Non-Bovine Milk: Sources and Future Prospects
1. Introduction
2. Non-Bovine Milk from Animal Sources
2.1. Physicochemical Changes
2.2. Health Benefits
3. Non-Bovine Milk from Plant Sources
4. Entomilk
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Chia, J.; Burrow, K.; Carne, A.; McConnell, M.; Samuelsson, L.; Day, L.; Young, W.; Bekhit, A.E.D. Minerals in sheep milk. In Nutrients in Dairy and Their Implications on Health and Disease; Watson, R.R., Collier, R.J., Preedy, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 27, pp. 345–362. [Google Scholar]
- Wang, Y.; Bekhit, A.E.D.; Morton, J.D.; Mason, S. Nutritional value of deer milk. In Nutrients in Dairy and Their Implications on Health and Disease; Watson, R.R., Collier, R.J., Preedy, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 28, pp. 363–375. [Google Scholar]
- Wang, Y.; Morton, J.D.; Bekhit, A.E.D.; Carne, A.; Mason, S.L. Amino acid sequences of lactoferrin from red deer (Cervus elaphus) milk and antimicrobial activity of its derived peptides lactoferricin and lactoferrampin. Foods 2021, 10, 1305. [Google Scholar] [CrossRef] [PubMed]
- Redha, A.A.; Valizadeni, H.; Siddiqui, S.A.; Maqsood, S. Review: A state-of-art review on camel milk proteins as an emerging source of bioactive peptides with di-verse nutraceutical properties. Food Chem. 2022, 373, 131444. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, A.; Shinde, K.A.; Singh, R. Review: Sheep milk: A pertinent functional food. Small Rum. Res. 2019, 181, 6–11. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Pimentel, T.C.; Ferrão, L.L.; Almada, C.N.; Santillo, A.; Albenzio, M.; Mollakhalili, N.; Mortazavian, A.M.; Nascimento, J.S.; Silva, M.C.; et al. Sheep milk: Physicochemical characteristics and relevance for functional food development. Comp. Rev. Food Sci. Food Saf. 2017, 16, 247–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nudda, A.; Stanislao, A.; Fabio, A.; Gianni, C.; Mondina, B.; Lunesu, F.; Cannas, A.; Pulina, G. Effects of nutrition on main components of sheep milk. Small Rum. Res. 2020, 184, 106015. [Google Scholar] [CrossRef]
- Prosser, C.G. Compositional and functional characteristics of goat milk and relevance as a base for infant formula. J. Food Sci. 2021, 86, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Mezo-Solís, J.A.; Moo-Huchin, V.M.; Sánchez-Zarate, A.; Gonzalez-Ronquillo, M.; Estrada-León, R.J.; Ibáñez, R.; Toro-Mujica, P.; Chay-Canul, A.J.; Vargas-Bello-Pérez, E. Physico-Chemical, Sensory and Texture Properties of an Aged Mexican Manchego-Style Cheese Produced from Hair Sheep Milk. Foods 2020, 9, 1666. [Google Scholar] [CrossRef] [PubMed]
- Wood, E.L.; Christian, D.G.; Arafat, M.; McColl, L.K.; Prosser, C.G.; Carpenter, E.A.; Levine, A.S.; Klockars, A.; Olszewski, P.K. Adjustment of Whey: Casein Ratio from 20:80 to 60:40 in Milk Formulation Affects Food Intake and Brainstem and Hypothalamic Neuronal Activation and Gene Expression in Laboratory Mice. Foods 2021, 10, 658. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.; Sabherwal, M.; Duncan, E.; Stevens, S.; Stockwell, P.; McConnell, M.; Bekhit, A.E.D.; Carne, A. In-depth characterization of sheep (Ovis aries) milk whey proteome and comparison with cow (Bos taurus). PLoS ONE 2015, 10, e0139774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, M.; Bekhit, A.E.D.; McConnell, M.; Mason, S.; Carne, A. Fractionation of whey proteins from red deer (Cervus elaphus) milk and comparison with whey proteins from cow, sheep, and goat milk. Small Rum. Res. 2014, 120, 125–134. [Google Scholar] [CrossRef]
- Wang, Y.; Bekhit, A.E.D.A.; Mason, S.L.; Morton, J.D. Lactoferrin isolation and hydrolysis from red deer (Cervus elaphus) milk and the antibacterial activity of deer lactoferrin and its hydrolysates. Foods 2020, 9, 1711. [Google Scholar] [CrossRef] [PubMed]
- Opatha Vithana, N.L.; Mason, S.L.; Bekhit, A.E.D.; Morton, J.D.; Clucas, L. Comparison of the composition and immunomodulatory activity of milk from red deer and cows. In Proceedings of the 46th Annual Scientific Meeting of the Nutrition Society, Auckland, New Zealand, 22–23 November 2012; p. 101. [Google Scholar]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species:An evaluation of the nutritional and potential health benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Bakry, I.A.; Yang, L.; Farag, M.A.; Korma, S.A.; Khalifa, I.; Cacciotti, I.; Ziedan, N.I.; Jin, J.; Jin, Q.; Wei, W.; et al. A Comprehensive Review of the Composition, Nutritional Value, and Functional Properties of Camel Milk Fat. Foods 2021, 10, 2158. [Google Scholar] [CrossRef] [PubMed]
- Burrow, K.; Young, W.; Hammer, N.; Safavi, S.; Scholze, M.; McConnell, M.; Carne, A.; Barr, D.; Reid, M.; Bekhit, A.E.-D. The Effect of the Supplementation of a Diet Low in Calcium and Phosphorus with Either Sheep Milk or Cow Milk on the Physical and Mechanical Characteristics of Bone Using a Rat Model. Foods 2020, 9, 1070. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, M.; Jahan, M.; Ghorashi, S.A.; Wang, B. Current Perspective of Sialylated Milk Oligosaccharides in Mammalian Milk: Implications for Brain and Gut Health of Newborns. Foods 2021, 10, 473. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; He, W.; Cai, X.; Bekhit, A.E.D.A.; Xu, B. Sensory, physicochemical, and rheological properties of plant-based milk alternatives made from soybean, peanut, adlay, adzuki bean, oat, and buckwheat. Int. J. Food Sci. Technol. 2022; online. [Google Scholar] [CrossRef]
- Clay, N.; Sexton, A.E.; Garnett, T.; Lorimer, J. Palatable disruption: The politics of plant milk. Agric. Hum. Values 2020, 37, 945–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stay, B.; Coop, A. Milk secretion for embryogenesis in a viviparous cockroach. Tissue Cell 1974, 6, 669–693. [Google Scholar] [CrossRef]
- Tello, A.; Aganovic, K.; Parniakov, O.; Carter, A.; Heinz, V.; Smetana, S. Product development and environmental impact of an insect-based milk alternative. Future Foods 2021, 4, 100080. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekhit, A.E.-D.A.; Ahmed, I.A.M.; Al-Juhaimi, F.Y. Non-Bovine Milk: Sources and Future Prospects. Foods 2022, 11, 1967. https://doi.org/10.3390/foods11131967
Bekhit AE-DA, Ahmed IAM, Al-Juhaimi FY. Non-Bovine Milk: Sources and Future Prospects. Foods. 2022; 11(13):1967. https://doi.org/10.3390/foods11131967
Chicago/Turabian StyleBekhit, Alaa El-Din A., Isam A. Mohamed Ahmed, and Fahad Y. Al-Juhaimi. 2022. "Non-Bovine Milk: Sources and Future Prospects" Foods 11, no. 13: 1967. https://doi.org/10.3390/foods11131967
APA StyleBekhit, A. E. -D. A., Ahmed, I. A. M., & Al-Juhaimi, F. Y. (2022). Non-Bovine Milk: Sources and Future Prospects. Foods, 11(13), 1967. https://doi.org/10.3390/foods11131967