Evaluation of Pesticide Residues Occurrence in Random Samples of Organic Fruits and Vegetables Marketed in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Reagents and Materials
2.3. Standard Solutions
2.4. Sample Preparation
2.5. Instrumental Analysis
2.5.1. Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS)
2.5.2. Gas Chromatography Coupled to Electron Capture Detection and Nitrogen-Phosphorus Detection (GC-ECD/NPD)
2.6. Method Validation Procedure and Real Sample Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piwowar, A. The use of pesticides in Polish agriculture after integrated pest management (IPM) implementation. Environ. Sci. Pollut. Res. 2021, 28, 26628–26642. [Google Scholar] [CrossRef] [PubMed]
- European Commission EU Policy for a Sustainable Use of Pesticides. 2007. Available online: https://ec.europa.eu/environment/archives/ppps/pdf/pesticides_en.pdf (accessed on 9 May 2022).
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klich, D.; Łopucki, R.; Stachniuk, A.; Sporek, M.; Fornal, E.; Wojciechowska, M.; Olech, W. Pesticides and conservation of large ungulates: Health risk to European bison from plant protection products as a result of crop depredation. PLoS ONE 2020, 15, e0228243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagic, V.; Kleijn, D.; Báldi, A.; Boros, G.; Jørgensen, H.B.; Elek, Z.; Garratt, M.P.D.; de Groot, G.A.; Hedlund, K.; Kovács-Hostyánszki, A.; et al. Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecol. Lett. 2017, 20, 1427–1436. [Google Scholar] [CrossRef]
- Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. Pesticides: Formulants, distribution pathways and effects on human health—A review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef]
- Grewal, A.S.; Singla, A.; Kamboj, P.; Dua, J.S. Pesticide Residues in Food Grains, Vegetables and Fruits: A Hazard to Human Health. J. Med. Chem. Toxicol. 2017, 2, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Commission Implementing Regulation (EU) 2018/1865 of 28 November 2018 concerning the non-renewal of approval of the active substance propiconazole, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning th. Off. J. Eur. Union 2018, 304, 6–9.
- Schebesta, H.; Candel, J.J.L. Game-changing potential of the EU’s Farm to Fork Strategy. Nat. Food 2020, 1, 586–588. [Google Scholar] [CrossRef]
- Pesticides Action Network Europe Banned and Hazardous Pesticides in European. 2020. Available online: https://www.pan-europe.info/sites/pan-europe.info/files/Report_Banned%20pesticides%20in%20EU%20food_Final.pdf (accessed on 9 May 2022).
- Kaushal, J.; Khatri, M.; Arya, S.K. A treatise on Organophosphate pesticide pollution: Current strategies and advancements in their environmental degradation and elimination. Ecotoxicol. Environ. Saf. 2021, 207, 111483. [Google Scholar] [CrossRef]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- Caron-Beaudoin, É.; Denison, M.S.; Sanderson, J.T. Effects of neonicotinoids on promoter-specific expression and activity of aromatase (CYP19) in human adrenocortical carcinoma (H295R) and primary umbilical vein endothelial (HUVEC) cells. Toxicol. Sci. 2016, 149, 134–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerro, C.C.; Koutros, S.; Andreotti, G.; Friesen, M.C.; Alavanja, M.C.; Blair, A.; Hoppin, J.A.; Sandler, D.P.; Lubin, J.H.; Ma, X.; et al. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health Study. Occup. Environ. Med. 2015, 72, 736–744. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, M.F.; Bellinger, D.C.; Wright, R.O.; Weisskopf, M.G. Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics 2010, 125, e1270-7. [Google Scholar] [CrossRef] [Green Version]
- Hongsibsong, S.; Sittitoon, N.; Sapbamrer, R. Association of health symptoms with low-level exposure to organophosphates, DNA damage, AChE activity, and occupational knowledge and practice among rice, corn, and double-crop farmers. J. Occup. Health 2017, 59, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Tarmure, S.; Alexescu, T.G.; Orasan, O.; Negrean, V.; Sitar-Taut, A.V.; Coste, S.C.; Todea, D.A. Influence of pesticides on respiratory pathology—A literature review. Ann. Agric. Environ. Med. 2020, 27, 194–200. [Google Scholar] [CrossRef]
- Boulanger, M.; Tual, S.; Lemarchand, C.; Guizard, A.V.; Delafosse, P.; Marcotullio, E.; Pons, R.; Piel, C.; Pouchieu, C.; Baldi, I.; et al. Lung cancer risk and occupational exposures in crop farming: Results from the AGRIculture and CANcer (AGRICAN) cohort. Occup. Environ. Med. 2018, 75, 776–785. [Google Scholar] [CrossRef]
- Thongprakaisang, S.; Thiantanawat, A.; Rangkadilok, N.; Suriyo, T.; Satayavivad, J. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem. Toxicol. 2013, 59, 129–136. [Google Scholar] [CrossRef]
- Sritana, N.; Suriyo, T.; Kanitwithayanun, J.; Songvasin, B.H.; Thiantanawat, A.; Satayavivad, J. Glyphosate induces growth of estrogen receptor alpha positive cholangiocarcinoma cells via non-genomic estrogen receptor/ERK1/2 signaling pathway. Food Chem. Toxicol. 2018, 118, 595–607. [Google Scholar] [CrossRef]
- Schinasi, L.; Leon, M.E. Non-hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2014, 11, 4449–4527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muth, F.; Leonard, A.S. A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees. Sci. Rep. 2019, 9, 4764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curl, C.L.; Fenske, R.A.; Elgethum, K. Organophosphorus pesticide exposure of urban and suburban preschool children with organic and conventional diets. Environ. Health Perspect. 2003, 111, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Barr, D.B.; Pearson, M.A.; Waller, L.A. Dietary intake and its contribution to longitudinal organophosphorus pesticide exposure in urban/suburban children. Environ. Health Perspect. 2008, 116, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Toepel, K.; Irish, R.; Fenske, R.A.; Barr, D.B.; Bravo, R. Organic diets significantly lower children’s dietary exposure to organophosphorus pesticides. Environ. Health Perspect. 2006, 114, 260–263. [Google Scholar] [CrossRef]
- Bradman, A.; Barr, D.B.; Henn, B.G.C.; Drumheller, T.; Curry, C.; Eskenazi, B. Measurement of pesticides and other toxicants in amniotic fluid as a potential biomarker of prenatal exposure: A validation study. Environ. Health Perspect. 2003, 111, 1779–1782. [Google Scholar] [CrossRef]
- Simoglou, K.B.; Roditakis, E. Consumers’ Benefit—Risk Perception on Pesticides and Food Safety—A Survey in Greece. Agriculture 2022, 12, 192. [Google Scholar] [CrossRef]
- Koch, S.; Epp, A.; Lohmann, M.; Böl, G.F. Pesticide residues in food: Attitudes, beliefs, and misconceptions among conventional and organic consumers. J. Food Prot. 2017, 80, 2083–2089. [Google Scholar] [CrossRef]
- Liguori, J.; Trübswasser, U.; Pradeilles, R.; Le Port, A.; Landais, E.; Talsma, E.F.; Lundy, M.; Béné, C.; Bricas, N.; Laar, A.; et al. How do food safety concerns affect consumer behaviors and diets in low- and middle-income countries? A systematic review. Glob. Food Sec. 2022, 32, 100606. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2018/84 of 19 January 2018 amending Implementing Regulation (EU) No 540/2011 as regards the extension of the approval periods of the active substances chlorpyrifos, chlorpyrifos-methyl, clothianidin, copper compound. Off. J. Eur. Union 2018, 16, 8–10.
- Lee, H.-C.; Chang, C.-T.; Cheng, Z.-H.; Chen, Y.-T. Will an organic label always increase food consumption? It depends on food type and consumer differences in health locus of control. Food Qual. Prefer. 2018, 63, 88–96. [Google Scholar] [CrossRef]
- European Commission Regulation (EU) 2018/848 on organic production and labelling of organic product. Off. J. Eur. Union 2018, 2018, 1–92.
- The 2012 European Union Report on Pesticide Residues in Food. EFSA J. 2014, 12, 3942.
- The 2013 European Union Report on Pesticide Residues in Food. EFSA J. 2015, 13, 4038. [CrossRef] [Green Version]
- The 2014 European Union Report on Pesticide Residues in Food. EFSA J. 2016, 14, 4611.
- The 2015 European Union Report on Pesticide Residues in Food. EFSA J. 2017, 15, 4791.
- The 2016 European Union Report on Pesticide Residues in Food. EFSA J. 2018, 16, 5348.
- The 2017 European Union Report on Pesticide Residues in Food. EFSA J. 2019, 17, 5743.
- The 2018 European Union Report on Pesticide Residues in Food. EFSA J. 2020, 18, e06057.
- The 2019 European Union Report on Pesticide Residues in Food. EFSA J. 2021, 19, e06491.
- The 2020 European Union Report on Pesticide Residues in Food. EFSA J. 2022, 20, e07215.
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Occurrence of environmental pollutants in foodstuffs: A review of organic vs. conventional food. Food Chem. Toxicol. 2019, 125, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Smith-Spangler, C.; Brandeau, M.L.; Hunter, G.E.; Bavinger, J.C.; Pearson, M.; Eschbach, P.J.; Sundaram, V.; Liu, H.; Schirmer, P.; Stave, C. Correction: Are Organic Foods Safer or Healthier Than Conventional Alternatives? Ann. Intern. Med. 2012, 157, 680. [Google Scholar] [CrossRef] [Green Version]
- Rempelos, L.; Wang, J.; Barański, M.; Watson, A.; Volakakis, N.; Hoppe, H.W.; Kühn-Velten, W.N.; Hadall, C.; Hasanaliyeva, G.; Chatzidimitriou, E.; et al. Diet and food type affect urinary pesticide residue excretion profiles in healthy individuals: Results of a randomized controlled dietary intervention trial. Am. J. Clin. Nutr. 2022, 115, 364–377. [Google Scholar] [CrossRef]
- Kowalska, G.; Pankiewicz, U.; Kowalski, R. Assessment of Pesticide Content in Apples and Selected Citrus Fruits Subjected to Simple Culinary Processing. Appl. Sci. 2022, 12, 1417. [Google Scholar] [CrossRef]
- WHO-FAO. Fruit and vegetable for health: Report of a joint FAO/WHO workshop, 1–3 September 2004, Kobe, Japan. Handb. Plant Food Phytochem. 2004, 105–137. [Google Scholar]
- Macieira, A.; Barbosa, J.; Teixeira, P. Food Safety in Local Farming of Fruits and Vegetables. Int. J. Environ. Res. Public Health 2021, 18, 9733. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Siłakiewicz, A.; Hallmann, E.; Srednicka-Tober, D.; Rembiałkowska, E. Chemical composition of selected beetroot juices in relation to beetroot production system and processing technology. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Brandt, K.; Srednicka-Tober, D.; Barański, M.; Sanderson, R.; Leifert, C.; Seal, C. Methods for comparing data across differently designed agronomic studies: Examples of different meta-analysis methods used to compare relative composition of plant foods grown using organic or conventional production methods and a protocol for a systemati. J. Agric. Food Chem. 2013, 61, 7173–7180. [Google Scholar] [CrossRef] [Green Version]
- Vigar, V.; Myers, S.; Oliver, C.; Arellano, J.; Robinson, S.; Leifert, C. A Systematic Review of Organic Versus Conventional. Nutrients 2020, 12, 696. [Google Scholar]
- Torjusen, H.; Brantsæter, A.L.; Haugen, M.; Alexander, J.; Bakketeig, L.S.; Lieblein, G.; Stigum, H.; Næs, T.; Swartz, J.; Holmboe-Ottesen, G.; et al. Reduced risk of pre-eclampsia with organic vegetable consumption: Results from the prospective Norwegian mother and child cohort study. BMJ Open 2014, 4, e006143. [Google Scholar] [CrossRef] [PubMed]
- Statistics Poland. Household Budget Survey in 2019; Zakład Wydawnictw Statystycznych: Warsaw, Poland, 2020.
- Pietrzak, M.; Chlebicka, A.; Kraciński, P.; Malak-Rawlikowska, A. Information asymmetry as a barrier in upgrading the position of local producers in the global value chain-Evidence from the apple sector in Poland. Sustainability 2020, 12, 7857. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances. Off. J. Eur. Union 2011, L153, 1–186.
- Payá, P.; Anastassiades, M.; MacK, D.; Sigalova, I.; Tasdelen, B.; Oliva, J.; Barba, A. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal. Bioanal. Chem. 2007, 389, 1697–1714. [Google Scholar] [CrossRef]
- SANCO Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed. SANCO/12571/2013 Supersedes SANCO/12495/2011. Off. J. Eur. Communities 2014, 48, 8–36.
- Mie, A.; Andersen, H.R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembiałkowska, E.; Quaglio, G.; Grandjean, P. Human health implications of organic food and organic agriculture: A comprehensive review. Environ. Heal. A Glob. Access Sci. Source 2017, 16, 111. [Google Scholar] [CrossRef] [Green Version]
- Commission Directive 1999/50/EC of 25 May 1999 amending Directive 91/321/EEC on infant formulae and follow-on formulae. Off. J. Eur. Communities 1999, 139, 29–31.
- European Commission Regulation (EC) No 396/2005, Maximum residue levels of pesticides in/on food and feed of plant and animal. Off. J. Eur. Union 2005, L70, 1–16.
- IFOAM EU GROUP. Guideline for Pesticide Residue Contamination for International Trade in Organic; IFOAM EU GROUP: Brussels, Belgium, 2012; pp. 1–26. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO); World Health Organization (WHO). The Codex Alimentarius Commission and the FAO/WHO Food Standards Programme; Food and Agriculture Organization of the United Nations: Rome, Italy, 1997.
- Commission Implementing Regulation (EU) 2017/244 of 10 February 2017 Concerning the Non-Renewal of Approval of the Active Substance Linuron, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (EU) No 540/2011. 2017. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0244&from=EN (accessed on 9 May 2022).
- Arena, M.; Auteri, D.; Barmaz, S.; Bellisai, G.; Brancato, A.; Brocca, D.; Bura, L.; Byers, H.; Chiusolo, A.; Court Marques, D.; et al. Peer review of the pesticide risk assessment of the active substance propiconazole. EFSA J. 2017, 15, e04887. [Google Scholar]
- Commission Implementing Regulation (EU) 2020/18 of 10 January 2020 concerning the non-renewal of the approval of the active substance chlorpyrifos, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning th. Off. J. Eur. Union 2020, 7, 14–16.
Year | Number of Samples Tested | Samples with Pesticide Residues below the MRL 1 | Samples with Pesticide Residues Exceeding the MRL | Number of Organic Samples Tested (% of Total Tested) | Organic Samples with Pesticide Residues below the MRL | Organic Samples with Pesticide Residues Exceeding the MRL | References |
---|---|---|---|---|---|---|---|
2012 | 78,390 | 43.8% | 3.1% | 4576 (5.8%) | 14.1% | 0.8% | [35] |
2013 | 80,967 | 42.8% | 2.6% | 4620 (5.7%) | 15.5% | 0.8% | [36] |
2014 | 82,649 | 43.4% | 2.9% | 4792 (5.8%) | 12.4% | 1.2% | [37] |
2015 | 84,341 | 43.9% | 2.8% | 5331 (6.4%) | 8.3% | 0.7% | [38] |
2016 | 84,657 | 45.5% | 3.8% | 5495 (6.5%) | 15.6% | 1.3% | [39] |
2017 | 88,247 | 41.8% | 4.1% | 5806 (6.6%) | 13.7% | 1.5% | [40] |
2018 | 91,015 | 43.3% | 4.5% | 5735 (6.3%) | 15.2% | 1.4% | [41] |
2019 | 96,302 | 39.5% | 3.9% | 6048 (6.2%) | 13.1% | 1.3% | [42] |
2020 | 88,141 | 40.3% | 5.1% | 5783 (6.5%) | 19.9% | 1.5% | [43] |
Time (min) | Flow (mL/min) | Eluent A (%) | Eluent B (%) |
---|---|---|---|
0.00 | 0.50 | 95 | 5 |
1.00 | 0.50 | 95 | 5 |
22.00 | 0.50 | 10 | 90 |
25.00 | 0.50 | 10 | 90 |
25.10 | 1.00 | 95 | 5 |
27.00 | 0.50 | 95 | 5 |
30.00 | 0.50 | 95 | 5 |
Plant Material | Number of Samples Tested | Number of Samples with Detected Pesticide Residues 1 | Compounds Detected and Level of Contamination (mg/kg f.w. 2) | MRL for CONV 3 (mg/kg f.w.) | Samples with Pesticide Residues Exceeding the MRL for CONV | MRL for ORG 4 (mg/kg f.w.) | Samples with Pesticide Residues Exceeding the MRL for ORG |
---|---|---|---|---|---|---|---|
Apple fruit | 8 | - | - | - | - | - | - |
Potato tuber | 11 | 1 | propamokarb (0.018) | 0.30 | - | 0.01 | + |
Carrot root | 9 | 1 | chlorpyrifos (0.037) | 0.10 | - | 0.01 | + |
Plant Material | Number of Samples Tested | Number of Samples with Detected Pesticide Residues 1 | Compounds Detectedand Level of Contamination (mg/kg f.w. 2) | MRL for CONV 3 (mg/kg f.w.) | Samples with Pesticide Residues Exceeding the MRL for CONV | MRL for ORG 4 (mg/kg f.w.) | Samples with Pesticide Residues Exceeding the MRL for ORG |
---|---|---|---|---|---|---|---|
Potato tuber | 18 | 1 | imidacloprid (0.010) | 0.50 | - | 0.01 | - |
Beetroot | 28 | - | - | - | - | - | |
Carrot root | 22 | 4 | Smpl 1: azoxystrobin (0.017) | 1.00 | - | 0.01 | + |
Smpl 1: difenoconazole (0.040) | 0.40 | - | 0.01 | + | |||
Smpl 1: chlorpyrifos (0.260) | 0.10 | + | 0.01 | + | |||
Smpl 2: azoxystrobin (0.019) | 1.00 | - | 0.01 | + | |||
Smpl 2: difenoconazole (0.010) | 0.40 | - | 0.01 | - | |||
Smpl 2: linuron (0.027) | 0.20 | - | 0.01 | + | |||
Smpl 3: chlorpyrifos (0.010) | 0.10 | - | 0.01 | - | |||
Smpl 4: propiconazole (0.031) | 0.05 | - | 0.01 | + | |||
Smpl 4: chlorpyrifos (0.034) | 0.10 | - | 0.01 | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazimierczak, R.; Średnicka-Tober, D.; Golba, J.; Nowacka, A.; Hołodyńska-Kulas, A.; Kopczyńska, K.; Góralska-Walczak, R.; Gnusowski, B. Evaluation of Pesticide Residues Occurrence in Random Samples of Organic Fruits and Vegetables Marketed in Poland. Foods 2022, 11, 1963. https://doi.org/10.3390/foods11131963
Kazimierczak R, Średnicka-Tober D, Golba J, Nowacka A, Hołodyńska-Kulas A, Kopczyńska K, Góralska-Walczak R, Gnusowski B. Evaluation of Pesticide Residues Occurrence in Random Samples of Organic Fruits and Vegetables Marketed in Poland. Foods. 2022; 11(13):1963. https://doi.org/10.3390/foods11131963
Chicago/Turabian StyleKazimierczak, Renata, Dominika Średnicka-Tober, Jan Golba, Anna Nowacka, Agnieszka Hołodyńska-Kulas, Klaudia Kopczyńska, Rita Góralska-Walczak, and Bogusław Gnusowski. 2022. "Evaluation of Pesticide Residues Occurrence in Random Samples of Organic Fruits and Vegetables Marketed in Poland" Foods 11, no. 13: 1963. https://doi.org/10.3390/foods11131963
APA StyleKazimierczak, R., Średnicka-Tober, D., Golba, J., Nowacka, A., Hołodyńska-Kulas, A., Kopczyńska, K., Góralska-Walczak, R., & Gnusowski, B. (2022). Evaluation of Pesticide Residues Occurrence in Random Samples of Organic Fruits and Vegetables Marketed in Poland. Foods, 11(13), 1963. https://doi.org/10.3390/foods11131963