Functional Characteristics of Lactic Acid Bacteria In Vitro Isolated from Spontaneously Fermented Sour Porridge with Broomcorn Millet in Northwestern Shanxi Province of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sour Porridge
2.2. Strains
2.2.1. Isolation of LAB for Probiotic Characteristics Evaluation
2.2.2. Indicator Pathogens for Co-Aggregation Determination
2.2.3. Indicator Strains for Antibacterial Activity Determination
2.3. Survival of LAB in Simulated Gastrointestinal Conditions
2.3.1. Tolerance to Acid
2.3.2. Tolerance to Bile
2.3.3. Tolerance to the Simulated Gastrointestinal (GI) Juice
2.3.4. Hydrophobicity Determination
2.3.5. Aggregation Determination
2.4. Determination of Other Probiotic Properties
2.4.1. Cholesterol Reduction
2.4.2. Antibacterial Activity of Cell-Free Supernatants (CFS)
2.4.3. Antioxidant Activity of Cell-Free Supernatants (CFS)
Tolerance to Hydrogen Peroxide
DPPH Radical Scavenging Activity
Hydroxyl Radical Scavenging Activity
2.5. Safety Assessment
2.5.1. Antibiotic Sensitivity
2.5.2. Hemolytic Activity
2.5.3. Gelatinase Hydrolysis
2.5.4. Biogenic Amine (BA) Production
2.6. Identification of Selected Probiotics by 16S rRNA Gene Sequencing
2.7. Experimentation and Analysis
3. Results and Discussions
3.1. Morphological and Physicochemical Characteristics of LAB
3.2. Survival Rates of LAB in Simulated Gastrointestinal Conditions
3.2.1. Tolerance to Acid
3.2.2. Tolerance to Bile
3.2.3. Tolerance to Simulated Gastrointestinal (GI) Juice
3.2.4. Hydrophobicity Assay
3.2.5. Aggregation Assay
3.3. Other Probiotics Properties
3.3.1. Cholesterol Reduction
3.3.2. Antibacterial Activity of Cell-Free Supernatants (CFS)
3.3.3. Antioxidant Activity of Cell-Free Supernatant (CFS)
Tolerance to Hydrogen Peroxide
DPPH Radical Scavenging Activity
Hydroxyl Radical Scavenging Activity
3.4. Safety Assessment
3.4.1. Antibiotic Sensitive
3.4.2. Hemolytic, Gelatinase Hydrolysis Activity, and Biogenic Amine Production
3.5. Identification of Selected Probiotics by 16S rRNA Gene Sequencing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cheng, D.; Song, J.Z.; Xie, M.Z.; Song, D.F. The bidirectional relationship between host physiology and microbiota and health benefits of probiotics: A review. Trends Food Sci. Technol. 2019, 91, 426–435. [Google Scholar] [CrossRef]
- Temmerman, R.; Pot, B.; Huys, G.; Swings, J. Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int. J. Food Microbiol. 2003, 81, 1–10. [Google Scholar] [CrossRef]
- Asan-Ozusaglam, M.; Gunyakti, A. Lactobacillus fermentum strains from human breast milk with probiotic properties and cholesterol-lowering effects. Food Sci. Biotechnol. 2019, 28, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Nuraida, L. A review: Health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Sci. Hum. Wellness 2015, 4, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Chondrou, P.; Karapetsas, A.; Kiousi, D.E.; Tsela, D.; Tiptiri-Kourpeti, A.; Anestopoulos, I.; Kotsianidis, I.; Bezirtzoglou, E.; Pappa, A.; Galanis, A. Lactobacillus paracasei K5 displays adhesion, anti-proliferative activity and apoptotic effects in human colon cancer cells. Benef. Microbes 2018, 9, 975–983. [Google Scholar] [CrossRef]
- Ingrid, S.S.; Pato, U.; Koesnandar; Hosono, A. In vivo antimutagenicity of dadih probiotic bacteria towards Trp-P1. Asian-Australas. J. Anim. 2009, 22, 119–123. [Google Scholar] [CrossRef]
- Surono, I.S.; Koestomo, F.P.; Novitasari, N.; Zakaria, F.R. Novel probiotic Enterococcus faecium IS-27526 supplementation increased total salivary sIgA level and bodyweight of pre-school children: A pilot study. Anaerobe 2011, 17, 496–500. [Google Scholar] [CrossRef]
- Surono, I.S.; Martono, P.D.; Kameo, S.; Suradji, E.W.; Koyama, H. Effect of probiotic Lactobacillus plantarum IS-10506 and zinc supplementation on humoral immune response and zinc status of Indonesian pre-schoolchildren. J. Trace Elem. Med. Biol. 2014, 28, 465–469. [Google Scholar] [CrossRef]
- Kavithaa, S.; Harikrishnanb, A.; Jeevaratnama, K. Characterization and evaluation of antibacterial efficacy of a novel antibiotic-type compound from a probiotic strain Lactobacillus plantarum KJB23 against food-borne pathogens. LWT-Food Sci. Technol. 2020, 118, 108759. [Google Scholar] [CrossRef]
- Terpou, A.; Papadaki, A.; Lappa, I.K.; Kachrimanidou, V.; Bosnea, L.A.; Kopsahelis, N. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef] [Green Version]
- Ambalam, P.; Raman, M.; Purama, R.K.; Doble, M. Probiotics, prebiotics and colorectal cancer prevention. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 119–131. [Google Scholar] [CrossRef]
- Bautista-Gallego, J.; Ferrocino, I.; Botta, C.; Ercolini, D.; Cocolin, L.; Rantsiou, K. Probiotic potential of a Lactobacillus rhamnosus cheese isolate and its effect on the fecal microbiota of healthy volunteers. Food Res. Int. 2019, 119, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Tarrah, A.; de Castilhos, J.; Rossi, R.C.; da Duarte, V.S.; Ziegler, D.R.; Corich, V.; Giacomini, A. In vitro probiotic potential and anti-cancer activity of newly isolated folate-producing Streptococcus thermophilus strains. Front. Microbiol. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shori, A.B. The potential applications of probiotics on dairy and non-dairy foods focusing on viability during storage. Biocatal. Agric. Biotechnol. 2015, 4, 423–431. [Google Scholar] [CrossRef]
- Sidira, M.; Galanis, A.; Nikolaou, A.; Kanellaki, M.; Kourkoutas, Y. Evaluation of Lactobacillus casei ATCC393 protective effect against spoilage of probiotic dry fermented sausages. Food Control 2014, 42, 315–320. [Google Scholar] [CrossRef]
- Sidira, M.; Karapetsas, A.; Galanis, A.; Kanellaki, M.; Kourkoutas, Y. Effective survival of immobilized Lactobacillus casei during ripening and heat treatment of probiotic dry-fermented sausages and investigation of the microbial dynamics. Meat Sci. 2014, 96, 948–955. [Google Scholar] [CrossRef]
- Adesulu-Dahunsi, A.T.; Jeyaram, K.; Sanni, A.I. Probiotic and technological properties of exopolysaccharide producing lactic acid bacteria isolated from cereal-based nigerian fermented food products. Food Control 2018, 92, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Vinothkanna, A.; Sekar, S. Probiotic properties of intrinsic bacteria isolated from fermented polyherbal preparations of Indian Ayurveda. LWT-Food Sci. Technol. 2019, 103, 8–18. [Google Scholar] [CrossRef]
- Castellone, V.; Bancalari, E.; Rubert, J.; Gatti, M.; Neviani, E.; Bottari, B. Eating fermented: Health benefits of LAB-fermented foods. Foods 2021, 10, 2639. [Google Scholar] [CrossRef]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef]
- Macori, G.; Cotter, P.D. Novel insights into the microbiology of fermented dairy foods. Curr. Opin. Biotechnol. 2018, 49, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Linares, D.M.; Gómez, C.; Renes, E.; Fresno, J.M.; Tornadijo, M.E.; Ross, R.P.; Stanton, C. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front. Microbiol. 2017, 8, 846. [Google Scholar] [CrossRef]
- Qian, B.J.; Xing, M.Z.; Cui, L.; Deng, Y.; Xu, Y.Q.; Huang, M.N.; Zhang, S.H. Antioxidant, antihypertensive, and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssp. bulgaricus LB340. J. Dairy Res. 2011, 78, 72–79. [Google Scholar] [CrossRef]
- Drywień, M.; Frąckiewicz, J.; Górnicka, M.; Gadek, J.; Jałosińska, M. Effect of probiotic and storage time of thiamine and riboflavin content in the milk drinks fermented by Lactobacillus casei KNE-1. Rocz. Panstw. Zakl. Hig. 2015, 66, 373–377. [Google Scholar] [PubMed]
- Arqués, J.L.; Rodríguez, E.; Langa, S.; Landete, J.M.; Medina, M. Antimicrobial activity of lactic acid bacteria in dairy products and gut: Effect on Pathogens. BioMed Res. Int. 2015, 2015. [Google Scholar] [CrossRef]
- Hill, D.; Sugrue, I.; Arendt, E.; Hill, C.; Stanton, C.; Paul Ross, R. Recent advances in microbial fermentation for dairy and health. F1000Research 2017, 6, 751. [Google Scholar] [CrossRef] [PubMed]
- Ejtahed, H.S.; Soroush, A.R.; Angoorani, P.; Larijani, B.; Hasani-Ranjbar, S. Gut microbiota as a target in the pathogenesis of metabolic disorders: A new approach to novel therapeutic agents. Horm. Metab. Res. 2016, 48, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Martinez, R.C.R.; Bedani, R.; Saad, S.M.I. Scientific evidence for health effects attributed to the consumption of probiotics and prebiotics: An update for current perspectives and future challenges. Br. J. Nutr. 2015, 114, 1993–2015. [Google Scholar] [CrossRef]
- Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H.Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 2006, 100, 1171–1185. [Google Scholar] [CrossRef]
- Saleh, A.S.M.; Zhang, Q.; Chen, J.; Shen, Q. Millet grains: Nutritional quality, processing, and potential health benefits. Compr. Rev. Food Sci. Food Saf. 2013, 12, 281–295. [Google Scholar] [CrossRef]
- Devi, P.B.; Vijayabharathi, R.; Sathyabama, S.; Malleshi, N.G.; Priyadarisini, V.B. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. J. Food Sci. Technol. 2014, 51, 1021–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dikshit, N.; Sivaraj, N. Diversity for protein and morpho-agronomical characteristics in Proso Millet germplasm collections of Ratnagiri district, Maharashtra, India. Int. J. Plant Res. 2013, 26, 164–170. [Google Scholar] [CrossRef]
- Aubrecht, E.; Horacsek, M.; Gelencser, E.; Dworschak, E. Investigation of prolamin content of cereals and different plant seeds. Acta Alimentaria 1998, 27, 119–125. [Google Scholar]
- Kalinova, J.; Moudry, J. Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods Hum. Nutr. 2006, 61, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Salmerón, I.; Thomas, K.; Pandiella, S.S. Effect of potentially probiotic lactic acid bacteria on the physicochemical composition and acceptance of fermented cereal beverages. J. Funct. Foods 2015, 15, 106–115. [Google Scholar] [CrossRef]
- Oguntoyinbo, F.A.; Narbad, A. Multifunctional properties of Lactobacillus plantarum strains isolated from fermented cereal foods. J. Funct. Foods 2015, 17, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.J.; Kinner, M.; Wismer, W.; Gänzle, M.G. Effect of glutamate accumulation during sourdough fermentation with Lactobacillus reuteri on the taste of bread and sodium-reduced bread. Cereal Chem. J. 2015, 92, 224–230. [Google Scholar] [CrossRef]
- De Man, J.C.; Rogosa, M.; Sharp, M.E. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Ayyash, M.; Abushelaibi, A.; Al-Mahadin, S.; Enan, M.; El-Tarabily, K.; Shah, N. In-vitro investigation into probiotic haracterisation of Streptococcus and Enterococcus isolated from camel milk. LWT-Food Sci. Technol. 2018, 87, 478–487. [Google Scholar] [CrossRef]
- Liong, M.T.; Shah, N.P. Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J. Dairy Sci. 2005, 88, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, D.; Jena, P.K.; Patel, J.K.; Seshadri, S. Partial purification and characterization of a bacteriocin DT24 produced by probiotic vaginal Lactobacillus brevis DT24 and determination of its anti-uropathogenic Escherichia coli potential. Probiotics Antimicrob. Proteins 2013, 5, 142–151. [Google Scholar] [CrossRef]
- Singh, T.P.; Kaur, G.; Malik, R.K.; Schillinger, U.; Guigas, C.; Kapila, S. Characterization of intestinal Lactobacillus reuteri strains as potential probiotics. Probiotics Antimicrob. Proteins 2012, 4, 47–58. [Google Scholar] [CrossRef]
- Saini, K.; Tomar, S.K. In vitro evaluation of probiotic potential of Lactobacillus cultures of human origin capable of selenium bioaccumulation. LWT-Food Sci. Technol. 2017, 84, 497–504. [Google Scholar] [CrossRef]
- Collado, M.C.; Meriluoto, J.; Salminen, S. Adhesion and aggregation properties of probiotic and pathogen strains. Eur. Food Res. Technol. 2008, 226, 1065–1073. [Google Scholar] [CrossRef]
- Zuo, F.L.; Yu, R.; Feng, X.J.; Chen, L.L.; Zeng, Z.; Khaskheli, G.B.; Ma, H.Q.; Chen, S.W. Characterization and in vitro properties of potential probiotic Bifidobacterium strains isolated from breast-fed infantfeces. Ann. Microbiol. 2016, 66, 1027–1037. [Google Scholar] [CrossRef]
- Shehata, M.G.; El Sohaimy, S.A.; El-Sahn, M.A.; Youssef, M.M. Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Ann. Agric. Sci. 2016, 61, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Aslim, B.; Yuksekdag, Z.; Sarikaya, E.; Beyatli, Y. Determination of the bacteriocin-like substances produced by some lactic acid bacteria isolated from Turkish dairy products. LWT-Food Sci. Technol. 2005, 38, 691–694. [Google Scholar] [CrossRef]
- Zhang, S.W.; Liu, L.; Su, Y.L.; Li, H.J.; Sun, Q.; Liang, X.; Lv, J.P. Antioxidative activity of lactic acid bacteria in yogurt. Afr. J. Microbiol. Res. 2011, 5, 5194–5201. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. M100/S22-2012 Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement; CLSI: Malvern, PA, USA, 2012. [Google Scholar]
- Argyri, A.A.; Zoumpopoulou, G.; Karatzas, K.A.G.; Tsakalidou, E.; Nychas, G.J.E.; Panagou, E.Z.; Tassou, C.C. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 2013, 33, 282–291. [Google Scholar] [CrossRef]
- Xia, A.N.; Meng, X.S.; Tang, X.J.; Zhang, Y.Z.; Lei, S.M.; Liu, Y.G. Probiotic and related properties of a novel lactic acid bacteria strain isolated from fermented rose jam. LWT-Food Sci. Technol. 2021, 136, 110327. [Google Scholar] [CrossRef]
- Park, S.; Ji, Y.; Park, H.; Lee, K.; Park, H.; Beck, B.R.; Shin, H.; Holzapfel, W.H. Evaluation of functional properties of lactobacilli isolated from Korean white kimchi. Food Control 2016, 69, 5–12. [Google Scholar] [CrossRef]
- Shin, H.J.; Choi, H.J.; Kim, D.W.; Ahn, C.S.; Lee, Y.G.; Jeong, Y.K.; Joo, W.H. Probiotic potential of Pediococcus pentosaceus BCNU. J. Life Sci. 2012, 22, 1194–1200. [Google Scholar] [CrossRef] [Green Version]
- Joosten, H.; Northolt, M. Detection, growth, and amine-producing capacity of lactobacilli in cheese. Appl. Environ. Microbiol. 1989, 55, 2356–2359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bover-Cid, S.; Holzapfel, W.H. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol. 1999, 53, 33–41. [Google Scholar] [CrossRef]
- Aarti, C.; Khusro, A.; Varghese, R.; Arasu, M.V.; Agastian, P.; Al-Dhabi, N.A.; Ilavenil, S.; Choi, K.C. In vitro studies on probiotic and antioxidant properties of Lactobacillus brevis strain LAP2 isolated from Hentak, a fermented fish product of North-East India. LWT-Food Sci. Technol. 2017, 86, 438–446. [Google Scholar] [CrossRef]
- Du, R.J. Biological Statistics; Higher Education Press: Beijing, China, 1985. [Google Scholar]
- Montoro, B.P.; Benomar, N.; Lavilla Lerma, L.; Castillo Gutiérrez, S.; Gálvez, A.; Abriouel, H. Fermented Aloreña table olives as a source of potential probiotic Lactobacillus pentosus strains. Front. Microbiol. 2016, 7, 1583. [Google Scholar] [CrossRef] [Green Version]
- Angmo, K.; Kumari, A.; Savitri; Bhalla, T.C. Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT-Food Sci. Technol. 2016, 66, 428–435. [Google Scholar] [CrossRef]
- Oh, Y.J.; Jung, D.S. Evaluation of probiotic properties of Lactobacillus and Pediococcus strains isolated from Omegisool, a traditionally fermented millet alcoholic beverage in Korea. LWT-Food Sci. Technol. 2015, 63, 437–444. [Google Scholar] [CrossRef]
- Molenaar, D.; Bosscher, J.S.; ten Brink, B.; Driessen, A.J.M.; Konings, W.N. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J. Bacteriol. 1993, 175, 2864–2870. [Google Scholar] [CrossRef] [Green Version]
- Griswold, A.R.; Jameson-Lee, M.; Burne, R.A. Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA. J. Bacteriol. 2006, 188, 834–841. [Google Scholar] [CrossRef] [Green Version]
- Abushelaibi, A.; Al-Mahadin, S.; El-Tarabily, K.; Shah, N.P.; Ayyash, M. Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT-Food Sci. Technol. 2017, 79, 316–325. [Google Scholar] [CrossRef]
- Arena, M.P.; Russo, P.; Capozzi, V.; Beneduce, L.; Spano, G. Effect of abiotic stress conditions on expression of the Lactobacillus brevis IOEB 9809 tyrosine decarboxylase and agmatine deiminase genes. Ann. Microbiol. 2011, 61, 179–183. [Google Scholar] [CrossRef]
- Dunne, C.; O’Mahony, L.; Murphy, L.; Thornton, G.; Morrissey, D.; O’Halloran, S. In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. Am. J. Clin. Nutr. 2001, 73, 386S–392S. [Google Scholar] [CrossRef] [Green Version]
- Hamon, E.; Horvatovich, P.; Izquierdo, E.; Bringel, F.; Marchioni, E.; Aoudé-Werner, D.; Ennahar, S. Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiol. 2011, 11, 63. [Google Scholar] [CrossRef] [Green Version]
- Russo, P.; de Palencia, P.F.; Romano, A.; Fernández, M.; Lucas, P.; Spano, G.; López, P. Biogenic amine production by the wine Lactobacillus brevis IOEB 9809 in systems that partially mimic the gastrointestinal tract stress. BMC Microbiol. 2012, 12, 247–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghavendra, P.; Halami, P.M. Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine. Int. J. Food Microbiol. 2009, 133, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Peres, C.M.; Alves, M.; Hernandez-Mendoza, A.; Moreira, L.; Silva, S.; Bronze, M.R.; Vilas-Boas, L.; Peres, C.; Malcata, F.X. Novel isolates of lactobacilli from fermented Portuguese olive as potential probiotics. LWT-Food Sci. Technol. 2014, 59, 234–246. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Prasad, D.N. Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int. J. Food Microbiol. 2005, 103, 109–115. [Google Scholar] [CrossRef]
- Schar-Zammaretti, P.; Ubbink, J. The cell wall of lactic acid bacteria: Surface constituents and macromolecular conformations. Biophys. J. 2003, 85, 4076–4092. [Google Scholar] [CrossRef] [Green Version]
- Abdulla, A.A.; Abed, T.A.; Saeed, A.M. Adhesion, autoaggregation and hydrophobicity of six Lactobacillus strains. Br. Microbiol. Res. J. 2014, 4, 381–391. [Google Scholar] [CrossRef]
- Cesena, C.; Morelli, L.; Alander, M.; Siljander, T.; Tuomola, E.; Salminen, S.; Mattila-Sandholm, T.; Vilpponen-Salmela, T.; von Wright, A. Lactobacillus crispatus and its nonaggregating mutant in human colonization trials. J. Dairy Sci. 2001, 84, 1001–1010. [Google Scholar] [CrossRef]
- Tareb, R.; Bernardeau, M.; Gueguen, M.; Vernoux, J.P. In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probiotic Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni. J. Med. Microbiol. 2013, 62, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Vidhyasagar, V.; Jeevaratnam, K. Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. J. Funct. Foods. 2013, 5, 235–243. [Google Scholar] [CrossRef]
- Ishimwe, N.; Daliri, E.B.; Lee, B.H.; Fang, F.; Du, G.C. The perspective on cholesterol-lowering mechanisms of probiotics. Mol. Nutr. Food Res. 2015, 59, 94–105. [Google Scholar] [CrossRef]
- Pringsulaka, O.; Thongngam, N.; Suwannasai, N.; Atthakor, W.; Pothivejkul, K.; Rangsiruji, A. Partial characterisation of bacteriocins produced by lactic acid bacteria isolated from Thai fermented meat and fish products. Food Control 2012, 23, 547–551. [Google Scholar] [CrossRef]
- Servin, A.L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 2004, 28, 405–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, J.L.; Wang, G.; Zhang, Q.X.; Liu, X.M.; Gu, Z.; Zhang, H.; Chen, Y.Q.; Chen, W. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: A comparison with traditional methods. PLoS ONE 2015, 10, e0119058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, V.; Shah, C.; Mokashe, N.; Chavan, R.; Yadav, H.; Prajapati, J. Probiotics as potential antioxidants: A systematic review. J. Agric. Food Chem. 2015, 63, 3615–3626. [Google Scholar] [CrossRef]
- Sharma, S.; Kandasamy, S.; Kavitake, D.; Shetty, P.H. Probiotic characterization and antioxidant properties of Weissella confuse KR780676, isolated from an Indian fermented food. LWT-Food Sci. Technol. 2018, 97, 53–60. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Tseng, K.; Chiang, S.; Lee, B.; Hsu, W.; Pan, T. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J. Sci. Food Agric. 2011, 91, 2284–2291. [Google Scholar] [CrossRef] [PubMed]
- Doyle, M.P.; Buchanan, R.L. Food Microbiology: Fundamentals and Frontiers, 4th ed.; American Society for Microbiology Press: Washington, DC, USA, 2013. [Google Scholar]
- Hyacinta, M.; Hana, K.S.; Andrea, B.; Barbora, Č. Bile tolerance and its effect on antibiotic susceptibility of probiotic Lactobacillus candidates. Folia Microbiol. 2015, 60, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.M.; Shahidi, F.; Mortazavi, S.A.; Milani, E.; Eshaghi, Z. Potentially probiotic Lactobacillus strains from traditional Kurdish cheese. Probiotics Antimicrob. Proteins 2014, 6, 22–31. [Google Scholar] [CrossRef]
Tests | Strains | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9 | L10 | L11 | L12 | L13 | L14 | L15 | L16 | L17 | L18 | |
Colony shape | Round | Round | Round | Round | Round | Round | Round | Round | Round | Round | Round | Round | Round | Round | Round | Round | Round | Round |
Colony color | White | Milk white | White | White | Light white | White | Milk white | White | White | White | white | White | White | Light white | White | White | White | Milk white |
Shape | Rod | Rod | Rod | Rod | Rod | Rod | Rod | Rod | Rod | Short Rod | Rod | Rod | Short Rod | Short Rod | Rod | Short Rod | Short Rod | Rod |
Gram staining | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Endospore | Non- spore | Non- spore | Non- spore | Non- spore | Non- spore | Non- spore | Non- spore | Non- spore | Non- spore | Non- spore | Non- spore | Non- spore | Non- spore | Non- spore | Non- spore | Non- spore | Non- spore | Non- spore |
Catalase | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Oxidase | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Nitrate reductase | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Amygdalin | + | - | + | + | - | - | + | + | + | - | + | - | - | - | + | - | - | - |
Arabinose | + | + | - | + | + | - | - | + | - | + | + | + | - | + | - | + | + | + |
Cellose | + | + | + | + | - | + | + | + | + | - | + | + | + | - | + | - | - | - |
Esculin | + | - | + | + | - | - | + | + | + | + | + | + | + | - | + | + | - | + |
Fructose | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Galactose | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | - |
Glucose | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Gluconate | + | + | + | + | + | + | - | + | + | + | + | + | + | + | + | + | + | + |
Lactose | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | - |
Maltose | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Mannitol | + | - | + | + | - | - | - | + | + | - | + | + | + | - | + | - | - | - |
Mannose | + | + | + | + | + | + | + | + | + | - | + | + | + | - | + | - | - | - |
Melezitose | + | - | + | - | - | - | - | + | + | - | - | - | - | - | - | - | - | - |
Melibiose | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Raffinose | - | + | - | - | + | + | + | - | - | + | - | - | - | - | - | + | + | + |
Rhamnose | + | - | + | + | - | - | - | + | + | - | + | + | + | - | + | - | - | - |
Ribose | + | + | + | + | + | + | - | + | + | + | + | + | + | + | + | + | + | + |
Salicin | + | - | + | + | - | - | + | + | + | - | + | + | + | - | + | - | - | - |
Sorbitol | + | - | + | + | - | - | - | + | + | - | + | + | + | - | + | - | - | - |
Sucrose | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + |
Mycose | + | + | + | + | + | + | + | + | + | - | + | + | + | - | + | - | - | - |
Xylose | + | + | + | + | + | + | - | - | + | + | - | - | - | + | + | + | + | - |
Strains | Survival Rate (%) | |||
---|---|---|---|---|
Acid | Bile | Gastrointestinal Juice | ||
2 h | 3 h | |||
L1 | 27 ± 0.67 n | 38 ± 0.06 a | 28 ± 0.41 fg | 17 ± 0.23 h |
L2 | 215 ± 0.17 b | 44 ± 0.07 a | 10 ± 0.02 i | 7 ± 0.06 j |
L3 | 171 ± 0.49 c | 68 ± 0.03 cd | 60 ± 0.19 c | 54 ± 0.14 e |
L4 | 16 ± 0.20 p | 37 ± 0.01 a | 28 ± 0.25 fg | 11 ± 0.31 ij |
L5 | 99 ± 0.57 f | 36 ± 0.08 a | 32 ± 0.14 ef | 19 ± 0.18 gh |
L6 | 81 ± 0.24 h | 45 ± 0.01 a | 37 ± 0.60 de | 28 ± 0.45 f |
L7 | 72 ± 0.31 i | 39 ± 0.04 a | 40 ± 0.07 d | 29 ± 0.46 f |
L8 | 14 ± 0.36 q | 40 ± 0.03 a | 32 ± 0.33 ef | 16 ± 0.27 hi |
L9 | 61 ± 0.09 k | 41 ± 0.05 a | 21 ± 0.05 h | 9 ± 0.58 j |
L10 | 86 ± 0.66 g | 80 ± 0.06 d | 86 ± 0.52 a | 78 ± 0.11 a |
L11 | 50 ± 0.57 m | 44 ± 0.07 a | 30 ± 0.04 fg | 24 ± 0.04 fg |
L12 | 59 ± 0.33 l | 59 ± 0.16 bc | 64 ± 0.31 c | 50 ± 0.16 e |
L13 | 87 ± 0.25 g | 56 ± 0.04 bc | 62 ± 0.62 c | 50 ± 0.87 e |
L14 | 64 ± 0.18 j | 115 ± 0.19 e | 75 ± 0.09 b | 55 ± 0.11 de |
L15 | 22 ± 0.32 o | 60 ± 0.22 bc | 24 ± 0.39 gh | 8 ± 0.77 j |
L16 | 120 ± 0.32 e | 64 ± 0.10 c | 76 ± 0.15 b | 60 ± 0.80 cd |
L17 | 131 ± 0.45 d | 74 ± 0.08 cd | 84 ± 0.78 a | 65 ± 1.11 bc |
L18 | 245 ± 0.28 a | 75 ± 0.03 cd | 83 ± 0.29 a | 70 ± 0.56 b |
Strains | Hydrophobicity (%) | Aggregation (%) | |||||
---|---|---|---|---|---|---|---|
Xylene | Hexadecane | Auto- Aggregation (%) | Co-Aggregation (%) | ||||
L. monocytogenes | S. aureus | E. coli | S. typhimurium | ||||
L3 | 20 ± 0.23 c | 23 ± 0.33 d | 21 ± 0.54 e | 6.65 ± 0.08 e | 7.08 ± 0.04 e | 6.18 ± 0.05 d | 6.22 ± 0.05 e |
L10 | 42 ± 0.07 a | 39 ± 0.10 a | 39 ± 0.56 a | 18.13 ± 0.09 a | 10.40 ± 0.21 a | 16.23 ± 0.33 a | 9.77 ± 0.02 a |
L12 | 24 ± 0.45 c | 20 ± 1.08 d | 19 ± 0.38 f | 8.74 ± 0.03 c | 9.76 ± 0.02 b | 8.11 ± 0.02 c | 9.75 ± 0.03 a |
L13 | 32 ± 0.62 b | 30 ± 0.05 c | 26 ± 0.51 c | 3.41 ± 0.04 g | 3.28 ± 0.04 g | 3.39 ± 0.12 f | 2.39 ± 0.02 g |
L14 | 21 ± 0.16 c | 14 ± 0.44 e | 15 ± 0.29 g | 11.04 ± 0.03 b | 9.94 ± 0.02 b | 10.47 ± 0.26 b | 9.57 ± 0.05 b |
L16 | 20 ± 0.15 c | 31 ± 0.97 bc | 23 ± 0.31 d | 4.69 ± 0.15 f | 5.25 ± 0.04 f | 4.60 ± 0.17 e | 4.38 ± 0.01 f |
L17 | 21 ± 0.38 c | 19 ± 0.08 d | 21 ± 0.34 ef | 7.94 ± 0.03 d | 7.44 ± 0.03 d | 7.85 ± 0.03 c | 7.12 ± 0.02 d |
L18 | 30 ± 0.74 b | 35 ± 1.31 ab | 33 ± 0.25 b | 8.66 ± 0.03 c | 8.12 ± 0.06 c | 8.28 ± 0.01 c | 7.92 ± 0.03 c |
Strains | Inhibition Zone Diameter (mm) | ||||
---|---|---|---|---|---|
G+ Bacteria | G− Bacteria | ||||
B. cereus | E. faecium | L. monocytogens | S. aureus | E. coli | |
L3 | 5.34 ± 0.10 d | 5.21 ± 0.22 d | 10.02 ± 0.12 d | 17.97 ± 0.04 e | 14.72 ± 0.13 f |
L10 | 10.12 ± 0.11 a | 10.25 ± 0.13 a | 15.01 ± 0.23 a | 26.40 ± 0.21 a | 23.65 ± 0.10 a |
L12 | 3.87 ± 0.23 e | 3.85 ± 0.35 e | 10.30 ± 0.19 d | 17.75 ± 0.07 e | 18.57 ± 0.03 d |
L13 | 2.88 ± 0.18 f | 2.98 ± 0.26 f | 10.39 ± 0.27 d | 16.48 ± 0.04 f | 13.55 ± 0.06 g |
L14 | 8.24 ± 0.02 b | 8.03± 0.19 b | 13.03 ± 0.22 b | 20.52 ± 0.16 c | 20.19 ± 0.02 c |
L16 | 6.36 ± 0.16 c | 6.55 ± 0.50 c | 11.47 ± 0.20 c | 19.74 ± 0.04 d | 18.48 ± 0.02 d |
L17 | 1.43 ± 0.14 g | 2.91 ± 0.49 f | 13.83 ± 0.15 b | 15.26 ± 0.01 g | 15.56 ± 0.02 e |
L18 | 6.28 ± 0.47 c | 6.69 ± 0.27 c | 10.22 ± 0.05 d | 24.46 ± 0.01 b | 22.71 ± 0.01 b |
Antibiotics | Strains | |||||||
---|---|---|---|---|---|---|---|---|
L3 | L10 | L12 | L13 | L14 | L16 | L17 | L18 | |
Penicillin | S a | S | S | S | S | S | S | S |
Ampicillin | S | S | S | S | S | S | S | S |
Cefotaxime | S | S | S | S | S | S | S | S |
Erythromycin | S | S | R | S | S | S | S | S |
Chloramphenicol | R b | S | R | S | S | S | S | R |
Tetracycline | S | R | S | S | S | S | S | R |
Strains | Accession No. | The Most Similar Sequence (Accession No.) | Similarity (%) |
---|---|---|---|
L10 | MN267485 | Levilactobacillus brevis (MT604645) | 99.93 |
L14 | MN267486 | Levilactobacillus brevis (MT604645) | 100 |
L16 | MN267487 | Levilactobacillus brevis (MT613460) | 100 |
L17 | MN267488 | Levilactobacillus brevis (MN267488) | 100 |
L18 | MN267489 | Levilactobacillus brevis (MT515953) | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Liu, J.; Cai, J.; Fan, S. Functional Characteristics of Lactic Acid Bacteria In Vitro Isolated from Spontaneously Fermented Sour Porridge with Broomcorn Millet in Northwestern Shanxi Province of China. Foods 2022, 11, 2353. https://doi.org/10.3390/foods11152353
Wang Q, Liu J, Cai J, Fan S. Functional Characteristics of Lactic Acid Bacteria In Vitro Isolated from Spontaneously Fermented Sour Porridge with Broomcorn Millet in Northwestern Shanxi Province of China. Foods. 2022; 11(15):2353. https://doi.org/10.3390/foods11152353
Chicago/Turabian StyleWang, Qi, Jiaqin Liu, Jin Cai, and Sanhong Fan. 2022. "Functional Characteristics of Lactic Acid Bacteria In Vitro Isolated from Spontaneously Fermented Sour Porridge with Broomcorn Millet in Northwestern Shanxi Province of China" Foods 11, no. 15: 2353. https://doi.org/10.3390/foods11152353
APA StyleWang, Q., Liu, J., Cai, J., & Fan, S. (2022). Functional Characteristics of Lactic Acid Bacteria In Vitro Isolated from Spontaneously Fermented Sour Porridge with Broomcorn Millet in Northwestern Shanxi Province of China. Foods, 11(15), 2353. https://doi.org/10.3390/foods11152353