Antimicrobial Effect of Simira ecuadorensis Extracts and Their Impact on Improving Shelf Life in Chicken and Fish Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Plant Material
2.1.2. Extracts
2.2. Experimental Scheme
2.3. Antimicrobial Activity “In Vitro”
2.3.1. Microbial Species
2.3.2. Determination of Antimicrobial Activity
2.4. Challenge Test
2.4.1. Inoculum Preparation
2.4.2. Chicken and Fish Products
2.4.3. Microbiological Analysis
2.4.4. pH Determination
2.5. Statistical Analysis
3. Results and Discussion
3.1. Antimicrobial Activity
3.2. Effect of Spray-Dried Extract on Microbial Growth in Chicken Burgers during Storage
3.3. Effect of Spray-Dried Extract on Microbial Growth in Chicken Broth during Storage
3.4. Effect of Ethanol-Water Extract on Microbial Growth in Fish Burgers during Storage
3.5. Effect of Extract on Microbial Growth in Broth during Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jørgensen, P.M.; León-Yánez, S. Catalogue of the Vascular Plants of Ecuador; Missouri Botanical Garden Press: St. Louis, MO, USA, 1999; pp. 1–1182. [Google Scholar]
- WHO. Research Guidelines for Evaluating the Safety and Efficacy of Herbal Medicines; WHO Regional Office for the Western Pacific: Manila, Philippines, 1992; Available online: https://apps.who.int/iris/handle/10665/207008 (accessed on 29 June 2022).
- Tene, V.; Malagón, O.; Finzi, P.V.; Vidari, G.; Armijos, C.; Zaragoza, T. An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. J. Ethnopharmacol. 2007, 111, 63–81. [Google Scholar] [CrossRef]
- Arjabi, A.; Anarjan, N.; Jafarizadeh-Malmiri, H. Effects of extracting solvent composition on antioxidant and antibacterial activities of Alhagi maurorum extracts. J. Food Process Preserv. 2021, 45, e15300. [Google Scholar] [CrossRef]
- Armijos, C.P.; Guamán Balcázar, M.D.C.; Suarez, A.I. Antioxidant properties of medicinal plants used in the Southern Ecuador. J. Pharm. Phytochem. 2018, 1, 2803–2812. [Google Scholar]
- Zhang, X.; Li, D.; Meng, Q.; He, C.; Ren, L. Effect of Mulberry Leaf Extracts on Color, Lipid Oxidation, Antioxidant Enzyme Activities and Oxidative Breakdown Products of Raw Ground Beef During Refrigerated Storage. J. Food Qual. 2016, 39, 159–170. [Google Scholar] [CrossRef]
- Tamkutė, L.; Gil, B.M.; Carballido, J.R.; Pukalskienė, M.; Venskutonis, P.R. Effect of cranberry pomace extracts isolated by pressurized ethanol and water on the inhibition of food pathogenic/spoilage bacteria and the quality of pork products. Food Res. Int. 2019, 120, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Bondi, M.; Lauková, A.; de Niederhausern, S.; Messi, P.; Papadopoulou, C. Natural Preservatives to Improve Food Quality and Safety. J. Food Qual. 2017, 2017, 1090932. [Google Scholar] [CrossRef] [Green Version]
- Bouarab Chibane, L.; Degraeve, P.; Ferhout, H.; Bouajila, J.; Oulahal, N. Plant antimicrobial polyphenols as potential natural food preservatives. J. Sci. Food Agric. 2019, 99, 1457–1474. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Ramella, M.; Lorenzo, J.; Zamuz, S.; Valdés, M.E.; Moreno, D.; Balcázar, M.C.G.; Fernández-Arias, J.M.; Reyes, J.F.; Franco, D.J.A. The Antioxidant Effect of Colombian Berry (Vaccinium meridionale Sw.) Extracts to Prevent Lipid Oxidation during Pork Patties Shelf-Life. Antioxidants 2021, 10, 1290. [Google Scholar] [CrossRef]
- Gottardi, D.; Bukvicki, D.; Prasad, S.; Tyagi, A.K. Beneficial Effects of Spices in Food Preservation and Safety. Front. Microbiol. 2016, 7, 1394. [Google Scholar] [CrossRef] [Green Version]
- Aguirre Mendoza, Z.; Geada-Lopez, G. Estado de conservación de los bosques secos de la provincia de Loja, Ecuador. Arnaldoa 2017, 24, 207–228. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, Z. Especies Forestales De Los Bosques Secos De Ecuador. In Guía Dendrológica Para Su Identificación Y Caracterización. Proyecto Manejo Forestal Sostenible Ante El Cambio Climático; MAE/FAO-Finlandia: Quito, Ecuador, 2012; pp. p.140. [Google Scholar]
- Da Cruz Cabral, L.; Fernández Pinto, V.; Patriarca, A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int. J. Food Microbiol. 2013, 166, 1–14. [Google Scholar] [CrossRef]
- Rondón, M.; Moncayo, S.; Cornejo, X.; Santos, J.; Villalta, D.; Siguencia, R.; Duche, J. Preliminary phytochemical screening, total phenolic content and antibacterial activity of thirteen native species from Guayas province Ecuador. J. King Saud Univ. Sci. 2017, 30, 500–505. [Google Scholar] [CrossRef]
- Mayekar, V.M.; Ali, A.; Alim, H.; Patel, N. A review: Antimicrobial activity of the medicinal spice plants to cure human disease. Plant Sci. Today 2021, 8, 629–646. [Google Scholar] [CrossRef]
- Miranda, J.M.; Zhang, B.; Barros-Velázquez, J.; Aubourg, S.P. Preservative Effect of Aqueous and Ethanolic Extracts of the Macroalga Bifurcaria bifurcata on the Quality of Chilled Hake (Merluccius merluccius). Molecules 2021, 26, 3774. [Google Scholar] [CrossRef] [PubMed]
- Elez Garofulić, I.; Malin, V.; Repajić, M.; Zorić, Z.; Pedisić, S.; Sterniša, M.; Smole Možina, S.; Dragović-Uzelac, V. Phenolic Profile, Antioxidant Capacity and Antimicrobial Activity of Nettle Leaves Extracts Obtained by Advanced Extraction Techniques. Molecules 2021, 26, 6153. [Google Scholar] [CrossRef] [PubMed]
- Sterniša, M.; Bucar, F.; Kunert, O.; Smole Možina, S. Targeting fish spoilers Pseudomonas and Shewanella with oregano and nettle extracts. Int. J. Food Microbiol. 2020, 328, 108664. [Google Scholar] [CrossRef]
- Moreira, V.; Vieira, I.; Braz-Filho, R. Chemical Constituents and Biological Activities of Simira Genus: A Contribution to the Chemotaxonomic of Rubiaceae Family. J. Nat. Prod. 2014, 4, 290–298. [Google Scholar] [CrossRef]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front Microbiol. 2019, 10, 290–298. [Google Scholar] [CrossRef]
- Tamokou, J.D.D.; Mbaveng, A.T.; Kuete, V. Chapter 8—Antimicrobial Activities of African Medicinal Spices and Vegetables. In Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 207–237. [Google Scholar]
- García-Sánchez, L.; Melero, B.; Jaime, I.; Rossi, M.; Ortega, I.; Rovira, J. Biofilm formation, virulence and antimicrobial resistance of different Campylobacter jejuni isolates from a poultry slaughterhouse. Food Microbiol. 2019, 83, 193–199. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Y.; Shen, J.; Zhang, Q.; Wu, C. Tracking Campylobacter contamination along a broiler chicken production chain from the farm level to retail in China. Int. J. Food Microbiol. 2014, 181, 77–84. [Google Scholar] [CrossRef]
- Melero, B.; Juntunen, P.; Hänninen, M.-L.; Jaime, I.; Rovira, J. Tracing Campylobacter jejuni strains along the poultry meat production chain from farm to retail by pulsed-field gel electrophoresis, and the antimicrobial resistance of isolates. Food Microbiol. 2012, 32, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Musthafa, K.S.; Sirirak, T.; Paosen, S.; Voravuthikunchai, S.P. Antimicrobial effect of Eleutherine americana bulb extract on the growth of Campylobacter jejuni in broiler meat. J. Food Meas. Charact. 2021, 15, 4112–4118. [Google Scholar] [CrossRef]
- WHO/FAO. Risk Assessment of Campylobacter spp. in Broiler Chickens. 2009. Available online: https://www.fao.org/3/a1469e/a1469e.pdf (accessed on 30 June 2022).
- Tamkutė, L.; Vaicekauskaitė, R.; Gil, B.M.; Rovira Carballido, J.; Venskutonis, P.R. Black chokeberry (Aronia melanocarpa L.) pomace extracts inhibit food pathogenic and spoilage bacteria and increase the microbiological safety of pork products. J. Food Process Preserv. 2021, 45, e15220. [Google Scholar] [CrossRef]
- Piskernik, S.; Klančnik, A.; Riedel, C.T.; Brøndsted, L.; Možina, S.S. Reduction of Campylobacter jejuni by natural antimicrobials in chicken meat-related conditions. Food Control 2011, 22, 718–724. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.J. Observations on the succession dynamics of lactic acid bacteria populations in chill-stored vacuum-packaged beef. Int. J. Food Microbiol. 2004, 90, 273–282. [Google Scholar] [CrossRef]
- Kryževičūtė, N.; Jaime, I.; Diez, A.M.; Rovira, J.; Venskutonis, P.R. Effect of raspberry pomace extracts isolated by high pressure extraction on the quality and shelf-life of beef burgers. Int. J. Food Sci. Technol. 2017, 52, 1852–1861. [Google Scholar] [CrossRef]
- Albertos, I.; Rico, D.; Diez, A.M.; González-Arnáiz, L.; García-Casas, M.J.; Jaime, I. Effect of edible chitosan/clove oil films and high-pressure processing on the microbiological shelf life of trout fillets. J. Sci. Food Agric. 2015, 95, 2858–2865. [Google Scholar] [CrossRef]
- Arancibia, H.; Pitcher, T.; Livingston, M. An overview of hake and hoki fisheries: Analysis of biological, fishery and economic indicators. In Hakes: Biology and Exploitation; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 324–340. [Google Scholar]
- Schelegueda, L.I.; Delcarlo, S.B.; Gliemmo, M.F.; Campos, C.A. Effect of antimicrobial mixtures and modified atmosphere packaging on the quality of Argentine hake (Merluccius hubbsi) burgers. LWT Food Sci. Technol. 2016, 68, 258–264. [Google Scholar] [CrossRef]
- Satomi, M.; Vogel, B.F.; Venkateswaran, K.; Gram, L. Description of Shewanella glacialipiscicola sp. nov. and Shewanella algidipiscicola sp. nov., isolated from marine fish of the Danish Baltic Sea, and proposal that Shewanella affinis is a later heterotypic synonym of Shewanella colwelliana. Int. J. Syst. Evol. Microbiol. 2007, 57, 347–352. [Google Scholar] [CrossRef]
- Wright, M.H.; Matthews, B.; Arnold, M.S.J.; Greene, A.C.; Cock, I.E. The prevention of fish spoilage by high antioxidant Australian culinary plants: Shewanella putrefaciens growth inhibition. Int. J. Food Sci. Technol. 2016, 51, 801–813. [Google Scholar] [CrossRef]
- Wright, M.H.; Shalom, J.; Matthews, B.; Greene, A.C.; Cock, I.E. Terminalia ferdinandiana Exell: Extracts inhibit Shewanella spp. growth and prevent fish spoilage. Food Microbiol. 2019, 78, 114–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Estaca, J.; López de Lacey, A.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, P. Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 2010, 27, 889–896. [Google Scholar] [CrossRef]
- Albertos, I.; Jaime, I.; Diez, A.M.; González-Arnáiz, L.; Rico, D. Carob seed peel as natural antioxidant in minced and refrigerated (4 °C) Atlantic horse mackerel (Trachurus trachurus). LWT Food Sci. Technol. 2015, 64, 650–656. [Google Scholar] [CrossRef]
- Lahreche, T.; Ucar, Y.; Kosker, A.; Hamdi, T.; Ozogul, F. Combined impacts of oregano extract and vacuum packaging on the quality changes of frigate tuna muscles stored at 3 ± 1 °C. Vet. World 2019, 12, 155–164. [Google Scholar] [CrossRef]
- Apang, T.; Xavier, K.A.M.; Lekshmi, M.; Kannuchamy, N.; Layana, P.; Balange, A.K. Garcinia spp. extract incorporated icing medium as a natural preservative for shelf life enhancement of chilled Indian mackerel (Rastrelliger kanagurta). LWT J. Food Sci. Technol. 2020, 133, 110086. [Google Scholar] [CrossRef]
- Bensid, A.; Ucar, Y.; Bendeddouche, B.; Özogul, F. Effect of the icing with thyme, oregano and clove extracts on quality parameters of gutted and beheaded anchovy (Engraulis encrasicholus) during chilled storage. Food Chem. 2014, 145, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Carrión-Granda, X.; Fernández-Pan, I.; Rovira, J.; Maté, J.I. Effect of Antimicrobial Edible Coatings and Modified Atmosphere Packaging on the Microbiological Quality of Cold Stored Hake (Merluccius merluccius) Fillets. J. Food Qual. 2018, 2018, 1–12. [Google Scholar] [CrossRef] [Green Version]
Microorganism | Bacterial Strain | Gram | Incubation Temperature (°C) | Broth | Test Agar |
---|---|---|---|---|---|
Salmonella enterica subsp. Enterica | HUBU-UBU 72732 | - | 37 | TSB | Muller Hinton |
Escherichia coli | CECT 501 | - | 37 | BHI | Muller Hinton |
Shigella sonnei | CECT 457 | - | 37 | TSB | Muller Hinton |
Yersinia enterocolitica | CECT 559 | - | 37 | TSB | Muller Hinton |
Vibrio alginolyticus | CECT 521 | - | 30 | Nutrient broth + 2% NaCl | Nutrient agar + 2% NaCl |
Campylobacter jejuni | CECT7572 | - | 42 | BHI | Nutrient+ 0.5% blood |
Clostridium perfringens | CECT 376 | + | 42 | BHI | Nutrient + 0.5% blood |
Staphylococcus aureus | CECT 30 | + | 37 | BHI | Muller Hinton |
Listeria monocytogenes | ILSI-4 | + | 37 | BHI | Muller Hinton |
Listeria innocua | CECT 910 | + | 37 | BHI | Muller Hinton |
Bacillus cereus | CECT 148 | + | 30 | BHI | Muller Hinton |
Enterococcus faecalis | CECT 481 | + | 37 | BHI | Nutrient + 0.5% blood |
Brochothrix thermosphacta | CECT 847 | + | 26 | TSB + Lev0.6% | Muller Hinton |
Leuconostoc mesenteroides | CECT 394 | + | 30 | MRS | MRS |
Weissella viridescens | CECT 283 | + | 30 | MRS | MRS |
Pseudomonas putida | CECT 3241 | - | 30 | TSB | Muller Hinton |
Pseudomonas fluorescens | CECT 378 | - | 30 | TSB | Muller Hinton |
Aeromona caviae | CECT 838 | - | 30 | TSB | Muller Hinton |
Shewanella putrefaciens | CECT 5346 | - | 30 | TSB | Muller Hinton |
Shewanella sp. | CECT 4640 | - | 30 | TSB | Muller Hinton |
Microorganism | Extracts *** | ||||
---|---|---|---|---|---|
ETOH | H2O | ETOH-H2O | ATOM | Positive Control * | |
Bacillus cereus | 11.0 ** | ni | ni | ni | 18.0 |
Staphylococcus aureus | ni | ni | ni | ni | 15.0 |
Escherichia coli | ni | ni | ni | ni | 15.0 |
Listeria monocytogenes | ni | ni | ni | ni | 17.0 |
Listeria innocua | ni | ni | ni | ni | 14.0 |
Salmonella enterica | ni | ni | ni | ni | 14.0 |
Shigella sonnei | ni | ni | ni | ni | 13.0 |
Yersinia enterocolitica | 12.0 | ni | ni | ni | 16.0 |
Brochothrix thermophacta | ni | ni | ni | ni | 17.0 |
Pseudomonas putida | ni | ni | ni | ni | 19.0 |
Pseudomonas fluorescens | ni | ni | ni | ni | 17.0 |
Aeromona caviae | ni | ni | ni | ni | 19.0 |
Shewanella putrefaciens | 8.0 | 12.0 | 12.0 | 8.0 | 36.0 |
Shewanella sp. | 16.0 | ni | ni | ni | 29.0 |
Clostridium perfringens | 12.0 | ni | ni | ni | 10.0 |
Campylobacter jejuni | 10.0 | 18.0 | 10.0 | 10.0 | 17.0 |
Vibrio alginolyticus | ni | ni | ni | ni | 14.0 |
Enterococcus faecalis | ni | ni | ni | ni | 9.0 |
Leuconostoc mesenteroides | 9.0 | 8.0 | 8.0 | ni | 19.0 |
Weissella viridescens | ni | ni | ni | ni | 16.0 |
Extracts ** | ||||
---|---|---|---|---|
Microorganism | ETOH | H2O | ETOH-H2O | ATOM |
Shewanella putrefaciens | 80 * | 80 | 80 | 80 |
Shewanella sp. | 40 | _ | _ | _ |
Campylobacter jejuni | 80 | 80 | 80 | 80 |
Leuconostoc mesenteroides | 80 | 80 | 40 | |
Yersinia enterocolitica | 20 | _ | _ | _ |
Bacillus cereus | 20 | __ | _ | _ |
Clostridium perfringens | 20 | _ | _ | _ |
Sample | C | E | J | EJ | |
---|---|---|---|---|---|
Days | 0 | 4.9 ± 0.07 D | --- | --- | --- |
1 | 5.7 ± 0.10 bC | 5.2 ± 0.08 cC | 6.3 ± 0.04 AC | 4.6 ± 0.21 dC | |
4 | 8.2 ± 0.14 aB | 7.1 ± 0.45 bB | 8.5 ± 0.13 aB | 6.3 ± 0.35 bB | |
7 | 8.7 ± 0.11 aA | 8.6 ± 0.26 abA | 8.7 ± 0.12 abA | 8.3 ± 0.19 bA | |
10 | 8.9 ± 0.15 aA | 8.8 ± 0.05 aA | 8.8 ± 0.05 aA | 8.6 ± 0.18 aA |
Sample | J | EJ | |
---|---|---|---|
Days | 1 | 4.5 ± 0.22 aA | 4.3 ± 0.30 aA |
4 | 4.6 ± 0.19 aA | 4.5 ± 0.15 aA | |
7 | 4.0 ± 0.09 aB | 3.8 ± 0.51 aAB | |
10 | 3.3 ± 0.18 aC | 3.3 ± 0.20 aB |
Sample | C | E | J | EJ | |
---|---|---|---|---|---|
Days | 0 | 5.92 ± 0.01 B | --- | --- | --- |
1 | 5.95 ± 0.02 abB | 5.91 ± 0.02 bC | 5.99 ± 0.01 aB | 5.79 ± 0.01 cA | |
4 | 6.33 ± 0.01 aA | 6.32 ± 0.03 aA | 5.78 ± 0.01 bC | 5.75 ± 0.01 bA | |
7 | 6.31 ± 0.01 aA | 6.02 ± 0.13 bB | 6.08 ± 0.01 bcA | 4.97 ± 0.03 cB | |
10 | 6.35 ± 0.02 aA | 5.73 ± 0.01 cC | 5.97 ± 0.01 bB | 4.83 ± 0.03 dC |
Sample | E | EJ | |
---|---|---|---|
Days | 0 | --- | --- |
1 | 3.76 ± 0.25 aE | 3.65 ± 0.14 aG | |
4 | 4.68 ± 0.57 aE | 5.43 ± 0.16 aEF | |
7 | 8.02 ± 0.13 aAB | 8.02 ± 0.13 aBC | |
10 | 9.04 ± 0.04 aA | 9.20 ± 0.09 aA | |
14 | 9.12 ± 0.05 aA | 8.89 ± 0.02 bAB | |
29 | 4.86 ± 0.99 aDE | 4.90 ± 0.32 aF | |
52 | 6.30 ± 0.93 aCD | 6.59 ± 0.19 aDE | |
67 | 6.98 ± 0.15 aBC | 6.42 ± 1.12 aDE | |
85 | 6.71 ± 0.33 bBC | 7.31 ± 0.23 aCD |
Sample | J | EJ | |
---|---|---|---|
Days | 1 | 3.65 ± 0.05 A | 2.57 ± 0.05 |
4 | 3.43 ± 0.47 AB | ND | |
7 | 3.43 ± 0.47 AB | ND | |
10 | 2.99 ± 0.02 B | ND | |
14 | 2.79 ± 0.28 B | ND | |
29 | 2.00 ± 0.31 C | ND | |
52 | ND | ND | |
67 | ND | ND | |
85 | ND | ND |
Sample | C | E | S | ES | |
---|---|---|---|---|---|
Days | 0 | 4.1 ± 0.20 D | --- | --- | --- |
1 | 3.9 ± 0.50 aD | 4.1 ± 0.30 aC | 4.4 ± 0.20 aD | 3.8 ± 0.2 aD | |
3 | 4.5 ± 0.10 bD | 4.6 ± 0.12 bC | 5.6 ± 0.12 aC | 3.9 ± 0.15 cD | |
7 | 5.9 ± 0.06 bC | 4.4 ± 0.13 dC | 8.3 ± 0.15 aB | 4.9 ± 0.1 cC | |
9 | 7.1 ± 0.10 bB | 5.8 ± 0.16 cB | 9.3 ± 0.13 aA | 5.8 ± 0.21 cB | |
14 | 8.2 ± 0.13 aA | 7.8 ± 0.22 aA | 8.3 ± 0.27 aB | 7.9 ± 0.45 aA |
Sample | S | ES | |
---|---|---|---|
Days | 1 | 3.9 ± 0.08 aD | 3.0 ± 0.30 bC |
3 | 5.2 ± 0.27 aC | 3.1 ± 0.43 bC | |
7 | 8.3 ± 0.06 aB | 4.4 ± 0.23 bB | |
9 | 9.2 ± 0.08 aA | 5.3 ± 0.39 bB | |
14 | 8.4 ± 0.10 aB | 7.2 ± 0.45 bA |
Sample | C | E | S | ES | |
---|---|---|---|---|---|
Days | 0 | 6.69 ± 0.01 A | --- | --- | --- |
1 | 6.55 ± 0.01 aBC | 6.40 ± 0.00 bA | 6.56 ± 0.03 aB | 6.36 ± 0.06 bA | |
3 | 6.57 ± 0.01 aB | 6.35 ± 0.01 cAB | 6.51 ± 0.01 bB | 6.29 ± 0.00 dA | |
7 | 6.57 ± 0.05 aB | 6.36 ± 0.03 bAB | 6.58 ± 0.04 aB | 6.31 ± 0.01 bA | |
9 | 6.45 ± 0.03 bCD | 6.29 ± 0.03 cBC | 6.92 ± 0.04 aA | 6.28 ± 0.01 cA | |
14 | 6.39 ± 0.01 bD | 6.26 ± 0.00 bC | 6.89 ± 0.08 aA | 6.25 ± 0.01 bA |
Sample | C | E | S | ES | |
---|---|---|---|---|---|
Days | 0 | ND | --- | --- | --- |
1 | ND | 2.92 ± 0.10 bC | 3.50 ± 0.21 aF | 2.96 ± 0.05 bAB | |
3 | ND | 2.94 ± 0.11 bC | 6.92 ± 0.14 aE | 2.55 ± 0.48 bB | |
7 | ND | 2.94 ± 0.12 bC | 8.98 ± 0.03 aBC | 2.81 ± 0.29 bAB | |
14 | ND | 2.79 ± 0.19 bC | 8.79 ± 0.08 aBCD | 2.84 ± 0.13 bAB | |
21 | ND | 2.70 ± 0.34 bC | 8.83 ± 0.24 aBCD | 3.00 ± 0.08 bAB | |
28 | ND | 2.68 ± 0.26 bC | 8.50 ± 0.25 aCD | 2.89 ± 0.13 bAB | |
38 | ND | 2.85 ± 0.09 bC | 9.06 ± 0.02 aB | 2.91 ± 0.24 bB | |
44 | ND | 2.90 ± 0.11 bC | 8.97 ± 0.08 aBC | 2.91 ± 0.40 bAB | |
65 | ND | 3.55 ± 0.10 bB | 9.30 ± 0.16 aAB | 3.37 ± 0.26 bAB | |
72 | ND | 3.12 ± 0.13 bBC | 9.67 ± 0.25 aA | 3.18 ± 0.10 bAB | |
84 | ND | 2.77 ± 0.25 bC | 8.83 ± 0.13 aBCD | 3.08 ± 0.19 bAB | |
104 | ND | 4.31 ± 0.38 bA | 8.97 ± 0.34 aBC | 3.75 ± 0.82 bA | |
131 | ND | 2.85 ± 0.07 bC | 8.33 ± 0.14 aD | 2.94 ± 0.05 bAB |
Sample | S | ES | |
---|---|---|---|
Days | 0 | --- | --- |
1 | 3.42 ± 0.42 aF | 2.21 ± 0.09 bA | |
3 | 6.97 ± 0.06 aE | ND | |
7 | 9.15 ± 0.15 aBC | 2.08 ± 0.04 bA | |
14 | 8.75 ± 0.08 aBCD | 1.63 ± 0.15 bCD | |
21 | 8.76 ± 0.05 aBCD | 1.15 ± 0.15 bE | |
28 | 8.40 ± 0.37 aCD | 1.66 ± 0.18 bBCD | |
38 | 8.81 ± 0.13 aBC | ND | |
44 | 8.86 ± 0.04 aBC | 2.24 ± 0.06 bA | |
65 | 9.23 ± 0.09 aAB | 1.90 ± 0.3 bABC | |
72 | 9.72 ± 0.17 a | 2.06 ± 0.1 bAB | |
84 | 8.92 ± 0.12 aBCD | 2.06 ± 0.15 bA | |
104 | 8.56 ± 0.02 aBC | 1.42 ± 0.10 bDE | |
131 | 8.29 ± 0.10 aD | 1.63 ± 0.2 bCD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes, J.F.; Diez, A.M.; Melero, B.; Rovira, J.; Jaime, I. Antimicrobial Effect of Simira ecuadorensis Extracts and Their Impact on Improving Shelf Life in Chicken and Fish Products. Foods 2022, 11, 2352. https://doi.org/10.3390/foods11152352
Reyes JF, Diez AM, Melero B, Rovira J, Jaime I. Antimicrobial Effect of Simira ecuadorensis Extracts and Their Impact on Improving Shelf Life in Chicken and Fish Products. Foods. 2022; 11(15):2352. https://doi.org/10.3390/foods11152352
Chicago/Turabian StyleReyes, Jorge F., Ana M. Diez, Beatriz Melero, Jordi Rovira, and Isabel Jaime. 2022. "Antimicrobial Effect of Simira ecuadorensis Extracts and Their Impact on Improving Shelf Life in Chicken and Fish Products" Foods 11, no. 15: 2352. https://doi.org/10.3390/foods11152352
APA StyleReyes, J. F., Diez, A. M., Melero, B., Rovira, J., & Jaime, I. (2022). Antimicrobial Effect of Simira ecuadorensis Extracts and Their Impact on Improving Shelf Life in Chicken and Fish Products. Foods, 11(15), 2352. https://doi.org/10.3390/foods11152352