Development of a New Strategy for Studying the Oxygen Consumption Potential of Wine through the Grape Extract Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Extracts (GEs)
2.2. Taguchi Experimental Design to Optimize GEs Reconstitution and Statistical Analysis
2.3. Kinetics of Oxygen Consumption
2.3.1. Air Saturation of GEws
2.3.2. Measurement of Oxygen Kinetics Consumption
2.3.3. Kinetic Curve Data Process
2.4. Analyses
2.4.1. Color Parameters and Total Polyphenol Index
2.4.2. Antioxidant Capacity
2.4.3. Individual Anthocyanin Analysis
3. Results and Discussion
3.1. Optimization of Reconstitution Conditions
3.2. Effect of Reconstitution Parameters on Oxygen Consumption Kinetics
3.3. Effect of the Initial Phenolic Composition of GEws on the Modification of Oxygen Consumption Kinetics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alegre, Y.; Arias-Pérez, I.; Hernández-Orte, P.; Ferreira, V. Development of a New Strategy for Studying the Aroma Potential of Winemaking Grapes through the Accelerated Hydrolysis of Phenolic and Aromatic Fractions (PAFs). Food Res. Int. 2020, 127, 108728. [Google Scholar] [CrossRef] [PubMed]
- Alegre, Y.; Sáenz-Navajas, M.P.; Hernández-Orte, P.; Ferreira, V. Sensory, Olfactometric and Chemical Characterization of the Aroma Potential of Garnacha and Tempranillo Winemaking Grapes. Food Chem. 2020, 331, 127207. [Google Scholar] [CrossRef]
- Pedroza, M.A.; Zalacain, A.; Lara, J.F.; Salinas, M.R. Global Grape Aroma Potential and Its Individual Analysis by SBSE-GC-MS. Food Res. Int. 2010, 43, 1003–1008. [Google Scholar] [CrossRef]
- Anli, R.E.; Cavuldak, Ö.A. A Review of Microoxygenation Application in Wine. J. Inst. Brew. 2012, 118, 368–385. [Google Scholar] [CrossRef]
- Oberholster, A.; Elmendorf, B.L.; Lerno, L.A.; King, E.S.; Heymann, H.; Brenneman, C.E.; Boulton, R.B. Barrel Maturation, Oak Alternatives and Micro-Oxygenation: Influence on Red Wine Aging and Quality. Food Chem. 2015, 173, 1250–1258. [Google Scholar] [CrossRef]
- Ugliano, M. Oxygen Contribution to Wine Aroma Evolution during Bottle Aging. J. Agric. Food Chem. 2013, 61, 6125–6136. [Google Scholar] [CrossRef]
- Carrascón, V.; Vallverdú-Queralt, A.; Meudec, E.; Sommerer, N.; Fernandez-Zurbano, P.; Ferreira, V. The Kinetics of Oxygen and SO2 Consumption by Red Wines. What Do They Tell about Oxidation Mechanisms and about Changes in Wine Composition? Food Chem. 2018, 241, 206–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinnici, F.; Sonni, F.; Natali, N.; Riponi, C. Oxidative Evolution of (+)-Catechin in Model White Wine Solutions Containing Sulfur Dioxide, Ascorbic Acid or Gallotannins. Food Res. Int. 2013, 51, 59–65. [Google Scholar] [CrossRef]
- Danilewicz, J.C.; Seccombe, J.T.; Whelan, J. Mechanism of Interaction of Polyphenols, Oxygen, and Sulfur Dioxide in Model Wine and Wine. Am. J. Enol. Vitic. 2008, 59, 128–136. [Google Scholar] [CrossRef]
- Ferreira, V.; Carrascón, V.; Bueno, M.; Ugliano, M.; Fernandez-Zurbano, P. Oxygen Consumption by Red Wines. Part I: Consumption Rates, Relationship with Chemical Composition, and Role of SO2. J. Agric. Food Chem. 2015, 63, 10928–10937. [Google Scholar] [CrossRef]
- Fornairon-Bonnefond, C.; Mazauric, J.P.; Salmon, J.-M.; Moutounet, M. Observations on the Oxygen Consumption during Maturation of Wines on Lees. OENO One 1999, 33, 79. [Google Scholar] [CrossRef]
- Navarro, M.; Kontoudakis, N.; Giordanengo, T.; Gómez-Alonso, S.; García-Romero, E.; Fort, F.; Canals, J.M.; Hermosín-Gutíerrez, I.; Zamora, F. Oxygen Consumption by Oak Chips in a Model Wine Solution; Influence of the Botanical Origin, Toast Level and Ellagitannin Content. Food Chem. 2016, 199, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Nevares, I.; Martínez-Martínez, V.; Martínez-Gil, A.; Martín, R.; Laurie, V.F.; del Álamo-Sanza, M. On-Line Monitoring of Oxygen as a Method to Qualify the Oxygen Consumption Rate of Wines. Food Chem. 2017, 229, 588–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmon, J.M.; Fornairon-Bonnefond, C.; Mazauric, J.P. Interactions between Wine Lees and Polyphenols: Influence on Oxygen Consumption Capacity during Simulation of Wine Aging. J. Food Sci. 2002, 67, 1604–1609. [Google Scholar] [CrossRef]
- Del Alamo-Sanza, M.; Sánchez-Gómez, R.; Martínez-Martínez, V.; Martínez-Gil, A.; Nevares, I. Air Saturation Methodology Proposal for the Analysis of Wine Oxygen Consumption Kinetics. Food Res. Int. 2021, 147, 110535. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.; Carrascón, V.; Ferreira, V. Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation. J. Agric. Food Chem. 2016, 64, 608–617. [Google Scholar] [CrossRef] [Green Version]
- Ribéreau-Gayon, J. Contribution à l’étude Des Oxydations et Réductions Dans Les Vins; Université de Bordeaux: Bordeaux, France, 1933. [Google Scholar]
- Danilewicz, J.C. Chemistry of Manganese and Interaction with Iron and Copper in Wine. Am. J. Enol. Vitic. 2016, 67, 377–384. [Google Scholar] [CrossRef]
- Fulcrand, H.; Cameira dos Santos, P.J.; Sarni Manchado, P.; Cheynier, V.; Favre Bonvin, J. Structure of New Anthocyanin-Derived Wine Pigments. J. Chem. Soc. 1996, 17, 735–739. [Google Scholar] [CrossRef]
- Picariello, L.; Gambuti, A.; Picariello, B.; Moio, L. Evolution of Pigments, Tannins and Acetaldehyde during Forced Oxidation of Red Wine: Effect of Tannins Addition. LWT Food Sci. Technol. 2017, 77, 370–375. [Google Scholar] [CrossRef]
- Picariello, L.; Slaghenaufi, D.; Ugliano, M. Fermentative and Post-Fermentative Oxygenation of Corvina Red Wine: Influence on Phenolic and Volatile Composition, Colour and Wine Oxidative Response. J. Sci. Food Agric. 2020, 100, 2522–2533. [Google Scholar] [CrossRef]
- Singleton, V.L. Oxygen with Phenols and Related Reactions in Musts, Wines, and Model Systems: Observations and Practical Implications. Am. J. Enol. Vitic. 1987, 38, 69–77. [Google Scholar]
- Danilewicz, J.C. Interaction of Sulfur Dioxide, Polyphenols, and Oxygen in a Wine-Model System: Central Role of Iron and Copper. Am. J. Enol. Vitic. 2007, 58, 53–60. [Google Scholar]
- Del Álamo, M.; Nevares, I.; Cárcel, L.M. Redox Potential Evolution during Red Wine Aging in Alternative Systems. Anal. Chim. Acta 2006, 563, 223–228. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Ferreira, A.C.S.; De Freitas, V.; Silva, A.M.S. Oxidation Mechanisms Occurring in Wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Laurie, V.F. Oxidation of Wine Phenolics: A Critical Evaluation and Hypotheses. Am. J. Enol. Vitic. 2006, 57, 306–313. [Google Scholar]
- Näykki, T.; Jalukse, L.; Helm, I.; Leito, I. Dissolved Oxygen Concentration Interlaboratory Comparison: What Can We Learn? Water 2013, 5, 420–442. [Google Scholar] [CrossRef] [Green Version]
- Glories, Y. La Couleur Des Vins Rouges 2. Mesure, Origine et Interprétation. OENO One 1984, 18, 253–271. [Google Scholar] [CrossRef]
- Riberéau-Gayon, P. The Determination of Total Phenolic Compounds in Red Wines, Le Dosage Des Composés Phénoliques Totaux Dan Les Vins Rouges. Chim. Anal. 1970, 52, 627–631. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yand, M.; Catherine, R. Antioxidant Activity Applying an Improved Abts Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Del Álamo Sanza, M.; Nevares Domínguez, I.; Merino García, S. Influence of Different Aging Systems and Oak Woods on Aged Wine Color and Anthocyanin Composition. Eur. Food Res. Technol. 2004, 219, 124–132. [Google Scholar] [CrossRef]
- Carrascón, V.; Bueno, M.; Fernandez-Zurbano, P.; Ferreira, V. Oxygen and SO2 Consumption Rates in White and Rosé Wines: Relationship with and Effects on Wine Chemical Composition. J. Agric. Food Chem. 2017, 65, 9488–9495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rousseva, M.; Kontoudakis, N.; Schmidtke, L.M.; Scollary, G.R.; Clark, A.C. Impact of Wine Production on the Fractionation of Copper and Iron in Chardonnay Wine: Implications for Oxygen Consumption. Food Chem. 2016, 203, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Kontoudakis, N.; Clark, A.C. Sulfide-Binding to Cu (II) in Wine: Impact on Oxygen Consumption Rates. Food Chem. 2020, 316, 126352. [Google Scholar] [CrossRef]
- Marrufo-Curtido, A.; Carrascón, V.; Bueno, M.; Ferreira, V.; Escudero, A. A Procedure for the Measurement of Oxygen Consumption Rates (OCRs) in Red Wines and Some Observations about the Influence of Wine Initial Chemical Composition. Food Chem. 2018, 248, 37–45. [Google Scholar] [CrossRef]
- Fracassetti, D.; Coetzee, C.; Vanzo, A.; Ballabio, D.; Du Toit, W.J. Oxygen Consumption in South African Sauvignon Blanc Wines: Role of Glutathione, Sulphur Dioxide and Certain Phenolics. S. Afr. J. Enol. Vitic. 2013, 34, 156–169. [Google Scholar] [CrossRef] [Green Version]
- Villaño, D.; Fernández Pachón, M.S.; Troncoso, A.M.; García-Parrilla, M.C. The Antioxidant Activity of Wines Determined by the ABTS + Method: Influence of Sample Dilution and Time. Talanta 2004, 64, 501–509. [Google Scholar] [CrossRef]
- Kharadze, M.; Japaridze, I.; Kalandia, A.; Vanidze, M. Anthocyanins and Antioxidant Activity of Red Wines Made from Endemic Grape Varieties. Ann. Agrar. Sci. 2018, 16, 181–184. [Google Scholar] [CrossRef]
- Landrault, N.; Poucheret, P.; Ravel, P.; Gasc, F.; Cros, G.; Teissedre, P.L. Antioxidant Capacities and Phenolics Levels of French Wines from Different Varieties and Vintages. J. Agric. Food Chem. 2001, 49, 3341–3348. [Google Scholar] [CrossRef]
- Rivero-Pérez, M.D.; Muñiz, P.; González-SanJosé, M.L. Contribution of Anthocyanin Fraction to the Antioxidant Properties of Wine. Food Chem. Toxicol. 2008, 46, 2815–2822. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Cao, L.; Lu, J. Phenolic Compounds and Antioxidant Properties of Different Grape Cultivars Grown in China. Food Chem. 2010, 119, 1557–1565. [Google Scholar] [CrossRef]
- Du Toit, W.; Marais, J.; Pretorius, I.S.; du Toit, M. Oxygen in Must and Wine: A Review. S. Afr. J. Enol. Vitic. 2006, 27, 76–94. [Google Scholar] [CrossRef] [Green Version]
Condition | pH | Fe2+ (mg/L) | Cu2+ (mg/L) | Mn2+ (mg/L) | Alcoholic Strength (v/v) | Acetaldehyde (mg/L) |
---|---|---|---|---|---|---|
1 | 3.3 | 1 | 0.1 | 4 | 15 | 30 |
2 | 3.3 | 8 | 0.1 | 1 | 15 | 30 |
3 | 3.3 | 8 | 0.1 | 4 | 12 | 10 |
4 | 3.9 | 1 | 0.8 | 1 | 12 | 10 |
5 | 3.9 | 8 | 0.1 | 1 | 12 | 30 |
6 | 3.9 | 1 | 0.8 | 4 | 15 | 30 |
7 | 3.9 | 1 | 0.1 | 1 | 15 | 10 |
8 | 3.9 | 8 | 0.8 | 4 | 12 | 10 |
9 | 3.3 | 8 | 0.8 | 1 | 12 | 30 |
10 | 3.3 | 8 | 0.8 | 4 | 15 | 10 |
11 | 3.3 | 1 | 0.1 | 1 | 12 | 10 |
12 | 3.9 | 1 | 0.1 | 4 | 12 | 30 |
13 | 3.9 | 8 | 0.8 | 1 | 15 | 30 |
14 | 3.3 | 1 | 0.8 | 4 | 12 | 30 |
15 | 3.3 | 1 | 0.8 | 1 | 15 | 10 |
16 | 3.9 | 8 | 0.1 | 4 | 15 | 10 |
Condition | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GEw-A | |||||||||||
1 | 106.9 ± 9.7 | 85.0 ± 7.6 | 43.3 ± 9.8 | 40.5 ± 11.8 | 32.5 ± 10.7 | 5916.7 ± 1803.9 | 3413.5 ± 986.3 | 46.5 ± 9.9 | 48.8 ± 10.0 | 33.2 ± 10.5 | 5.6 ± 0.8 |
2 | 122.9 ± 7.9 | 96.9 ± 6.0 | 26.7 ± 2.3 | 20.5 ± 3.6 | 14.2 ± 2.7 | 2859.4 ± 320.7 | 1774.3 ± 116.8 | 29 ± 1.1 | 31.4 ± 1.0 | 16.1 ± 2.3 | 8.3 ± 1.2 |
3 | 127.3 ± 3.9 | 100.7 ± 3.0 | 22.9 ± 2.5 | 13.7 ± 3.0 | 10.1 ± 2.4 | 3237.9 ± 380.7 | 1920.5 ± 148.0 | 33.6 ± 1.0 | 36.3 ± 1.5 | 17.8 ± 1.8 | 8.3 ± 0.6 |
4 | 128.5 ± 6.9 | 101.6 ± 5.4 | 30.9 ± 5.8 | 27.8 ± 7.0 | 17.9 ± 6.4 | 3848.8 ± 1191.3 | 2368.3 ± 595.2 | 36.8 ± 10.1 | 39.5 ± 10.2 | 21.0 ± 9.1 | 8.1 ± 0.6 |
5 | 129.7 ± 4.5 | 103.0 ± 3.6 | 34.4 ± 4.7 | 28.4 ± 7.4 | 21.3 ± 5.2 | 4138.0 ± 735.4 | 2411.3 ± 437.9 | 36.3 ± 6.6 | 38.2 ± 6.5 | 23.8 ± 5.9 | 10.0 ± 0.5 |
6 | 141.0 ± 4.9 | 112.1 ± 4.0 | 32.3 ± 5.5 | 28.4 ± 6.2 | 18.1 ± 5.9 | 3992.6 ± 645.3 | 2554.0 ± 461.5 | 35.5 ± 6.9 | 38.1 ± 7.1 | 18.4 ± 4.0 | 7.7 ± 0.9 |
7 | 127.0 ± 4.6 | 99.5 ± 3.1 | 28.3 ± 1.3 | 22.5 ± 2.8 | 15.5 ± 1.5 | 2534.0 ± 45.5 | 1667.5 ± 40.9 | 26.7 ± 0.6 | 27.5 ± 0.6 | 14.6 ± 0.8 | 19.7 ± 1.0 |
8 | 135.1 ± 2.8 | 106.1 ± 2.2 | 20.3 ± 2.0 | 8.4 ± 2.5 | 6.6 ± 1.9 | 1823.5 ± 232.4 | 1031.6 ± 66.7 | 17.8 ± 1.3 | 19.5 ± 1.4 | 9.5 ± 1.6 | 12.6 ± 1.2 |
9 | 119.9 ± 9.3 | 95.0 ± 7.6 | 29.6 ± 9.4 | 22.7 ± 13.8 | 17.5 ± 10.3 | 4384.3 ± 1536.1 | 2574.7 ± 976.2 | 42.5 ± 13.4 | 44.5 ± 13.2 | 27.9 ± 11.5 | 7.6 ± 0.6 |
10 | 121.2 ± 4.8 | 95.8 ± 3.2 | 22.1 ± 5.0 | 14.0 ± 7.1 | 10.0 ± 5.4 | 2432.4 ± 565.9 | 1482.2 ± 259.8 | 27.3 ± 3.9 | 28.8 ± 3.7 | 15.3 ± 5.0 | 9.4 ± 0.7 |
11 | 130.0 ± 1.7 | 103.6 ± 1.1 | 32.5 ± 4.0 | 28.7 ± 4.4 | 19.4 ± 3.9 | 5767.0 ± 431.6 | 3583.8 ± 254.1 | 52.2 ± 1.4 | 56.3 ± 1.6 | 28.0 ± 1.8 | 5.6 ± 0.7 |
12 | 128.5 ± 6.1 | 97.6 ± 4.6 | 31.1 ± 6.9 | 22.3 ± 9.7 | 18.1 ± 7.5 | 1967.5 ± 580.6 | 944.8 ± 358.8 | 17.4 ± 5.0 | 18.1 ± 5.0 | 16.3 ± 3.6 | 33.0 ± 2.6 |
13 | 141.2 ± 2.7 | 111.7 ± 2.0 | 21.1 ± 4.6 | 10.3 ± 5.3 | 6.9 ± 4.8 | 2034.7 ± 381.5 | 1295.5 ± 115.6 | 21.8 ± 1.6 | 23.4 ± 1.6 | 10.1 ± 2.7 | 12.5 ± 1.0 |
14 | 129.4 ± 3.9 | 102.7 ± 3.4 | 22.5 ± 3.0 | 11.8 ± 3.6 | 9.4 ± 3.3 | 3181.6 ± 312.9 | 1893.8 ± 72.6 | 31.9 ± 0.3 | 34.5 ± 0.7 | 17.1 ± 3.0 | 8.6 ± 0.5 |
15 | 126.7 ± 1.9 | 100.1 ± 1.2 | 24.3 ± 3.8 | 15.5 ± 3.8 | 11.5 ± 3.8 | 3650.8 ± 475.9 | 2235.2 ± 157.1 | 37.2 ± 1.3 | 40.0 ± 2.0 | 19.7 ± 2.7 | 6.7 ± 0.2 |
16 | 137.3 ± 6.4 | 107.8 ± 5.6 | 27.2 ± 2.5 | 15.8 ± 4.3 | 13.3 ± 2.8 | 2660.0 ± 310.9 | 1346.0 ± 197.6 | 21.1 ± 3.6 | 22.7 ± 3.7 | 15.7 ± 2.5 | 12. ± 1.7 |
GEw-B | |||||||||||
1 | 128.5 ± 7.6 | 101.6 ± 6.2 | 26.7 ± 6.0 | 19.8 ± 7.3 | 13.8 ± 6.5 | 4202.0 ± 751.7 | 2587.2 ± 367.5 | 42.4 ± 2.6 | 45.3 ± 2.5 | 22.6 ± 5.0 | 6.4 ± 0.4 |
2 | 122.8 ± 8.5 | 97.0 ± 6.4 | 25.5 ± 2.5 | 17.6 ± 2.9 | 13.1 ± 1.8 | 3237.8 ± 289.0 | 1938.7 ± 203.3 | 33.0 ± 0.7 | 35.2 ± 0.7 | 18.5 ± 0.6 | 7.9 ± 1.2 |
3 | 126.9 ± 3.7 | 100.7 ± 3.1 | 25.0 ± 3.1 | 15.6 ± 2.2 | 12.2 ± 3.1 | 3635.3 ± 363.5 | 2055.9 ± 90.2 | 35.1 ± 1.9 | 37.7 ± 2.0 | 21.0 ± 3.7 | 7.7 ± 0.5 |
4 | 122.2 ± 2.0 | 96.8 ± 1.4 | 38.3 ± 3.4 | 36.0 ± 5.6 | 26.0 ± 3.5 | 5348.6 ± 382.1 | 3218.3 ± 319.1 | 46.4 ± 4.1 | 49.1 ± 4.1 | 29.1 ± 2.5 | 7.2 ± 0.8 |
5 | 141.7 ± 1.4 | 112.0 ± 1.9 | 36.1 ± 1.5 | 29.8 ± 2.4 | 21.8 ± 1.5 | 4579.4 ± 363.8 | 2740.5 ± 309.2 | 39.4 ± 3.4 | 41.1 ± 3.3 | 25.2 ± 1.5 | 12.3 ± 1.5 |
6 | 142.7 ± 6.8 | 113.4 ± 5.8 | 29.5 ± 4.4 | 28.5 ± 4.5 | 15.0 ± 5.0 | 3755.0 ± 618.2 | 2428.0 ± 208.1 | 34.2 ± 3.0 | 37.1 ± 3.1 | 16.7 ± 3.8 | 8.1 ± 1.0 |
7 | 122.2 ± 11.8 | 97.0 ± 9.2 | 32. ± 7.2 | 27.4 ± 9.3 | 19.7 ± 8.3 | 3710.0 ± 1089.5 | 2331.0 ± 594.5 | 35.1 ± 6.9 | 36.9 ± 7.2 | 20.2 ± 6.8 | 9.3 ± 2.5 |
8 | 136.7 ± 1.4 | 108.1 ± 1.5 | 19.4 ± 4.3 | 7.2 ± 5.1 | 5.6 ± 4.6 | 1833.2 ± 439.1 | 1088.5 ± 96.1 | 19.0 ± 0.8 | 20.5 ± 0.8 | 9.8 ± 3.5 | 13.0 ± 0.9 |
9 | 118.2 ± 6.0 | 93.7 ± 4.4 | 30.1 ± 5.4 | 26.4 ± 4.7 | 18.2 ± 6.0 | 4236.8 ± 924.0 | 2579.4 ± 347.8 | 43.2 ± 4.9 | 45.1 ± 4.9 | 26.8 ± 7.3 | 7.3 ± 1.0 |
10 | 125.3 ± 4.2 | 99.4 ± 3.1 | 27.9 ± 4.8 | 18.0 ± 6.0 | 15.2 ± 5.0 | 3377.2 ± 773.0 | 1811.0 ± 457.5 | 29.1 ± 7.5 | 30.9 ± 7.3 | 20.7 ± 6.3 | 8.8 ± 0.4 |
11 | 118.8 ± 6.3 | 94.3 ± 5.3 | 38.5 ± 5.4 | 37.6 ± 4.6 | 26.5 ± 6.0 | 7012.7 ± 692.0 | 4322.6 ± 257.8 | 59.9 ± 3.4 | 64.3 ± 3.3 | 35.3 ± 4.2 | 4.3 ± 0.3 |
12 | 125.4 ± 0.6 | 95.1 ± 2.6 | 23.8 ± 1.7 | 15.2 ± 2.0 | 11.1 ± 1.8 | 1567.5 ± 132.6 | 903.1 ± 65.6 | 18.9 ± 1.0 | 19.6 ± 0.9 | 12.2 ± 1.5 | 30.7 ± 0.7 |
13 | 143.3 ± 3.0 | 112.7 ± 2.2 | 22.1 ± 3.7 | 9.2 ± 4.5 | 7.4 ± 3.4 | 2160.6 ± 268.3 | 1310.3 ± 26.6 | 20.8 ± 1.6 | 22.5 ± 1.8 | 10.3 ± 2.1 | 12.3 ± 1.7 |
14 | 128.4 ± 4.3 | 101.6 ± 3.3 | 21.1 ± 3.5 | 13.4 ± 5.3 | 8.1 ± 3.3 | 3110.7 ± 370.9 | 2005.3 ± 142.6 | 35.4 ± 0.6 | 38.5 ± 1.1 | 15.6 ± 1.3 | 7.9 ± 0.3 |
15 | 132.0 ± 3.9 | 104.8 ± 3.3 | 23.8 ± 1.9 | 17.4 ± 4.5 | 10.5 ± 2.0 | 3926.0 ± 305.4 | 2531.3 ± 271.9 | 42.8 ± 2.3 | 46.2 ± 2.6 | 19.9 ± 1.3 | 6.9 ± 0.4 |
16 | 142.8 ± 4.1 | 112.6 ± 3.3 | 21.1 ± 1.7 | 9.4 ± 3.1 | 6.6 ± 1.7 | 1849.2 ± 141.5 | 1163.5 ± 47.7 | 19.1 ± 1.5 | 20.7 ± 1.5 | 8.7 ± 1.3 | 13.2 ± 1.1 |
GEw-C | |||||||||||
1 | 123.6 ± 0.8 | 98.2 ± 0.7 | 37.3 ± 2.7 | 38.0 ± 2.6 | 24.9 ± 2.6 | 7223.6 ± 425.4 | 4666.3 ± 198.2 | 65.8 ± 0.9 | 70.0 ± 1.0 | 36.3 ± 1.5 | 4.6 ± 0.4 |
2 | 118.9 ± 1.9 | 94.4 ± 1.7 | 35.8 ± 2.6 | 32.2 ± 1.7 | 23.9 ± 2.4 | 5943.1 ± 486.5 | 3595.0 ± 155.9 | 52.1 ± 0.7 | 55.3 ± 0.5 | 31.9 ± 2.8 | 5.1 ± 0.4 |
3 | 119.4 ± 3.6 | 94.9 ± 3.0 | 33.3 ± 2.6 | 29.7 ± 2.1 | 21.3 ± 2.8 | 5539.8 ± 504.8 | 3383.0 ± 235.2 | 52.0 ± 2.1 | 55.1 ± 2.1 | 30.9 ± 2.1 | 5.3 ± 0.6 |
4 | 118.5 ± 18.6 | 94.3 ± 15.1 | 48.3 ± 18.0 | 50.0 ± 19.8 | 36.3 ± 19.8 | 8760.3 ± 2318.2 | 5651.0 ± 1391.1 | 68.5 ± 7.3 | 72.5 ± 7.0 | 40.4 ± 10.4 | 4.5 ± 0.9 |
5 | 151.1 ± 2.4 | 120.2 ± 1.9 | 36.6 ± 1.9 | 31.6 ± 3.3 | 21.4 ± 2.2 | 6270.4 ± 586.8 | 3952.9 ± 412.5 | 51.1 ± 3.7 | 54.5 ± 3.6 | 27.2 ± 2.3 | 8.1 ± 1.1 |
6 | 129.2 ± 3.2 | 102.9 ± 2.5 | 46.8 ± 4.1 | 53.6 ± 3.6 | 33.7 ± 4.4 | 9417.2 ± 442.5 | 6436.1 ± 214.1 | 77.3 ± 0.9 | 82.2 ± 1.1 | 40.8 ± 1.6 | 4.4 ± 0.4 |
7 | 128.0 ± 4.5 | 101.8 ± 3.5 | 36.6 ± 2.2 | 34.8 ± 2.4 | 23.7 ± 2.3 | 6664.5 ± 142.5 | 4184.1 ± 138.4 | 59.1 ± 1.7 | 62.9 ± 2.0 | 33.7 ± 1.1 | 6.2 ± 1.8 |
8 | 138.9 ± 2.0 | 110.1 ± 1.9 | 25.8 ± 2.8 | 15.8 ± 2.6 | 11.8 ± 2.8 | 3304.0 ± 257.3 | 1847.4 ± 158.3 | 28.8 ± 4.4 | 31.1 ± 4.6 | 17.0 ± 1.8 | 9.6 ± 1.2 |
9 | 124.8 ± 2.0 | 99.2 ± 1.4 | 34.3 ± 2.0 | 33.8 ± 5.8 | 21.7 ± 2.1 | 6105.4 ± 462.4 | 3989.0 ± 295.5 | 57.6 ± 2.8 | 60.9 ± 2.6 | 30.9 ± 2.6 | 5.0 ± 0.8 |
10 | 120.6 ± 12.2 | 95.5 ± 9.5 | 33.8 ± 10.0 | 29.6 ± 12.1 | 21.7 ± 11.2 | 5313.9 ± 1497.4 | 3199.2 ± 868.3 | 47.7 ± 8.0 | 50.7 ± 7.7 | 28.8 ± 9.3 | 5.7 ± 0.5 |
11 | 101.5 ± 17.5 | 80.9 ± 13.9 | 62.0 ± 11.9 | 71.4 ± 8.9 | 51.7 ± 13.6 | 11,098.7 ± 1092.5 | 7597.9 ± 390.2 | 83.4 ± 5.6 | 88.6 ± 5.5 | 48.6 ± 4.9 | 3.0 ± 0.4 |
12 | 127.3 ± 1.8 | 101.1 ± 1.7 | 32.9 ± 1.9 | 31.1 ± 2.0 | 20.1 ± 1.9 | 4777.9 ± 203.1 | 3023.2 ± 76.4 | 44.7 ± 0.5 | 48.1 ± 0.6 | 23.9 ± 0.9 | 6.4 ± 0.4 |
13 | 139.6 ± 8.5 | 111.1 ± 6.8 | 26.1 ± 5.9 | 18.6 ± 6.7 | 12.0 ± 6.6 | 3934.0 ± 705.4 | 2495.4 ± 254.0 | 39.0 ± 1.1 | 41.9 ± 1.4 | 18.9 ± 4.6 | 7.4 ± 0.7 |
14 | 121.4 ± 1.6 | 96.8 ± 1.4 | 34.7 ± 2.7 | 34.5 ± 2.9 | 22.4 ± 2.6 | 6538.6 ± 390.0 | 4223.2 ± 170.7 | 61.5 ± 0.4 | 65.5 ± 0.6 | 33.1 ± 1.2 | 5.0 ± 0.7 |
15 | 116.2 ± 0.8 | 92.5 ± 0.7 | 38.2 ± 0.6 | 43.7 ± 1.0 | 26.5 ± 0.6 | 7780.9 ± 186.3 | 5326.3 ± 108.2 | 74.8 ± 0.7 | 79.9 ± 1.2 | 38.2 ± 0.2 | 4.4 ± 0.4 |
16 | 132.3 ± 7.9 | 104.8 ± 6.2 | 27.8 ± 6.3 | 20.3 ± 7.9 | 14.5 ± 7.0 | 3484.5 ± 687.9 | 2018.0 ± 376.3 | 31.8 ± 4.3 | 34.2 ± 4.2 | 18.3 ± 4.4 | 8.8 ± 1.1 |
Condition | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.0168 * | 0.0221 * | 0.0035 *** | 0.0028 *** | 0.0032 *** | 0.8046 | 0.1330 | 0.0717 | 0.0904 | 0.5908 | 0.3191 |
2 | 0.5275 | 0.8912 | 0.0266 * | 0.0581 | 0.0309 * | 0.5710 | 0.7116 | 0.0300 * | 0.0205 * | 0.3826 | 0.0778 |
3 | 0.6732 | 0.4474 | 0.1921 | 0.0864 | 0.2887 | 0.0011 *** | 0.0073 ** | 0.0250 * | 0.0128 * | 0.3296 | 0.1745 |
4 | 0.4527 | 0.5050 | 0.7612 | 0.3040 | 0.9384 | 0.1271 | 0.1403 | 0.6598 | 0.6710 | 0.7131 | 0.1706 |
5 | 0.0010 *** | 0.0037 *** | 0.8449 | 0.9148 | 0.6735 | 0.0634 | 0.2013 | 0.0915 | 0.0926 | 0.2980 | 0.1197 |
6 | 0.0472 * | 0.0603 | 0.0646 | 0.4649 | 0.0390 * | 0.5900 | 0.8845 | 0.9645 | 0.9318 | 0.4409 | 0.7120 |
7 | 0.9062 | 0.9630 | 0.0913 | 0.0896 | 0.1823 | 0.0074 ** | 0.0150 * | 0.0174 * | 0.0160 * | 0.0668 | 0.1360 |
8 | 0.4156 | 0.4807 | 0.0444 * | 0.0426 * | 0.0383 * | 0.2776 | 0.9977 | 0.5280 | 0.5851 | 0.2516 | 1.0000 |
9 | 0.4079 | 0.3137 | 0.6012 | 0.4915 | 0.3060 | 0.2559 | 0.1342 | 0.3483 | 0.3055 | 0.2501 | 0.6589 |
10 | 0.6408 | 0.7128 | 0.2639 | 0.9559 | 0.3715 | 0.2559 | 0.3733 | 0.6401 | 0.7298 | 0.8790 | 0.0332 * |
11 | 0.0077 ** | 0.0106 * | 0.0243 * | 0.0124 * | 0.0171 * | 0.0129 * | 0.0110 * | 0.0238 * | 0.0270 * | 0.0113 * | 0.0098 ** |
12 | 0.1931 | 0.7773 | 0.0519 | 0.5797 | 0.2410 | 0.6553 | 0.0284 * | 0.0338 * | 0.0350 * | 0.3568 | 0.0041 *** |
13 | 0.7179 | 0.7659 | 0.5826 | 0.6910 | 0.6645 | 0.3672 | 0.7406 | 0.1369 | 0.1443 | 0.6070 | 0.4456 |
14 | 0.6308 | 0.4698 | 0.6697 | 0.2229 | 0.6316 | 0.2778 | 0.0526 | 0.0005 *** | 0.0007 *** | 0.7923 | 0.2732 |
15 | 0.1202 | 0.1120 | 0.3121 | 0.9195 | 0.2450 | 0.5953 | 0.0186 * | 0.0105 * | 0.0252 * | 0.4860 | 0.5687 |
16 | 0.8931 | 0.8005 | 0.0497 * | 0.5910 | 0.0150 * | 0.1899 | 0.1192 | 0.2898 | 0.2754 | 0.1945 | 0.3860 |
pH | 0.5050 *** | 0.4794 *** | −0.0488 | −0.0937 | −0.1028 | −0.2375 * | −0.2268 * | −0.3339 *** | −0.3368 *** | −0.3080 *** | 0.4427 *** |
Fe2+ (mg/L) | 0.2421 * | 0.2817 ** | −0.3203 *** | −0.3970 *** | −0.3238 *** | −0.3509 *** | −0.3775 *** | −0.3777 *** | −0.3830 *** | −0.3102 *** | 0.0169 |
Cu2+ (mg/L) | 0.1091 | 0.1576 | −0.1572 | −0.1166 | −0.1586 | −0.0528 | −0.0272 | −0.0118 | −0.0067 | −0.0891 | −0.1883 |
Mn2+ (mg/L) | 0.0916 | 0.1139 | −0.2192* | −0.2336 * | −0.2148 * | −0.2426 * | −0.2543 * | −0.2671 ** | −0.2617 ** | −0.2358 * | 0.1959 |
Alcoholic strength (v/v) | 0.0766 | 0.0676 | −0.102 | −0.0840 | −0.1036 | −0.0940 | −0.0769 | −0.0785 | −0.0777 | −0.1221 | −0.1043 |
Acetaldehyde (mg/L) | 0.1283 | 0.1597 | −0.0004 | 0.0118 | −0.0146 | −0.0287 | −0.0227 | −0.0095 | −0.0143 | −0.0169 | 0.1132 |
GEw-A | GEw-B | GEw-C | |
---|---|---|---|
Consumption Kinetics Parameters | |||
130.04 ± 2.44 a | 118.75 ± 8.91 a | 101.52 ± 24.76 a | |
103.58 ± 1.60 a | 94.26 ± 7.53 a | 80.89 ± 19.68 a | |
32.49 ± 5.67 a | 38.48 ± 7.65 a | 61.95 ± 16.85 a | |
28.65 ± 6.27 a | 37.07 ± 6.51 a | 71.43 ± 12.53 b | |
19.44 ± 5.54 a | 26.53 ± 8.55 a | 51.75 ± 19.21 a | |
5767.04 ± 610.34 a | 7012.69 ± 978.67 a | 11,098.73 ± 1545.02 b | |
3583.82 ± 359.37 a | 4322.64 ± 364.56 a | 7597.90 ± 551.87 b | |
52.20 ± 1.96 a | 59.94 ± 4.76 a | 83.35 ± 7.88 b | |
56.25 ± 2.28 a | 64.31 ± 4.68 a | 88.55 ± 7.74 b | |
27.95 ± 2.57 a | 35.25 ± 5.95 ab | 48.60 ± 6.88 b | |
5.65 ± 0.93 b | 4.32 ± 0.37 ab | 2.95 ± 0.58 a | |
GEw-A | GEw-B | GEw-C | |
Chemical Parameters | |||
Df-3-Gl (mg/L) | 63.54 ± 0.29 c | 55.47 ± 0.84 b | 7.36 ± 0.04 a |
Cn-3-Gl (mg/L) | 11.85 ± 0.31 b | 14.07 ± 0.16 c | 1.39 ± 0.02 a |
Pt-3-Gl (mg/L) | 35.68 ± 0.27 c | 29.81 ± 0.40 b | 2.77 ± 0.02 a |
Pn-3-Gl (mg/L) | 32.73 ± 0.05 b | 38.96 ± 0.74 c | 10.90 ± 0.20 a |
Mv-3-Gl (mg/L) | 192.34 ± 0.21 c | 181.83 ± 2.93 b | 73.79 ± 1.25 a |
IPT | 37.75 ± 0.21 c | 35.65 ± 0.00 b | 19.13 ± 0.04 a |
ABTS (mM) | 19.82 ± 0.50 c | 18.58 ± 0.13 b | 11.02 ± 0.31 a |
DPPH (mM) | 11.91 ± 0.29 c | 10.43 ± 0.07 b | 7.05 ± 0.22 a |
A420 | 3.98 ± 0.04 c | 3.52 ± 0.08 b | 1.59 ± 0.00 a |
A520 | 6.28 ± 0.04 c | 5.63 ± 0.07 b | 2.02 ± 0.00 a |
A620 | 1.20 ± 0.03 c | 1.06 ± 0.04 b | 0.38 ± 0.00 a |
Color Intensity | 11.47 ± 0.11 c | 10.22 ± 0.19 b | 3.98 ± 0.01 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrasco-Quiroz, M.; Martínez-Gil, A.M.; Nevares, I.; Martínez-Martínez, V.; Sánchez-Gómez, R.; del Alamo-Sanza, M. Development of a New Strategy for Studying the Oxygen Consumption Potential of Wine through the Grape Extract Evaluation. Foods 2022, 11, 1961. https://doi.org/10.3390/foods11131961
Carrasco-Quiroz M, Martínez-Gil AM, Nevares I, Martínez-Martínez V, Sánchez-Gómez R, del Alamo-Sanza M. Development of a New Strategy for Studying the Oxygen Consumption Potential of Wine through the Grape Extract Evaluation. Foods. 2022; 11(13):1961. https://doi.org/10.3390/foods11131961
Chicago/Turabian StyleCarrasco-Quiroz, Marioli, Ana María Martínez-Gil, Ignacio Nevares, Víctor Martínez-Martínez, Rosario Sánchez-Gómez, and Maria del Alamo-Sanza. 2022. "Development of a New Strategy for Studying the Oxygen Consumption Potential of Wine through the Grape Extract Evaluation" Foods 11, no. 13: 1961. https://doi.org/10.3390/foods11131961
APA StyleCarrasco-Quiroz, M., Martínez-Gil, A. M., Nevares, I., Martínez-Martínez, V., Sánchez-Gómez, R., & del Alamo-Sanza, M. (2022). Development of a New Strategy for Studying the Oxygen Consumption Potential of Wine through the Grape Extract Evaluation. Foods, 11(13), 1961. https://doi.org/10.3390/foods11131961