Olive Pomace Oil versus High Oleic Sunflower Oil and Sunflower Oil: A Comparative Study in Healthy and Cardiovascular Risk Humans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Characterization of the Study Oils
2.2. Study Design and Intervention
2.3. Subjects
2.4. Randomization and Blinding
2.5. Dietary Control and Compliance
2.6. Lipid Profile and Endothelial Biomarker Analysis
2.7. Blood Pressure and Anthropometric Measurements
2.8. Analysis of Antioxidant Capacity and Oxidation Biomarkers
2.9. Statistical Methods
- A general linear repeated measures model was used to analyze energy, macronutrient and micronutrient intakes over the course of each study, so that values at baseline, initial (pre-treatment) and final (post-treatment) results were compared. The order of intake was not taken into account. Results are shown as mean ± standard error of the mean.
- A linear mixed model was applied to study the rate of change [(post-treatment value—pre-treatment value)/pre-treatment value] of each variable within each group (normocholesterolemic or hypercholesterolemic). This statistical model takes into account the correlated and non-constant variability of the data. Thus, it is possible to contemplate the order of oil intake. The statistical model was full factorial, considering group (normocholesterolemic or hypercholesterolemic), treatment oil (OPO, HOSO or SO) and group*treatment interaction, while the order of intake was a random effect. Results are expressed in percentage as mean ± standard error of the mean.
3. Results and Discussion
3.1. Chemical Composition of the Study Oils
3.2. Paticipants’ Characteristics, Dietary Control and Compliance
3.3. Lipid Profile
3.4. Blood Pressure and Biomarkers of Endothelial Function
3.5. Anthropometric Parameters and Body Composition
3.6. Oxidation and Antioxidant Biomarker Analysis
3.7. Strengths and Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aranceta, J.; Pérez-Rodrigo, C. Recommended dietary reference intakes, nutritional goals and dietary guidelines for fat and fatty acids: A systematic review. Br. J. Nutr. 2012, 107, S8–S22. [Google Scholar] [CrossRef] [PubMed]
- Julibert, A.; Bibiloni, M.D.M.; Mateos, D.; Angullo, E.; Tur, J.A. Dietary fat intake and metabolic syndrome in older adults. Nutrients 2019, 11, 1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guasch-Ferré, M.; Hu, F.B.; Martínez-González, M.A.; Fitó, M.; Bulló, M.; Estruch, R.; Ros, E.; Corella, D.; Recondo, J.; Gómez-Gracia, E.; et al. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study. BMC Med. 2014, 12, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beulen, Y.; Martínez-González, M.A.; Van de Rest, O.; Salas-Salvadó, J.; Sorlí, J.V.; Gómez-Gracia, E.; Fiol, M.; Estruch, R.; Santos-Lozano, J.M.; Schröder, H.; et al. Quality of dietary fat intake and body weight and obesity in a Mediterranean population: Secondary analyses within the PREDIMED trial. Nutrients 2018, 10, 2011. [Google Scholar] [CrossRef] [Green Version]
- Nocella, C.; Cammisotto, V.; Fianchini, L.; D’Amico, A.; Novo, M.; Castellani, V.; Stefanini, L.; Violi, F.; Carnevale, R. Extra virgin olive oil and cardiovascular diseases: Benefits for human health. Endoc. Metab. Immune Disord. Drug Targets 2018, 18, 4–13. [Google Scholar] [CrossRef]
- Marcelino, G.; Hiane, P.A.; Freitas, K.C.; Santana, L.F.; Pott, A.; Donadon, J.R.; Guimarães, R. Effects of olive oil and its minor components on cardiovascular diseases, inflammation, and gut microbiota. Nutrients 2019, 11, 1826. [Google Scholar] [CrossRef] [Green Version]
- Yubero-Serrano, E.M.; Lopez-Moreno, J.; Gomez-Delgado, F.; Lopez-Miranda, J. Extra virgin olive oil: More than a healthy fat. Eur. J. Clin. Nutr. 2019, 72, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Moral, P.; Ruíz-Méndez, M.V. Production of pomace olive oil. Grasas Aceites 2006, 57, 47–55. [Google Scholar] [CrossRef]
- Valero-Muñoz, M.; Martín-Fernández, B.; Ballesteros, S.; De la Fuente, E.; Quintela, J.C.; Lahera, V.; Heras, N.D.L. Protective effect of a pomace olive oil concentrated in triterpenic acids in alterations related to hypertension in rats: Mechanisms involved. Mol. Nutr. Food Res. 2014, 58, 376–383. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, R. Oleanolic acid and related triterpenoids from olives on vascular function: Molecular mechanisms and therapeutic perspectives. Curr. Med. Chem. 2015, 22, 1414–1425. [Google Scholar] [CrossRef]
- Claro-Cala, C.M.; Quintela, J.C.; Pérez-Montero, M.; Miñano, J.; De Sotomayor, M.A.; Herrera, M.D.; Rodríguez-Rodríguez, A.R. Pomace olive oil concentrated in triterpenic acids restores vascular function, glucose tolerance and obesity progression in mice. Nutrients 2020, 12, 323. [Google Scholar] [CrossRef] [Green Version]
- Mateos, R.; Sarriá, B.; Bravo, L. Nutritional and other health properties of olive pomace oil. Crit. Rev. Food Sci. Nutr. 2020, 60, 3506–3521. [Google Scholar] [CrossRef]
- Lee, W.; Yang, E.J.; Ku, S.K.; Song, K.S.; Bae, J.S. Anti-inflammatory effects of oleanolic acid on LPS-induced inflammation in vitro and in vivo. Inflammation 2013, 36, 94–102. [Google Scholar] [CrossRef]
- Ampofo, E.; Berg, J.J.; Menger, M.D.; Laschke, M.W. Maslinic acid alleviates ischemia/reperfusion-induced inflammation by downregulation of NFκB-mediated adhesion molecule expression. Sci. Rep. 2019, 9, 6119. [Google Scholar] [CrossRef]
- Fernández-Aparicio, A.; Schmidt-RioValle, J.; Perona, J.S.; Correa-Rodríguez, M.; Castellano, J.M.; González-Jiménez, E. Potential protective effect of oleanolic acid on the components of metabolic syndrome: A systematic review. J. Clin. Med. 2019, 8, 1294. [Google Scholar] [CrossRef] [Green Version]
- Murcia, J.L. Aceites de Semillas: Palma, Colza, Soja y Girasol Lideran la Producción y el Consumo Mundial. Available online: https://www.mercasa.es/media/publicaciones/58/pag_065-070_Murcia.pdf (accessed on 4 May 2022).
- Alsina, E.; Macri, E.V.; Zago, V.; Schreier, L.; Friedman, S.M. Aceite de girasol alto oleico: Hacia la construcción de una grasa saludable. Actual Nutr. 2015, 16, 114–121. [Google Scholar]
- Holgado, F.; Ruiz-Méndez, M.V.; Velasco, J.; Márquez-Ruiz, G. Performance of olive-pomace oils in discontinuous and continuous frying. Comparative behavior with sunflower oils and high-oleic sunflower oils. Foods 2021, 10, 3081. [Google Scholar] [CrossRef]
- Vijayakumar, M.; Vasudevan, D.M.; Sundaram, K.R.; Krishnan, S.; Vaidyanathan, K.; Nandakumar, S.; Chandrasekhar, R.; Mathew, N. A randomized study of coconut oil versus sunflower oil on cardiovascular risk factors in patients with stable coronary heart disease. Indian Heart J. 2016, 68, 498–506. [Google Scholar] [CrossRef] [Green Version]
- Yahay, M.; Heidari, Z.; Allameh, Z.; Amani, R. The effects of canola and olive oils consumption compared to sunflower oil, on lipid profile and hepatic steatosis in women with polycystic ovarian syndrome: A randomized controlled trial. Lipids Health Dis. 2021, 20, 7. [Google Scholar] [CrossRef]
- Akrami, A.; Nikaein, F.; Babajafari, S.; Faghih, S.; Yarmohammadi, H. Comparison of the effects of flaxseed oil and sunflower seed oil consumption on serum glucose, lipid profile, blood pressure, and lipid peroxidation in patients with metabolic syndrome. J. Clin. Lipidol. 2018, 12, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Lambert, E.V.; Goedecke, J.; Bluett, K.; Heggie, K.; Claassen, A.; Rae, D.; West, S.; Dugas, J.; Dugas, L.; Meltzer, S.; et al. Conjugated linoleic acid versus high-oleic acid sunflower oil: Effects on energy metabolism, glucose tolerance, blood lipids, appetite and body composition in regularly exercising individuals. Br. J. Nutr. 2007, 97, 1001–1011. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Camino, M.C.; Cert, A. Quantitative determination of hydroxy pentacyclic triterpene acids in vegetable oils. J. Agric. Food Chem. 1999, 47, 1558–1562. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, J. Determination of aliphatic alcohols, squalene, alpha-tocopherol and sterols in olive oils: Direct method involving gas chromatography of the unsaponifiable fraction following silylation. Analyst 2001, 126, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Mateos, R.; Espartero, J.L.; Trujillo, M.; Ríos, J.J.; León-Camacho, M.; Alcudia, F.; Cert, A. Determination of phenols, flavones, and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. J. Agric. Food Chem. 2001, 49, 2185–2192. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Mateos, R.; Lecumberri, E.; Ramos, S.; Goya, L.; Bravo, L. Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress: Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J. Chromatogr. B 2005, 827, 76–82. [Google Scholar]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Ingestas Diarias Recomendadas de Energía y Nutrientes Para la Población Española: Tablas de Composición de Alimentos, 18th ed.; Pirámide (Grupo Anaya, SA): Madrid, Spain, 2016; pp. 27–44. [Google Scholar]
- Da Silva, R.; Bach-Faig, A.; Quintana, B.R.; Buckland, G.; De Almeida, M.D.V.; Serra-Majem, L. Worldwide variation of adherence to the Mediterranean diet, in 1961–1965 and 2000–2003. Public Health Nutr. 2009, 12, 1676–1684. [Google Scholar] [CrossRef] [Green Version]
- Vilarnau, C.; Stracker, D.M.; Funtikov, A.; Da Silva, R.; Estruch, R.; Bach-Faig, A. Worldwide adherence to Mediterranean Diet between 1960 and 2011. Eur. J. Clin. Nutr. 2019, 72, 83–91. [Google Scholar] [CrossRef]
- Martínez-López, S.; Sarriá, B.; Mateos, R.; Bravo-Clemente, L. Moderate consumption of a soluble green/roasted coffee rich in caffeoylquinic acids reduces cardiovascular risk markers: Results from a randomized, cross-over, controlled trial in healthy and hypercholesterolemic subjects. Eur. J. Nutr. 2019, 58, 865–878. [Google Scholar] [CrossRef] [Green Version]
- European Parliament and the Council of the European Union. Regulation (EU) No 1169/2011 of the European Parliament and of the council. Off. J. Eur. Union 2011, L304, 18–63. [Google Scholar]
- Luo, H.Q.; Shen, J.; Chen, C.P.; Ma, X.; Lin, C.; Ouyang, Q.; Xuan, C.X.; Liu, J.; Sun, H.B.; Liu, J. Lipid-lowering effects of oleanolic acid in hyperlipidemic patients. Chin. J. Nat. Med. 2018, 16, 339–346. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 432/2012. Off. J. Eur. Union 2012, L136, 1–40. [Google Scholar]
- Hamedi-Kalajahi, F.; Zarezadeh, M.; Dehghani, A.; Musazadeh, V.; Kolahi, A.; Shabbidar, S.; Djafarian, K. A systematic review and meta-analysis on the impact of oral vitamin E supplementation on apolipoproteins A1 and B100. Clin. Nutr. ESPEN 2021, 46, 106–114. [Google Scholar] [CrossRef]
- Sniderman, A.D.; Thanassoulis, G.; Glavinovic, T.; Navar, A.M.; Pencina, M.; Catapano, A.; Ference, B.A. Apolipoprotein B particles and cardiovascular disease: A narrative review. JAMA Cardiol. 2019, 4, 1287–1295. [Google Scholar] [CrossRef]
- Lima, L.M.; Carvalho, M.D.G.; Sousa, M.O. Apo B/apo AI ratio and cardiovascular risk prediction. Arq. Bras. Cardiol. 2007, 88, e187–e190. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Fujimoto, S.; Toida, T.; Nakagawa, H.; Yamashita, Y.; Iwakiri, T.; Fukuda, A.; Iwatsubo, S. Apoprotein B/Apoprotein A-1 ratio and mortality among prevalent dialysis patients. Clin. J. Am. Soc. Nephrol. 2016, 11, 840–846. [Google Scholar] [CrossRef] [Green Version]
- Cabello-Moruno, R.; Martinez-Force, E.; Montero, E.; Perona, J.S. Minor components of olive oil facilitate the triglyceride clearance from postprandial lipoproteins in a polarity-dependent manner in healthy men. Nutr. Res. 2014, 34, 40–47. [Google Scholar] [CrossRef] [Green Version]
- De la Sierra, A. New American and European Hypertension Guidelines, reconciling the differences. Cardiol. Ther. 2019, 8, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Esposito, K.; Marfella, R.; Ciotola, M.; Di Palo, C.; Giugliano, F.; Giugliano, G.; D’Armiento, M.; D’Andrea, F.; Giugliano, D. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: A randomized trial. JAMA 2004, 292, 1440–1446. [Google Scholar] [CrossRef] [Green Version]
- Yubero-Serrano, E.M.; Fernandez-Gandara, C.; Garcia-Rios, A.; Rangel-Zuñiga, O.A.; Gutierrez-Mariscal, F.M.; Torres-Peña, J.D.; Marin, C.; Lopez-Moreno, J.; Castaño, J.P.; Delgado-Lista, J.; et al. Mediterranean diet and endothelial function in patients with coronary heart disease: An analysis of the CORDIOPREV randomized controlled trial. PLoS Med. 2020, 17, e1003282. [Google Scholar] [CrossRef]
- Godo, S.; Shimokawa, H. Endothelial functions. Arterioscler. Thromb. Vasc. Biol. 2017, 37, e108–e114. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rodríguez, R.; Herrera, M.D.; De Sotomayor, M.A.; Ruiz-Gutiérrez, V. Effects of pomace olive oil-enriched diets on endothelial function of small mesenteric arteries from spontaneously hypertensive rats. Br. J. Nutr. 2009, 102, 1435–1444. [Google Scholar] [CrossRef] [Green Version]
- Salazar-Exaire, J.D.; Reyes-Martínez, R.I.; González-Álvarez, R.; Briones-Garduño, J.C. P-selectina como marcador de reactividad endotelial en pacientes con preeclampsia. Cirugía Cir. 2004, 72, 121–124. [Google Scholar]
- Zinellu, A.; Mangoni, A.A. Systematic review and meta-analysis of the effect of statins on circulating E-selectin, L-selectin, and P-selectin. Biomedicines 2021, 9, 1707. [Google Scholar] [CrossRef]
- Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, C.; Tousoulis, D. Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines 2021, 9, 781. [Google Scholar] [CrossRef]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef]
- De Melo, C.L.; Queiroz, M.G.; Fonseca, S.G.; Bizerra, A.M.; Lemos, T.L.; Melo, T.S.; Santos, F.A.; Rao, V.S. Oleanolic acid, a natural triterpenoid improves blood glucose tolerance in normal mice and ameliorates visceral obesity in mice fed a high-fat diet. Chem.-Biol. Interact. 2010, 185, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Djeziri, F.Z.; Belarbi, M.; Murtaza, B.; Hichami, A.; Benammar, C.; Khan, N.A. Oleanolic acid improves diet-induced obesity by modulating fat preference and inflammation in mice. Biochimie 2018, 152, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Saedi, S.; Noroozi, M.; Khosrotabar, N.; Mazandarani, S.; Ghadrdoost, B. How canola and sunflower oils affect lipid profile and anthropometric parameters of participants with dyslipidemia. Med. J. Islam. Repub. Iran 2017, 31, 5. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Gan, W.; Liao, X.; Wei, J.; Lu, M.; Chen, H.; Wang, S.; Ma, Y.; Wu, Q.; Yu, Y.; et al. Conjugated linoleic acid supplements preserve muscle in high-body-fat adults: A double-blind, randomized, placebo trial. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1777–1784. [Google Scholar] [CrossRef]
- Pastori, D.; Carnevale, R.; Pignatelli, P. Is there a clinical role for oxidative stress biomarkers in atherosclerotic diseases? Intern. Emerg. Med. 2014, 9, 123–131. [Google Scholar] [CrossRef]
- Pignatelli, P.; Menichelli, D.; Pastori, D.; Violi, F. Oxidative stress and cardiovascular disease: New insights. Kardiol. Pol. 2018, 76, 713–722. [Google Scholar] [CrossRef] [Green Version]
- Cheung, S.C.; Szeto, Y.T.; Benzie, I.F. Antioxidant protection of edible oils. Plant Foods Hum. Nutr. 2007, 62, 39–42. [Google Scholar] [CrossRef]
- Ramos-Escudero, F.; Morales, M.T.; Asuero, A.G. Characterization of bioactive compounds from monovarietal virgin olive oils: Relationship between phenolic compounds-antioxidant capacities. Int. J. Food Prop. 2015, 18, 348–358. [Google Scholar] [CrossRef]
- Sarriá, B.; Martínez-López, S.; Sierra-Cinos, J.L.; García-Diz, L.; Mateos, R.; Bravo, L. Regular consumption of a cocoa product improves the cardiometabolic profile in healthy and moderately hypercholesterolaemic adults. Br. J. Nutr. 2014, 111, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Martínez-López, S.; Sarriá, B.; Sierra-Cinos, J.L.; Goya, L.; Mateos, R.; Bravo, L. Realistic intake of a flavanol-rich soluble cocoa product increases HDL-cholesterol without inducing anthropometric changes in healthy and moderately hypercholesterolemic subjects. Food Funct. 2014, 5, 364–374. [Google Scholar] [CrossRef]
- Mateos, R.; Martínez-López, S.; Baeza Arévalo, G.; Amigo-Benavent, M.; Sarriá, B.; Bravo-Clemente, L. Hydroxytyrosol in functional hydroxytyrosol-enriched biscuits is highly bioavailable and decreases oxidised low density lipoprotein levels in humans. Food Chem. 2016, 205, 248–256. [Google Scholar] [CrossRef]
- Hussain-Shaik, A.; Rasool, S.N.; Abdul Kareem, M.; Krushna, G.S.; Akhtar, P.M.; Devi, K.L. Maslinic acid protects against isoproterenol-induced cardiotoxicity in albino Wistar rats. J. Med. Food 2012, 15, 741–746. [Google Scholar] [CrossRef]
Normocholesterolemic | Hypercholesterolemic | |
---|---|---|
Men, n | 21 | 36 |
Women, n | 44 | 31 |
Age (years) | 31 ± 1 | 43 ± 1 |
BMI (kg/m2) | 23.6 ± 0.6 | 25.7 ± 0.5 |
Waist circumference (cm) | 75.6 ± 1.7 | 85.0 ± 1.7 |
Total cholesterol (mg/dL) | 177.0 ± 2.8 | 239.2 ± 3.3 |
LDL cholesterol (mg/dL) | 97.5 ± 2.6 | 149.4 ± 3.7 |
Systolic blood pressure (mmHg) | 114.3 ± 1.5 | 121.6 ± 1.8 |
Diastolic blood pressure (mmHg) | 74.2 ± 1.0 | 79.5 ± 1.3 |
Normocholesterolemic | p Value | |||||||
---|---|---|---|---|---|---|---|---|
Baseline | OPO (n = 65) | HOSO (n = 34) | SO (n = 31) | |||||
Initial | Final | Initial | Final | Initial | Final | |||
Energy (kcal/day) | 2078 ± 60 | 1966 ± 57 | 2017 ± 64 | 2198 ± 83 | 2087 ± 92 | 2017 ± 63 | 2006 ± 59 | 0.394 |
Proteins (g/day) | 89 ± 3 | 82 ± 3 | 86 ± 3 | 96 ± 4 | 91 ± 5 | 87 ± 4 | 80 ± 3 | 0.132 |
Carbohydrates (g/day) | 196 ± 7 | 191 ± 8 | 190 ± 8 | 209 ± 10 | 205 ± 10 | 176 ± 7 | 175 ± 7 | 0.087 |
Lipids (g/day) | 95 ± 4 | 89 ± 3 | 92 ± 4 | 100 ± 5 | 92 ± 5 | 98 ± 4 | 100 ± 4 | 0.395 |
SFA (g/day) | 31 ± 1 | 27 ± 1 | 28 ± 1 | 29 ± 2 | 27 ± 2 | 30 ± 1 | 28 ± 2 | 0.065 |
MUFA (g/day) | 41 ± 2 a | 29 ± 1 b | 45 ± 2 a | 31 ± 2 b | 46 ± 3 a | 33 ± 1 b | 30 ± 2 b | <0.001 |
PUFA (g/day) | 14.5 ± 0.8 a | 25.1 ± 1.4 bd | 12.5 ± 0.6 ac | 30.1 ± 1.8 bd | 10.7 ± 0.7 c | 26.4 ± 1.3 b | 33.2 ± 1.8 d | <0.001 |
Cholesterol (mg/day) | 327 ± 16 | 314 ± 18 | 334 ± 17 | 365 ± 27 | 335 ± 41 | 334 ± 18 | 340 ± 21 | 0.769 |
Dietary fiber (g/day) | 21 ± 1 | 20 ± 1 | 20 ± 1 | 23 ± 1 | 22 ± 1 | 20 ± 1 | 21 ± 1 | 0.821 |
Vitamin E (mg/day) | 9.5 ± 0.6 a | 20.5 ± 1.3 b | 17.2 ± 1.0 c | 24.4 ± 1.9 b | 17.8 ± 1.3 c | 16.8 ± 0.9 c | 26.1 ± 1.6 b | <0.001 |
Hypercholesterolemic | p Value | |||||||
Baseline | OPO (n = 67) | HOSO (n = 30) | SO (n = 37) | |||||
Initial | Final | Initial | Final | Initial | Final | |||
Energy (kcal/day) | 2099 ± 52 | 2146 ± 61 | 2079 ± 56 | 2261 ± 95 | 2084 ± 106 | 2006 ± 93 | 2027 ± 97 | 0.158 |
Proteins (g/day) | 93 ± 3 | 91 ± 3 | 90 ± 3 | 98 ± 4 | 89 ± 5 | 84 ± 5 | 83 ± 4 | 0.121 |
Carbohydrates (g/day) | 201 ± 8 | 206 ± 8 | 200 ± 7 | 214 ± 12 | 212 ± 16 | 200 ± 12 | 197 ± 13 | 0.721 |
Lipids (g/day) | 91 ± 3 | 95 ± 3 | 91 ± 4 | 102 ± 6 | 88 ± 6 | 88 ± 5 | 91 ± 5 | 0.122 |
SFA (g/day) | 29 ±1 | 29 ± 1 | 28 ± 1 | 30 ± 2 | 24 ± 2 | 28 ± 2 | 28 ± 2 | 0.223 |
MUFA (g/day) | 41 ± 2 a | 31 ± 1 b | 44 ± 2 a | 32 ± 2 b | 46 ± 4 a | 29 ± 2 b | 28 ± 2 b | <0.001 |
PUFA (g/day) | 12.8 ± 0.5 a | 26.9 ± 1.4 b | 12.9 ±0.6 a | 30.5 ± 2.7 b | 10.3 ± 0.6 a | 23.5 ± 1.6 b | 26.2 ± 1.9 b | <0.001 |
Cholesterol (mg/day) | 358 ± 17 | 320 ± 20 | 346 ± 22 | 334 ± 25 | 308 ± 29 | 293 ± 22 | 354 ± 31 | 0.298 |
Dietary fiber (g/day) | 24 ± 2 | 24 ± 1 | 23 ± 1 | 28 ± 2 | 23 ± 2 | 20 ± 2 | 22 ± 2 | 0.230 |
Vitamin E (mg/day) | 9.1 ± 0.5 a | 20.8 ± 1.5 b | 19.8 ± 0.9 c | 28.1 ± 2.7 b | 17.7 ± 1.5 c | 15.4 ± 1.2 c | 20.9 ± 1.5 b | <0.001 |
(%) | Normocholesterolemic | Hypercholesterolemic | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
OPO n = 65 |
HOSO n = 34 |
SO n = 31 |
OPO n = 67 |
HOSO n = 30 |
SO n = 37 | Oil | N/H | Oil × N/H | |
eNOS | 36.8 ± 15.9 | 10.0 ± 23.7 | −6.7 ± 8.9 | 21.1 ± 12.1 | 37.5 ± 16.5 | −4.8 ± 11.9 | 0.100 | 0.430 | 0.298 |
E-selectin | 6.3 ± 9.9 | −32.7 ± 11.4 | 14.4 ± 12.3 | −1.0 ± 7.8 | −2.0 ± 16.8 | 16.5 ± 18.7 | 0.789 | 0.907 | 0.378 |
P-selectin | 9.2 ± 5.6 | 20.6 ± 11.2 | 6.9 ± 5.1 | 4.1 ± 5.2 | 22.0 ± 11.2 | 2.9 ± 3.6 | 0.726 | 0.559 | 0.997 |
ICAM-1 | −0.8 ± 3.4 | 2.1 ± 3.6 | −1.8 ± 4.4 | 8.4 ± 5.6 | −1.3 ± 6.9 | −1.9 ± 5.2 | 0.241 | 0.513 | 0.351 |
VCAM-1 | 4.5 ± 4.3 | 6.8 ± 6.9 | 10.5 ± 8.2 | 18.0 ± 6.5 | 0.3 ± 9.9 | 6.1 ± 9.4 | 0.627 | 0.802 | 0.158 |
(%) | Normocholesterolemic | Hypercholesterolemic | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
OPO n = 65 | HOSO n = 34 | SO n = 31 | OPO n = 67 | HOSO n = 30 | SO n = 37 | Oil | N/H | Oil × N/H | |
Weight | −0.3 ± 0.1 | 0.2 ± 0.2 | 0.0 ± 0.2 | 0.0 ± 0.1 | 0.1 ± 0.2 | 0.1 ± 0.2 | 0.392 | 0.508 | 0.715 |
BMI | −0.4 ± 0.2 | 0.3 ± 0.5 | 0.3 ± 0.5 | 0.1 ± 0.1 | 0.0 ± 0.3 | 0.4 ± 0.3 | 0.251 | 0.700 | 0.421 |
Body fat | −0.3 ± 1.5 | 1.8 ± 2.3 | −1.0 ± 1.1 | 2.5 ± 1.5 | 3.3 ± 3.0 | 3.8 ± 2.2 | 0.476 | 0.064 | 0.726 |
Visceral fat | −1.5 ± 2.4 | −3.9 ± 2.6 | 2.2 ± 4.0 | −1.1 ± 1.3 | −2.9 ± 2.4 | 6.6 ± 6.1 | 0.146 | 0.706 | 0.953 |
Waist | −0.5 ± 0.5 | 1.1 ± 0.9 | −0.8 ± 0.9 | −0.8 ± 0.4 | 1.6 ± 1.3 | −0.6 ± 0.8 | 0.026 | 0.745 | 0.620 |
Hip | 0.6 ± 0.9 | 1.1 ± 0.4 | 0.4 ± 0.4 | 0.3 ± 0.2 | 0.0 ± 0.2 | 1.2 ± 0.9 | 0.619 | 0.615 | 0.335 |
(%) | Normocholesterolemic | Hypercholesterolemic | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
OPO n = 65 | HOSO n = 34 | SO n = 31 | OPO n = 67 | HOSO n = 30 | SO n = 37 | Oil | N/H | Oil × N/H | |
ABTS (µM TE) | 11.4 ± 5.8 | 7.2 ± 3.5 | 7.6 ± 6.3 | 2.1± 3.4 | 8.0 ± 2.6 | 2.4 ± 3.8 | 0.284 | 0.987 | 0.263 |
ORAC (µM TE) | 3.7 ± 3.0 | 1.1 ± 6.0 | −0.8 ± 3.6 | 2.9 ± 3.3 | 18.8 ± 10.7 | 1.4 ± 3.6 | 0.233 | 0.210 | 0.321 |
FRAP (µM TE) | 4.0 ± 1.7 | 7.6 ± 3.4 | 2.7 ± 2.6 | 2.1 ± 1.8 | 1.5 ± 2.8 | −2.6 ± 1.6 | 0.276 | 0.018 | 0.469 |
oxLDL (ng/mL) | 15.0 ± 7.8 | 10.5 ± 9.4 | 1.5 ± 7.6 | 5.5 ± 9.7 | 16.4 ± 11.3 | 2.5 ± 5.1 | 0.418 | 0.746 | 0.478 |
MDA (nmol/mL) | −4.4 ± 2.2 a | 3.1 ± 3.2 b | 0.7 ± 2.9 ab | 0.1 ± 2.0 | −8.4 ± 4.7 | −1.4 ± 2.9 | 0.739 | 0.140 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Rámila, S.; Mateos, R.; García-Cordero, J.; Seguido, M.A.; Bravo-Clemente, L.; Sarriá, B. Olive Pomace Oil versus High Oleic Sunflower Oil and Sunflower Oil: A Comparative Study in Healthy and Cardiovascular Risk Humans. Foods 2022, 11, 2186. https://doi.org/10.3390/foods11152186
González-Rámila S, Mateos R, García-Cordero J, Seguido MA, Bravo-Clemente L, Sarriá B. Olive Pomace Oil versus High Oleic Sunflower Oil and Sunflower Oil: A Comparative Study in Healthy and Cardiovascular Risk Humans. Foods. 2022; 11(15):2186. https://doi.org/10.3390/foods11152186
Chicago/Turabian StyleGonzález-Rámila, Susana, Raquel Mateos, Joaquín García-Cordero, Miguel A. Seguido, Laura Bravo-Clemente, and Beatriz Sarriá. 2022. "Olive Pomace Oil versus High Oleic Sunflower Oil and Sunflower Oil: A Comparative Study in Healthy and Cardiovascular Risk Humans" Foods 11, no. 15: 2186. https://doi.org/10.3390/foods11152186
APA StyleGonzález-Rámila, S., Mateos, R., García-Cordero, J., Seguido, M. A., Bravo-Clemente, L., & Sarriá, B. (2022). Olive Pomace Oil versus High Oleic Sunflower Oil and Sunflower Oil: A Comparative Study in Healthy and Cardiovascular Risk Humans. Foods, 11(15), 2186. https://doi.org/10.3390/foods11152186