Bioaccessibility of Macrominerals and Trace Elements from Tomato (Solanum lycopersicum L.) Farmers’ Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Standards and Reagents
2.3. Analysis of Mineral Elements
2.4. Determination of Minerals’ In Vitro Bioaccessibility
2.5. Statistical Analysis
3. Results and Discussion
3.1. Mineral Composition
3.2. Bioaccessibility of Mineral Elements
3.3. Contribution to Mineral Requirements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhattarai, K.; Sharma, S.; Panthee, D.R. Diversity among modern tomato genotypes at different levels in fresh-market breeding. Int. J. Agron. 2018, 2018, 4170432. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.M.; Morales, R. Persistence of Wild Food and Wild Medicinal Plant Knowledge in a North-Eastern Region of Portugal. In Ethnobotany in the New Europe: People, Health and Wild Plant Resources; Pardo de Santayana, M., Pieroni, A., Puri, R., Eds.; Berghahn Books: Oxford, UK, 2013; pp. 147–171. [Google Scholar]
- FAO. FAOSTAT. Available online: https://www.fao.org/faostat/en/#data (accessed on 8 April 2022).
- European Commission. The Tomato Market in the EU: Vol. 1: Production, Areas and Yields. FWG—Forecast Working Group for Tomatoes; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- INE. Estatísticas Agrícolas—2018; INE: Lisboa, Portugal, 2019. [Google Scholar]
- European Commission. Directorate-General for Agriculture and Rural Development. In EU Agricultural Outlook for Markets, Income and Environment, 2021–2031; European Commission: Brussels, Belgium, 2021; ISBN 9789276430032. [Google Scholar]
- Pinela, J.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Bioactive Compounds of Tomatoes as Health Promoters. In Natural Bioactive Compounds from Fruits and Vegetables as Health Promoters, Part II; da Silva, L.R., Silva, B.M., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2016; Volume 2, pp. 48–91. [Google Scholar]
- Pinela, J.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer’ varieties in northeastern Portugal homegardens. Food Chem. Toxicol. 2012, 50, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Pinela, J.; Montoya, C.; Carvalho, A.M.; Martins, V.; Rocha, F.; Barata, A.M.; Barros, L.; Ferreira, I.C.F.R. Phenolic composition and antioxidant properties of ex-situ conserved tomato (Solanum jycopersicum L.) germplasm. Food Res. Int. 2019, 125, 108545. [Google Scholar] [CrossRef] [Green Version]
- Barros, L.; Dueñas, M.; Pinela, J.; Carvalho, A.M.; Buelga, C.S.; Ferreira, I.C.F.R. Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmers’ varieties in northeastern Portugal homegardens. Plant Foods Hum. Nutr. 2012, 67, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Cámara, M.; Fernández-Ruiz, V.; Sánchez-Mata, M.C.; Domínguez Díaz, L.; Kardinaal, A.; van Lieshout, M. Evidence of antiplatelet aggregation effects from the consumption of tomato products, according to EFSA health claim requirements. Crit. Rev. Food Sci. Nutr. 2019, 60, 1515–1522. [Google Scholar] [CrossRef]
- Cámara, M.; Fernández-Ruiz, V.; Sánchez-Mata, M.-C.; Cámara, R.M.; Domínguez, L.; Sesso, H.D. Scientific evidence of the beneficial effects of tomato products on cardiovascular disease and platelet aggregation. Front. Nutr. 2022, 9, 849841. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; West, K.P.; Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015, 66, 22–33. [Google Scholar] [CrossRef] [PubMed]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2021. Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; FAO: Rome, Italy; IFAD: Rome, Italy; UNICEF: New York City, NY, USA; WFP: Rome, Italy; WHO: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
- European Parliament & Council of the European Union. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Off. J. Eur. Union 2006, 304, 18–63. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32006R1924 (accessed on 1 June 2022).
- European Parliament & Council of the European Union. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. Off. J. Eur. Union 2011, 50, 19–63. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32011R1169&from=EN (accessed on 1 June 2022).
- European Commission. Commission Regulation (EU) No 432/2012 of 16 May 2012 Establishing a List of Permitted Health Claims Made on Foods, Other than Those Referring to the Reduction of Disease Risk and to Children’s Development and Health. Off. J. Eur. Union 2012, 136, 1–40. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32012R0432 (accessed on 1 June 2022).
- Haddy, F.J.; Vanhoutte, P.M.; Feletou, M. Role of potassium in regulating blood flow and blood pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R546–R552. [Google Scholar] [CrossRef] [PubMed]
- Winter, W.E.; Harris, N.S. Disorders of Calcium Metabolism. In Handbook of Diagnostic Endocrinology, 3rd ed.; Winter, W.E., Holmquist, B., Sokoll, L.J., Bertholf, R.L., Eds.; Academic Press, Elsevier Inc.: London, UK, 2020; pp. 309–388. [Google Scholar] [CrossRef]
- Mackenzie, E.L.; Iwasaki, K.; Tsuji, Y. Intracellular iron transport and storage: From molecular mechanisms to health implications. Antioxid. Redox Signal. 2008, 10, 997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hordyjewska, A.; Popiołek, Ł.; Kocot, J. The many “faces” of copper in medicine and treatment. Biometals 2014, 27, 611. [Google Scholar] [CrossRef] [Green Version]
- Mehri, A. Trace elements in human nutrition (II)—An update. Int. J. Prev. Med. 2020, 11, 2. [Google Scholar] [CrossRef]
- Cámara, M.; Sánchez-Mata, M.C.; Fernández-Ruiz, V.; Cámara, R.M.; Cebadera, E.; Domínguez, L. A review of the role of micronutrients and bioactive compounds on immune system supporting to fight against the COVID-19 Disease. Foods 2021, 10, 1088. [Google Scholar] [CrossRef]
- Bot, F.; Verkerk, R.; Mastwijk, H.; Anese, M.; Fogliano, V.; Capuano, E. The Effect of pulsed electric fields on carotenoids bioaccessibility: The Role of Tomato Matrix. Food Chem. 2018, 240, 415–421. [Google Scholar] [CrossRef]
- Talens, P.; Mora, L.; Bramley, P.M.; Fraser, P.D. Antioxidant compounds and their bioaccessibility in tomato fruit and puree obtained from a DETIOLATED-1 (DET-1) down-regulated genetically modified genotype. Food Chem. 2016, 213, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Kamiloglu, S.; Demirci, M.; Selen, S.; Toydemir, G.; Boyacioglu, D.; Capanoglu, E. Home processing of tomatoes (Solanum lycopersicum): Effects on in vitro bioaccessibility of total lycopene, phenolics, flavonoids, and antioxidant capacity. J. Sci. Food Agric. 2014, 94, 2225–2233. [Google Scholar] [CrossRef]
- Lu, Y.; Mu, K.; McClements, D.J.; Liang, X.; Liu, X.; Liu, F. Fermentation of tomato juice improves in vitro bioaccessibility of lycopene. J. Funct. Foods 2020, 71, 104020. [Google Scholar] [CrossRef]
- Tomas, M.; Beekwilder, J.; Hall, R.D.; Sagdic, O.; Boyacioglu, D.; Capanoglu, E. Industrial processing versus home processing of tomato sauce: Effects on phenolics, flavonoids and in vitro bioaccessibility of antioxidants. Food Chem. 2017, 220, 51–58. [Google Scholar] [CrossRef]
- Bonemann, D.H.; Luckow, A.C.B.; Pereira, C.C.; de Souza, A.O.; Cadore, S.; Nunes, A.M.; Vieira, M.A.; Ribeiro, A.S. Determination of total concentration and bioaccessible fraction of metals in tomatoes and their derivatives by MIP OES. J. Food Compos. Anal. 2021, 96, 103716. [Google Scholar] [CrossRef]
- Hernández Suárez, M.; Rodríguez Rodríguez, E.M.; Díaz Romero, C. Mineral and trace element concentrations in cultivars of tomatoes. Food Chem. 2007, 104, 489–499. [Google Scholar] [CrossRef]
- Carvalho, A.M. Plantas y Sabiduría Popular Del Parque Natural de Montesinho: Un Estudio Etnobotánico En Portugal; Biblioteca de Ciencias n° 35; Consejo Superior de Investigaciones Científicas: Madrid, Spain, 2010; p. 496. ISBN 978-84-00-08688-6. [Google Scholar]
- Carvalho, A.M. Homegardens in north-Eastern Portugal: Former features, roles, gendered knowledge and practices. Gaia Sci. 2016, 10, 10–25. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Rodríguez, B.-M.; Morales, P.; Fernández-Ruiz, V.; Sánchez-Mata, M.-C.; Cámara, M.; Díez-Marqués, C.; Pardo-de-Santayana, M.; Molina, M.; Tardío, J. Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data. Food Res. Int. 2011, 44, 1244–1253. [Google Scholar] [CrossRef]
- Fernández-Ruiz, V.; Olives, A.I.; Cámara, M.; Sánchez-Mata, M.D.C.; Torija, M.E. Mineral and trace elements content in 30 accessions of tomato fruits (Solanum lycopersicum L.), and wild relatives (Solanum pimpinellifolium L., Solanum cheesmaniae L. Riley, and Solanum habrochaites S. Knapp & D.M. Spooner). Biol. Trace Elem. Res. 2011, 141, 329–339. [Google Scholar] [CrossRef]
- Ramírez-Moreno, E.; Marqués, C.D.; Sánchez-Mata, M.C.; Goñi, I. In vitro calcium bioaccessibility in raw and cooked cladodes of prickly pear cactus (Opuntia ficus-Indica L. Miller). LWT Food Sci. Technol. 2011, 44, 1611–1615. [Google Scholar] [CrossRef]
- Erika, C.; Griebel, S.; Naumann, M.; Pawelzik, E. Biodiversity in Tomatoes: Is it reflected in nutrient density and nutritional yields under organic outdoor production? Front. Plant Sci. 2020, 11, 1763. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Rebolloso-Fuentes, M.M. Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. J. Food Compos. Anal. 2009, 22, 123–129. [Google Scholar] [CrossRef]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A Review. Foods 2020, 10, 45. [Google Scholar] [CrossRef]
- Rosa-Martínez, E.; García-Martínez, M.D.; Adalid-Martínez, A.M.; Pereira-Dias, L.; Casanova, C.; Soler, E.; Figàs, M.R.; Raigón, M.D.; Plazas, M.; Soler, S.; et al. Fruit composition profile of pepper, tomato and eggplant varieties grown under uniform conditions. Food Res. Int. 2021, 147, 110531. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; de Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Sanchez-Zapata, E.; Sayas-Barberá, E.; Sendra, E.; Pérez-Álvarez, J.A.; Fernández-López, J. Tomato and tomato byproducts. human health benefits of lycopene and its application to meat products: A review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1032–1049. [Google Scholar] [CrossRef]
- García-Herrera, P.; de Cortes Sánchez-Mata, M. The Contribution of Wild Plants to Dietary Intakes of Micronutrients (II): Mineral Elements. In Mediterranean Wild Edible Plants: Ethnobotany and Food Composition Tables; de Cortes Sánchez-Mata, M., Tardío, J., Eds.; Springer: New York, NY, USA, 2016; pp. 141–171. ISBN 9781493933297. [Google Scholar]
- Rousseau, S.; Kyomugasho, C.; Celus, M.; Hendrickx, M.E.G.; Grauwet, T. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Crit. Rev. Food Sci. Nutr. 2019, 60, 826–843. [Google Scholar] [CrossRef] [PubMed]
- Khouzam, R.B.; Pohl, P.; Lobinski, R. Bioaccessibility of essential elements from white cheese, bread, fruit and vegetables. Talanta 2011, 86, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Mihalache, G.; Peres, C.I.; Bodale, I.; Achitei, V.; Gheorghitoaie, M.V.; Teliban, G.C.; Cojocaru, A.; Butnariu, M.; Muraru, V.; Stoleru, V. Tomato crop performances under chemical nutrients monitored by electric signal. Agronomy 2020, 10, 1915. [Google Scholar] [CrossRef]
- Collins, E.J.; Bowyer, C.; Tsouza, A.; Chopra, M. Tomatoes: An extensive review of the associated health impacts of tomatoes and factors that can affect their cultivation. Biology 2022, 11, 239. [Google Scholar] [CrossRef]
- Kyomugasho, C.; Willemsen, K.L.D.D.; Christiaens, S.; van Loey, A.M.; Hendrickx, M.E. Pectin-interactions and in vitro bioaccessibility of calcium and iron in particulated tomato-based suspensions. Food Hydrocoll. 2015, 49, 164–175. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Drakou, M.; Birmpa, A.; Koutelidakis, A.E.; Komaitis, M.; Panagou, E.Z.; Kapsokefalou, M. Total antioxidant capacity, total phenolic content and iron and zinc dialyzability in selected Greek varieties of table olives, tomatoes and legumes from conventional and organic farming. Int. J. Food Sci. Nutr. 2015, 66, 197–202. [Google Scholar] [CrossRef]
- Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Pelaez, C.; et al. Dietary reference values for sodium. EFSA J. 2019, 17, e05778. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Salt Reduction. Available online: https://www.who.int/news-room/fact-sheets/detail/salt-reduction (accessed on 7 April 2022).
Tomato Farmers’ Variety | Similar Commercial Type | Average Weight (g) | Water Content (%) |
---|---|---|---|
Yellow tomato | Yellow tomato | 190 | 90.6 |
Round tomato | Round standard tomato | 116 | 92.2 |
Long tomato | Plum tomato | 132 | 93.7 |
Oxheart tomato | Beefsteak tomato | 465 | 92.8 |
Macromineral (mg/100 g fw) | Na | K | Ca | Mg | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total | Bioaccessible | Total | Bioaccessible | B% | Total | Bioaccessible | B% | Total | Bioaccessible | B% | |
Yellow tomato | 3.0 ± 0.2 a | nd | 215 ± 11 a | 38 ± 2 | 17.55 | 6.8 ± 0.2 a | 0.7 ± 0.1 | 10.25 | 9.3 ± 0.8 | 5.2 ± 0.3 | 56.01 |
Round tomato | 1.32 ± 0.07 b | nd | 174 ± 8 b | 30 ± 3 | 17.24 | 4.4 ± 0.2 b | 0.25 ± 0.04 | 5.58 | 9.3 ± 0.3 | 4.5 ± 0.6 | 48.30 |
Long tomato | 1.14 ± 0.07 b | nd | 170 ± 10 b | 21 ± 2 | 12.33 | 4.5 ± 0.4 b | 1.28 ± 0.02 | 28.77 | 10 ± 1 | 5.2 ± 0.2 | 49.89 |
Oxheart tomato | 0.58 ± 0.07 c | nd | 158 ± 5 b | 24 ± 2 | 15.12 | 4.8 ± 0.2 b | 1.30 ± 0.02 | 27.18 | 8.9 ± 0.2 | 5.6 ± 0.2 | 62.64 |
One-way ANOVA # | <0.001 | <0.001 | 16 ± 2 * | <0.001 | 18 ± 10 * | 0.337 | 54 ± 6 * | ||||
Trace element (mg/100 g fw) | Fe | Cu | Mn | Zn | |||||||
Total | Bioaccessible | Total | Bioaccessible | B% | Total | Bioaccessible | B% | Total | Bioaccessible | B% | |
Yellow tomato | 0.49 ± 0.04 a | 0 | 0.14 ± 0.02 a | 0.086 ± 0.001 | 63.61 | 0.032 ± 0.004 b,c | 0.0087 ± 0.0002 | 27.48 | 0.18 ± 0.02 b | 0.09 ± 0.01 | 49.03 |
Round tomato | 0.294 ± 0.001 b | 0 | 0.12 ± 0.01 a,b | 0.046 ± 0.005 | 38.26 | 0.047 ± 0.005 a | 0.0145 ± 0.0007 | 30.60 | 0.345 ± 0.001 a | 0.060 ± 0.001 | 17.47 |
Long tomato | 0.279 ± 0.004 b | 0 | 0.122 ± 0.003 a | 0.104 ± 0.003 | 84.82 | 0.037 ± 0.001 b | 0.018 ± 0.001 | 50.05 | 0.160 ± 0.006 b | 0.059 ± 0.009 | 37.08 |
Oxheart tomato | 0.19 ± 0.02 c | 0 | 0.085 ± 0.003 b | 0.042 ± 0.002 | 49.51 | 0.023 ± 0.003 c | 0.0187 ± 0.0001 | 82.40 | 0.08 ± 0.01 c | 0.058 ± 0.006 | 70.95 |
One-way ANOVA # | <0.001 | 0.012 | 59 ± 18 * | <0.001 | 48 ± 23 * | <0.001 | 44 ± 20 * |
Macromineral | Na | K | Ca | Mg | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DRI (mg/day) | Contribution to DRI (%) | DRI (mg/day) | Contribution to DRI (%) | DRI (mg/day) | Contribution to DRI (%) | DRI (mg/day) | Contribution to DRI (%) | |||||
Total Content | Bioaccessible Fraction | Total Content | Bioaccessible Fraction | Total Content | Bioaccessible Fraction | Total Content | Bioaccessible Fraction | |||||
Yellow tomato | 2000 # | 0.15 | - | 2000 | 10.76 | 1.89 | 800 | 0.85 | 0.09 | 375 | 2.48 | 1.36 |
Round tomato | 0.07 | - | 8.72 | 1.50 | 0.55 | 0.03 | 2.47 | 1.19 | ||||
Long tomato | 0.06 | - | 8.50 | 1.05 | 0.56 | 0.16 | 2.75 | 1.37 | ||||
Oxheart tomato | 0.03 | - | 7.88 | 1.19 | 0.63 | 0.16 | 2.38 | 1.49 | ||||
0.08 ± 0.05 * | - | 9 ± 1 * | 1.4 ± 0.3 * | 0.6 ± 0.1 * | 0.11 ± 0.05 * | 2.5 ± 0.1 * | 1.4 ± 0.1 * | |||||
Trace element | Fe | Cu | Mn | Zn | ||||||||
DRI (mg/day) | Contribution to DRI (%) | DRI (mg/day) | Contribution to DRI (%) | DRI (mg/day) | Contribution to DRI (%) | DRI (mg/day) | Contribution to DRI (%) | |||||
Total Content | Bioaccessible Fraction | Total Content | Bioaccessible Fraction | Total Content | Bioaccessible Fraction | Total Content | Bioaccessible Fraction | |||||
Yellow tomato | 14 | 3.47 | 0 | 1 | 13.53 | 8.60 | 2 | 1.59 | 0.44 | 10 | 1.78 | 0.87 |
Round tomato | 2.10 | 0 | 12.06 | 4.62 | 2.36 | 0.72 | 3.45 | 0.60 | ||||
Long tomato | 1.99 | 0 | 12.25 | 10.39 | 1.85 | 0.92 | 1.60 | 0.59 | ||||
Oxheart tomato | 1.37 | 0 | 8.54 | 4.23 | 1.14 | 0.94 | 0.82 | 0.58 | ||||
2.2 ± 0.8 * | 0 * | 12 ± 2 * | 7 ± 3 * | 1.7 ± 0.5 * | 0.8 ± 0.2 * | 1.9 ± 0.9 * | 0.7 ± 0.1 * |
Macromineral | Na | K | Ca | Mg | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DRI (mg/day) | Contribution to DRI (%) | DRI (mg/day) | Contribution (%) | DRI (mg/day) | Contribution (%) | DRI (mg/day) | Contribution (%) | |||||
Total Content | Bioaccessible Fraction | Total Content | Bioaccessible Fraction | Total Content | Bioaccessible Fraction | Total Content | Bioaccessible Fraction | |||||
Yellow tomato | 2000 # | 0.28 | - | 2000 | 20.45 | 3.59 | 800 | 1.62 | 0.17 | 375 | 4.72 | 2.64 |
Round tomato | 0.08 | - | 10.12 | 1.74 | 0.64 | 0.04 | 2.86 | 1.38 | ||||
Long tomato | 0.08 | - | 11.22 | 1.38 | 0.74 | 0.21 | 3.63 | 1.81 | ||||
Oxheart tomato | 0.14 | - | 36.62 | 5.54 | 2.92 | 0.75 | 11.09 | 6.95 | ||||
0.14 ± 0.08 * | - | 20 ± 11 * | 3 ± 2 * | 1.5 ± 0.9 * | 0.3 ± 0.3 * | 6 ± 3 * | 3 ± 2 * | |||||
Trace element | Fe | Cu | Mn | Zn | ||||||||
DRI (mg/day) | Contribution (%) | DRI (mg/day) | Contribution (%) | DRI (mg/day) | Contribution (%) | DRI (mg/day) | Contribution (%) | |||||
Total content | Bioaccessible fraction | Total content | Bioaccessible fraction | Total content | Bioaccessible fraction | Total content | Bioaccessible fraction | |||||
Yellow tomato | 14 | 6.58 | 0 | 1 | 25.70 | 16.35 | 2 | 3.02 | 0.83 | 10 | 3.39 | 1.66 |
Round tomato | 2.44 | 0 | 13.99 | 5.35 | 2.74 | 0.84 | 4.00 | 0.70 | ||||
Long tomato | 2.63 | 0 | 16.17 | 13.71 | 2.44 | 1.22 | 2.12 | 0.79 | ||||
Oxheart tomato | 6.39 | 0 | 39.72 | 19.67 | 5.28 | 4.35 | 3.81 | 2.70 | ||||
5 ± 2 * | 0 * | 24 ± 10 * | 14 ± 5 * | 3 ± 1 * | 2 ± 1 * | 3.3 ± 0.7 * | 1.5 ± 0.8 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciudad-Mulero, M.; Pinela, J.; Carvalho, A.M.; Barros, L.; Fernández-Ruiz, V.; Ferreira, I.C.F.R.; Sánchez-Mata, M.d.C.; Morales, P. Bioaccessibility of Macrominerals and Trace Elements from Tomato (Solanum lycopersicum L.) Farmers’ Varieties. Foods 2022, 11, 1968. https://doi.org/10.3390/foods11131968
Ciudad-Mulero M, Pinela J, Carvalho AM, Barros L, Fernández-Ruiz V, Ferreira ICFR, Sánchez-Mata MdC, Morales P. Bioaccessibility of Macrominerals and Trace Elements from Tomato (Solanum lycopersicum L.) Farmers’ Varieties. Foods. 2022; 11(13):1968. https://doi.org/10.3390/foods11131968
Chicago/Turabian StyleCiudad-Mulero, María, José Pinela, Ana Maria Carvalho, Lillian Barros, Virginia Fernández-Ruiz, Isabel C. F. R. Ferreira, María de Cortes Sánchez-Mata, and Patricia Morales. 2022. "Bioaccessibility of Macrominerals and Trace Elements from Tomato (Solanum lycopersicum L.) Farmers’ Varieties" Foods 11, no. 13: 1968. https://doi.org/10.3390/foods11131968
APA StyleCiudad-Mulero, M., Pinela, J., Carvalho, A. M., Barros, L., Fernández-Ruiz, V., Ferreira, I. C. F. R., Sánchez-Mata, M. d. C., & Morales, P. (2022). Bioaccessibility of Macrominerals and Trace Elements from Tomato (Solanum lycopersicum L.) Farmers’ Varieties. Foods, 11(13), 1968. https://doi.org/10.3390/foods11131968