genetic Toxicology Study of the Rapid Detection of Nitrosamine Compounds by the rpsL Gene Mutation Assay. Foods 2022, 11, 1893. https://doi.org/10.3390/foods11131893
Peng X, Zhang J, Liu Q. A Genetic Toxicology Study of the Rapid Detection of Nitrosamine Compounds by the rpsL Gene Mutation Assay. Foods. 2022; 11(13):1893. https://doi.org/10.3390/foods11131893
Chicago/Turabian StylePeng, Xueling, Junshuai Zhang, and Qingdai Liu. 2022. "A Genetic Toxicology Study of the Rapid Detection of Nitrosamine Compounds by the rpsL Gene Mutation Assay" Foods 11, no. 13: 1893. https://doi.org/10.3390/foods11131893
APA StylePeng, X., Zhang, J., & Liu, Q. (2022). A Genetic Toxicology Study of the Rapid Detection of Nitrosamine Compounds by the rpsL Gene Mutation Assay. Foods, 11(13), 1893. https://doi.org/10.3390/foods11131893