Effect of Total Replacement of Soya Bean Meal by Whole Lupine Seeds and of Gender on the Meat Quality and Fatty Acids Profile of Growing Rabbits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Experimental Diets
2.3. Slaughter, Measurements, and Samples Collection
2.4. Chemical Analyses
2.5. Calculations
C20: 5n − 3 + C22: 5n − 3 + C22: 6n − 3)/(C14:0 + C16:0)
- Yij = dependant variable;
- µ = general mean;
- Di = fixed effect of diet (i = 1,2,3);
- Gj = fixed effect of gender (j = 1,2);
- DiGj = interaction effect between diet and gender; and
- eijk = residual random error.
3. Results
3.1. Carcass Characteristics
3.2. Meat Quality and Fatty Acid Profile
4. Discussion
4.1. Carcass Characteristics
4.2. Meat Quality and Fatty Acids Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antongiovanni, M.; Acciaioli, A.; Franci, O.; Ponzetta, M.P.; Pugliese, C.; Buccioni, A.; Badii, M. Field bean (Vicia faba var. minor) as a protein feed for growing lambs with and without protected lysine and methionine supplementation. Ital. J. Anim. Sci. 2002, 1, 229–238. [Google Scholar]
- Almeida, M.; Garcia-Santos, S.; Nunes, A.; Rito, S.; Azevedo, J.; Guedes, C.; Silva, S.; Ferreira, L. Introducing mediterranean lupins in lambs’ diets: Effects on growth and digestibility. Animals 2021, 11, 942. [Google Scholar] [CrossRef] [PubMed]
- Lanza, M.; Bella, M.; Priolo, A.; Fasone, V. Peas (Pisum sativum L.) as an alternative protein source in lamb diets: Growth performances, and carcass and meat quality. Small Rumin. Res. 2003, 47, 63–68. [Google Scholar] [CrossRef]
- Kasprowicz-Potocka, M.; Zaworska, A.; Kaczmarek, S.; Hejdysz, M.; Mikuła, R.; Rutkowski, A. The effect of Lupinus albus seeds on digestibility, performance and gastrointestinal tract indices in pigs. J. Anim. Physiol. Anim. Nutr. 2017, 101, e216–e224. [Google Scholar] [CrossRef] [PubMed]
- Degola, L.; Jonkus, D. The influence of dietary inclusion of peas, faba bean and lupin as a replacement for soybean meal on pig performance and carcass traits. Agron. Res. 2018, 16, 389–397. [Google Scholar]
- Smith, L.A.; Houdijk, J.G.M.; Homer, D.; Kyriazakis, I. Effects of dietary inclusion of pea and faba bean as a replacement for soybean meal on grower and finisher pig performance and carcass quality. J. Anim. Sci. 2013, 91, 3733–3741. [Google Scholar] [CrossRef] [Green Version]
- Hejdysz, M.; Kaczmarek, S.A.; Kubiś, M.; Adamski, M.; Perz, K.; Rutkowski, A. The effect of faba bean extrusion on the growth performance, nutrient utilization, metabolizable energy, excretion of sialic acids and meat quality of broiler chickens. Animal 2019, 13, 1583–1590. [Google Scholar] [CrossRef]
- Biesek, J.; Kuźniacka, J.; Banaszak, M.; Kaczmarek, S.; Adamski, M.; Rutkowski, A.; Zmudzińska, A.; Perz, K.; Hejdysz, M. Growth performance and carcass quality in broiler chickens fed on legume seeds and rapeseed meal. Animals 2020, 10, 846. [Google Scholar] [CrossRef]
- Volek, Z.; Marounek, M. Whole white lupin (Lupinus albus cv. Amiga) seeds as a source of protein for growing-fattening rabbits. Anim. Feed Sci. Technol. 2009, 152, 322–329. [Google Scholar] [CrossRef]
- Zwoliński, C.; Gugołek, A.; Strychalski, J.; Kowalska, D.; Chwastowska-Siwiecka, I.; Konstantynowicz, M. The effect of substitution of soybean meal with a mixture of rapeseed meal, white lupin grain, and pea grain on performance indicators, nutrient digestibility, and nitrogen retention in Popielno White rabbits. J. Appl. Anim. Res. 2016, 45, 570–576. [Google Scholar] [CrossRef]
- Bou, R.; Navarro-Vozmediano, P.; Domínguez, R.; López-Gómez, M.; Pinent, M.; Ribas-Agustí, A.; Benedito, J.J.; Lorenzo, J.M.; Terra, X.; García-Pérez, J.V.; et al. Application of emerging technologies to obtain legume protein isolates with improved techno-functional properties and health effects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2200–2232. [Google Scholar] [CrossRef]
- Gresta, F.; Abbate, V.; Avola, G.; Magazzù, G.; Chiofalo, B. Lupin seed for the crop-livestock food chain. Ital. J. Agron. 2010, 5, 333–340. [Google Scholar] [CrossRef]
- Musco, N.; Cutrignelli, M.I.; Calabrò, S.; Tudisco, R.; Infascelli, F.; Grazioli, R.; Lo Presti, V.; Gresta, F.; Chiofalo, B. Comparison of nutritional and antinutritional traits among different species (Lupinus albus L., Lupinus luteus L., Lupinus angustifolius L.) and varieties of lupin seeds. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1227–1241. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.D.; Cheeke, P.R.; Patton, N.M. Evaluation of lupin (Lupinus albus) seed as a feedstuff for swine and rabbits. J. Appl. Rabbit Res. 1990, 13, 145–150. [Google Scholar]
- Volek, Z.; Marounek, M.; Volková, L.; Kudrnová, E. Effect of diets containing whole white lupin seeds on rabbit doe milk yield and milk fatty acid composition as well as the growth and health of their litters. J. Anim. Sci. 2014, 92, 2041–2049. [Google Scholar] [CrossRef] [Green Version]
- Uhlířová, L.; Volek, Z.; Marounek, M.; Tumová, E. Effect of feed restriction and different crude protein sources on the performance, health status and carcass traits of growing rabbits. World Rabbit Sci. 2015, 23, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Uhlířová, L.; Volek, Z. Effect of dehulled white lupine seeds on the milk production and milk composition in rabbit does and the growth performance of their litters before weaning. J. Anim. Feed Sci. 2019, 28, 291–297. [Google Scholar] [CrossRef]
- Garcia-Santos, S.; Almeida, M.; Closson, M.; Guedes, C.M.; Barros, A.; Ferreiraa, L.M.; Trindade, H.; Pinheiro, V. Effect of total replacement of the soya bean meal by lupine seeds (L. albus and L. luteus) on performance and digestion characteristics of growing rabbits. Anim. Feed Sci. Technol. 2021, 278, 114996. [Google Scholar] [CrossRef]
- Volek, Z.; Marounek, M. Effect of feeding growing–fattening rabbits a diet supplemented with whole white lupin (Lupinus albus cv. Amiga) seeds on fatty acid composition and indexes related to human health in hind leg meat and perirenal fat. Meat Sci. 2011, 87, 40–45. [Google Scholar] [CrossRef]
- Volek, Z.; Bureš, D.; Uhlířová, L. Effect of dietary dehulled white lupine seed supplementation on the growth, carcass traits and chemical, physical and sensory meat quality parameters of growing-fattening rabbits. Meat Sci. 2018, 141, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Gašperlin, L.; Polak, T.; Rajar, A.; SkvarÈa, M.; Zlender, B. Effect of genotype, age at slaughter and sex on chemical composition and sensory profile of rabbit meat. World Rabbit Sci. 2006, 14, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Polak, T.; Gašperlin, L.; Rajar, A.; Žlender, B. Influence of Genotype Lines, Age at Slaughter and Sexes on the Composition of Rabbit Meat. Available online: https://hrcak.srce.hr/109757 (accessed on 13 July 2022).
- Zotte, A.D.; Cullere, M.; Alberghini, L.; Catellani, P.; Paci, G. Proximate composition, fatty acid profile, and heme iron and cholesterol content of rabbit meat as affected by sire breed, season, parity order, and gender in an organic production system. Czech J. Anim. Sci. 2016, 61, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Decree-Law No. 1/2019 Amending Decree-Law No. 113/2013 Implementing EU Directive No. 2010/63 on Animal Protection for Scientific Purposes. Government of Portugal, 2019. Available online: http://www.fao.org/faolex/results/details/en/c/LEX-FAOC183382 (accessed on 8 June 2022).
- Fernández-Carmona, J.; Blas, E.; Pascual, J.J.; Maertens, L.; Gidenne, T.; Xiccato, G.; García, J. Recommendations and guidelines for applied nutrition experiments in rabbits. World Rabbit Sci. 2005, 13, 209–228. [Google Scholar] [CrossRef] [Green Version]
- De Blas, C.; Mateos, G.G. Feed formulation. In Nutrition of the Rabbit; De Blas, J.C., Wiseman, J., Eds.; CAB International: Oxfordshire, UK, 2010; pp. 222–232. ISBN 9781845936693. [Google Scholar]
- Blasco, A.; Ouhayoun, J. Harmonization of Criteria and Terminology in Rabbit Meat Research. Revised Proposal. World Rabbit Sci. 1993, 4, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Ouhayoun, J.; Dalle Zotte, A. Harmonization of Muscle and Meat Criteria in Rabbit Meat Research. World Rabbit Sci. 1996, 4, 211–218. [Google Scholar] [CrossRef] [Green Version]
- CIE (Commission Internationale de l’Éclairage). Recommendations on Uniform Color Spaces, Color Difference Equations, Psychometric Color Terms; Supplement No. 2 to CIE Publication No. 15. Colorimetry; Commission Internationale de L’éclairage: Paris, France, 1978. [Google Scholar]
- Official Methods of Analysis of AOAC International, Agricultural Chemicals, Contaminants, Drugs; AOAC International: Rockville, MD, USA, 2000; Volume 1, ISBN 0935584676.
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Irigoyen, J.J.; Einerich, D.W.; Sánchez-Díaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiol. Plant. 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Argemí-Armengol, I.; Villalba, D.; Tor, M.; Pérez-Santaescolástica, C.; Purriños, L.; Lorenzo, J.M.; Álvarez-Rodríguez, J. The extent to which genetics and lean grade affect fatty acid profiles and volatile compounds in organic pork. PeerJ 2019, 7, e7322. [Google Scholar] [CrossRef] [Green Version]
- Panth, N.; Abbott, K.A.; Dias, C.B.; Wynne, K.; Garg, M.L. Differential effects of medium- and long-chain saturated fatty acids on blood lipid profile: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 108, 675–687. [Google Scholar] [CrossRef]
- Domínguez, R.; Barba, F.J.; Centeno, J.A.; Putnik, P.; Alpas, H.; Lorenzo, J.M. Simple and rapid method for the simultaneous determination of cholesterol and retinol in meat using normal-phase HPLC technique. Food Anal. Methods 2018, 11, 319–326. [Google Scholar] [CrossRef]
- López-Fernández, O.; Domínguez, R.; Ruiz-Capillas, C.; Pateiro, M.; Sosa-Morales, M.E.; Munekata, P.E.S.; Sant’ana, A.D.S.; Lorenzo, J.M.; Herrero, A.M. Cholesterol. In Methods to Assess the Quality of Meat Products; Lorenzo, J.M., Domínguez, R., Pateiro, M., Munekata, P.E.S., Eds.; Springer Nature: New York, NY, USA, 2022; pp. 65–72. ISBN 978-1-0716-2001-4. [Google Scholar]
- López-Fernández, O.; Domínguez, R.; Santos, E.M.; Pateiro, M.; Munekata, P.E.S.; Campagnol, P.C.B.; Lorenzo, J.M. Comparison between HPLC-PAD and GC-MS Methods for the Quantification of Cholesterol in Meat. Food Anal. Methods 2022, 15, 1118–1131. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- SAS Institute Inc. JMP® 14; Version 14; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Hernández, J.A.O.; Lozano, M.S.R. Effect of Breed and Sex on Rabbit Carcass Yield and Meat Quality. World Rabbit Sci. 2010, 9, 51–56. [Google Scholar]
- Trocino, A.; Xiccato, G.; Queaque, P.I.; Sartori, A. Effect of transport duration and gender on rabbit carcass and meat quality. World Rabbit Sci. 2003, 11, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Yalçin, S.; Onbaşilar, E.E.; Onbaşilar, I. Effect of sex on carcass and meat characteristics of New Zealand white rabbits aged 11 weeks. Asian Australas. J. Anim. Sci. 2006, 19, 1212–1216. [Google Scholar] [CrossRef]
- Luzi, F.; Lazzaroni, C.; Barbieri, S.; Pianetta, M.; Cavani, C. Influence of type of rearing, slaughter age and sex on fattening rabbit: I—Production performance. In Proceedings of the 7th World Rabbit Congress, Valencia, Spain, 4–7 July 2000; pp. 613–619. [Google Scholar]
- Dalle Zotte, A. Main factors influencing the rabbit carcass and meat quality. In Proceedings of the 7th World Rabbit Congress, Valencia, Spain, 4–7 July 2000; pp. 507–537. [Google Scholar]
- Cavani, C.; Bianchi, M.; Lazzaroni, C.; Luzi, F.; Minelli, G.; Petracci, M. Influence of type of rearing, slaughter age and sex on fattening rabbit: II. Meat quality. In Proceedings of the 7th World Rabbit Congress, Valencia, Spain, 4–7 July 2000; Volume A, pp. 567–572. [Google Scholar]
- Barrón, G.; Rosas, G.; Sandoval, C.; Bonilla, O.; Reyes, G.; Rico, P.; Cardona, L.; Zamora, F. Effect of genotype and sex on pH of Biceps femoris and Longissimus dorsi muscles in rabbit carcasses. In Proceedings of the 8th Congreso Mundial del Conejo, Pueblo, Mexico, 7–10 September 2004; pp. 1349–1353. [Google Scholar]
- Dalle Zotte, A.; Cullere, M.; Rémignon, H.; Alberghini, L.; Paci, G. Meat physical quality and muscle fibre properties of rabbit meat as affected by the sire breed, season, parity order and gender in an organic production system. World Rabbit Sci. 2016, 24, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Carrilho, M.C.; Campo, M.M.; Olleta, J.L.; Beltrán, J.A.; López, M. Effect of diet, slaughter weight and sex on instrumental and sensory meat characteristics in rabbits. Meat Sci. 2009, 82, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Składanowska-Baryza, J.; Ludwiczak, A.; Pruszyńska-Oszmałek, E.; Kołodziejski, P.; Bykowska, M.; Stanisz, M. The effect of transport on the quality of rabbit meat. Anim. Sci. J. 2018, 89, 713–721. [Google Scholar] [CrossRef]
- Maj, D.; Bieniek, J.; Sternstein, I.; Węglarz, A.; Zapletal, P. Effect of genotype and sex on meat colour changes in rabbit. Arch. Anim. Breed. 2012, 55, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Daszkiewicz, T.; Gugołek, A. A comparison of the quality of meat from female and male californian and flemish giant gray rabbits. Animals 2020, 10, 2216. [Google Scholar] [CrossRef]
- North, M.K.; Dalle Zotte, A.; Hoffman, L.C. The effects of dietary quercetin supplementation and sex on the fatty acid profile of rabbit meat, dissectible fat and caecotrophes. Meat Sci. 2019, 157, 107888. [Google Scholar] [CrossRef]
- Kowalska, D.; Strychalski, J.; Zwoliński, C.; Gugołek, A.; Matusevicius, P. The effect of mixture of rapeseed meal, white lupin seed, and pea seed in rabbit diets on performance indicators and fatty acid profile of meat and fat. Kafkas Univ. Vet. Fak. Derg. 2020, 26, 455–462. [Google Scholar]
Diet | |||
---|---|---|---|
SBMD | WLD | YLD | |
Ingredients | |||
Soybean meal | 150 | 0 | 0 |
White lupine seed | 0 | 150 | 0 |
Yellow lupine seed | 0 | 0 | 150 |
Wheat | 149 | 21 | 92 |
Wheat bran | 155 | 350 | 350 |
Sugar cane molasses | 10 | 10 | 10 |
Lucerne | 189 | 263 | 127 |
Grape seed meal | 50 | 50 | 50 |
Wheat straw | 120 | 32 | 107 |
Beet pulp | 150 | 80 | 80 |
Calcium carbonate | 7 | 6 | 14 |
Monocalcium phosphate | 7 | 4 | 4 |
Salt (NaCl) | 4 | 4 | 5 |
Sepiolite | 0 | 18 | 0.2 |
Mineral-vitamin premix a | 10 | 10 | 10 |
Biolys b | 0 | 0 | 0.35 |
Chemical composition | |||
Dry matter | 916 | 913 | 910 |
Crude protein | 161 | 164 | 163 |
Ether extract | 35 | 34 | 42 |
NDF | 346 | 344 | 364 |
ADF | 217 | 227 | 212 |
ADL | 52 | 64 | 55 |
Soluble sugars | 34 | 37 | 35 |
Starch | 124 | 81 | 120 |
Digestible crude protein c | 120 | 123 | 123 |
Digestible energy (MJ/kg) c | 9.7 | 9.7 | 9.7 |
Digestible lysine c | 7.5 | 6.5 | 6.5 |
Digestible methionine + cysteine c | 3.8 | 3.0 | 2.8 |
Diet (D) | Gender (G) | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|
SBMD | WLD | YLD | F | M | SEM | D | G | D × G | |
Slaughter weight (SW, g) | 2739 | 2605 | 2731 | 2672 | 2738 | 25.2 | 0.054 | 0.123 | 0.731 |
Hot carcass weight (g) | 1693 | 1614 | 1670 | 1644 | 1694 | 16.2 | 0.135 | 0.090 | 0.284 |
Hot dressing (g/100g SW) | 61.8 | 61.9 | 61.2 | 61.5 | 61.9 | 0.28 | 0.737 | 0.713 | 0.273 |
Chilled carcass weight (CCW, g) | 1658 | 1579 | 1623 | 1603 | 1659 | 16.5 | 0.185 | 0.067 | 0.240 |
Chilling loss (g/100g) | 2.09 | 2.13 | 2.20 | 1603 | 2.07 | 0.070 | 0.876 | 0.484 | 0.854 |
Chilled dressing (g/100g SW) | 60.5 | 60.6 | 59.4 | 60.0 | 60.6 | 0.25 | 0.405 | 0.343 | 0.058 |
Carcass parts (g/100g of CCW) | |||||||||
Head | 7.98 | 7.97 | 7.96 | 8.04 | 7.79 | 0.097 | 8.66 | 0.221 | 0.479 |
Liver | 7.69 | 7.52 | 7.05 | 7.40 | 7.47 | 0.159 | 0.242 | 0.866 | 0.369 |
Kidneys | 1.20 | 1.26 | 1.21 | 1.22 | 1.23 | 0.016 | 0.219 | 0.809 | 0.405 |
Thymus, lungs, and heart | 2.05 | 2.24 | 2.15 | 2.17 | 2.09 | 0.380 | 0.054 | 0.102 | 0.135 |
Total fat | 2.89 | 2.83 | 2.91 | 2.83 | 2.97 | 0.083 | 0.688 | 0.587 | 0.261 |
Scapular fat | 0.66 | 0.74 | 0.66 | 0.65 | 0.76 | 0.032 | 0.667 | 0.187 | 0.776 |
Perineal fat | 1.51 | 1.52 | 1.64 | 1.58 | 1.50 | 0.068 | 0.333 | 0.398 | 0.169 |
Inguinal fat | 0.72 | 0.57 | 0.62 | 0.60 | 0.71 | 0.048 | 0.409 | 0.234 | 0.839 |
Hind part | 29.7 | 29.7 | 29.0 | 30.0 | 29.2 | 0.180 | 0.685 | 0.047 | 0.045 |
Forepart | 28.5 | 28.6 | 29.4 | 28.7 | 29.3 | 0.240 | 0.097 | 0.191 | 0.187 |
Intermediate part | 19.9 | 19.8 | 20.2 | 20.0 | 19.9 | 0.190 | 0.725 | 0.788 | 0.894 |
CIE carcass * | |||||||||
L* | 47.5 | 46.9 | 48.0 | 47.6 | 47.0 | 0.59 | 0.675 | 0.510 | 0.254 |
a* | 6.3 | 7.4 | 5.9 | 5.94 | 7.83 | 0.65 | 0.788 | 0.196 | 0.612 |
b* | 8.3 | 10.5 | 8.5 | 8.99 | 9.36 | 0.56 | 0.413 | 0.823 | 0.491 |
Chroma (C*) | 12.2 | 12.8 | 10.6 | 11.0 | 12.7 | 0.80 | 0.589 | 0.364 | 0.417 |
Hue (H*) | 1.07 | 0.96 | 0.95 | 0.99 | 0.95 | 0.029 | 0.764 | 0.590 | 0.219 |
Diet (D) | Gender (G) | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|
SBMD | WLD | YLD | F | M | SEM | D | G | D × G | |
Ultimate pH | 5.95 | 5.97 | 5.92 | 5.96 | 5.92 | 0.036 | 0.843 | 0.551 | 0.873 |
CIE | |||||||||
L* | 46.6 | 45.7 | 44.3 | 45.6 | 45.4 | 0.59 | 0.593 | 0.867 | 0.801 |
a* | 3.48 | 3.77 | 4.49 | 3.34 | 5.26 | 0.390 | 0.366 | 0.036 | 0.576 |
b* | 11.0 | 11.2 | 10.9 | 10.7 | 11.8 | 0.21 | 0.841 | 0.023 | 0.921 |
Chroma (C*) | 11.5 | 11.9 | 11.9 | 11.2 | 13.2 | 0.30 | 0.788 | 0.006 | 0.690 |
Hue (H*) | 1.27 | 1.26 | 1.20 | 1.27 | 1.17 | 0.026 | 0.424 | 0.09 | 0.720 |
Diets (D) | Gender (G) | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|
SBMD | WLD | YLD | F | M | SEM | D | G | D × G | |
SFA | |||||||||
C10:0 | 0.117 | 0.086 | 0.132 | 0.1086 | 0.1189 | 0.01086 | 0.327 | 0.532 | 0.804 |
C12:0 | 0.387 | 0.307 | 0.386 | 0.3501 | 0.3850 | 0.01803 | 0.148 | 0.233 | 0.740 |
C14:0 | 3.035 a | 2.495 b | 2.832 ab | 2.7966 | 2.7667 | 0.0676 | 0.006 | 0.654 | 0.451 |
C15:0 | 0.5837 a | 0.501 b | 0.509 b | 0.5467 | 0.5053 | 0.01108 | 0.013 | 0.181 | 0.807 |
C16:0 | 32.010 a | 27.82 b | 28.93 b | 29.7185 | 29.3050 | 0.33970 | <0.001 | 0.668 | 0.413 |
C17:0 | 0.674 a | 0.570 b | 0.580 b | 0.6292 | 0.5588 | 0.01399 | 0.006 | 0.042 | 0.570 |
C18:0 | 7.085 | 6.416 | 6.651 | 6.9247 | 6.2348 | 0.11532 | 0.123 | 0.001 | 0.834 |
C20:0 | 0.139 b | 0.205 a | 0.208 a | 0.1829 | 0.1867 | 0.00692 | <0.001 | 0.340 | 0.055 |
MUFA | |||||||||
C14: 1n − 5 | 0.244 a | 0.1682 b | 0.230 ab | 0.2125 | 0.2183 | 0.01146 | 0.034 | 0.478 | 0.691 |
C15: 1n − 5 | 0.423 a | 0.332 b | 0.296 b | 0.3594 | 0.3282 | 0.01664 | 0.018 | 0.446 | 0.222 |
C16: 1n − 7 | 3.834 a | 2.836 b | 3.417 ab | 3.3395 | 3.4178 | 0.1275 | 0.011 | 0.365 | 0.751 |
C17: 1n − 7 | 0.289 a | 0.209 b | 0.233 b | 0.2484 | 0.2329 | 0.00767 | <0.001 | 0.933 | 0.512 |
C18: 1n − 7 | 1.224 b | 1.478 a | 1.111 b | 1.2408 | 1.3427 | 0.03809 | <0.001 | 0.345 | 0.525 |
C18: 1n − 9 | 24.78 b | 27.50 a | 24.27 b | 25.2018 | 26.2625 | 0.33732 | <0.001 | 0.161 | 0.624 |
C20: 1n − 9 | 0.362 c | 0.821 a | 0.466 b | 0.5210 | 0.6158 | 0.03921 | <0.001 | 0.581 | 0,480 |
C22: 1n − 9 | 0.216 ab | 0.232 a | 0.182 b | 0.2158 | 0.1980 | 0.00733 | 0.002 | 0.094 | 0.113 |
PUFA | |||||||||
C18: 2n − 6 | 19.65 c | 21.73 b | 24.60 a | 22.0325 | 21.9234 | 0.46914 | <0.001 | 0.529 | 0.771 |
C18: 3n − 3 | 2.606 b | 3.875 a | 2.653 b | 2.9932 | 3.1666 | 0.11689 | <0.001 | 0.694 | 0.433 |
C18: 3n − 6 | 0.084 a | 0.060 b | 0.072 ab | 0.0756 | 0.0630 | 0.00350 | 0.017 | 0.269 | 0.322 |
C20: 2n − 6 | 0.222 b | 0.268 a | 0.273 a | 0.2158 | 0.2556 | 0.00722 | 0.009 | 0.625 | 0.779 |
C20: 3n − 6 | 0.145 | 0.122 | 0.135 | 0.1401 | 0.1196 | 0.00425 | 0.226 | 0.049 | 0.564 |
C20: 4n − 6 | 0.895 | 0.863 | 0.801 | 0.8887 | 0.7789 | 0.03140 | 0.619 | 0.119 | 0.730 |
C22: 5n − 3 | 0.216 ab | 0.233 a | 0.1826 b | 0.2158 | 0.1980 | 0.00733 | 0.002 | 0.094 | 0.113 |
Cholesterol | 28.60 a | 28.46 a | 25.56 b | 27.63 | 27.35 | 0.470 | 0.020 | 0.694 | 0.724 |
Diets (D) | Gender (G) | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|
SBMD | WLD | YLD | M | F | SEM | D | G | D × G | |
SFA | |||||||||
Total | 44.21 a | 38.67 b | 40.47 b | 41.47 | 40.29 | 0.502 | <0.001 | 0.590 | 0.548 |
SCMSFA | 4.182 a | 3.442 b | 3.923 b | 3.857 | 3.831 | 0.103 | 0.018 | 0.645 | 0.508 |
LCSFA | 40.03 a | 35.23 b | 36.55 b | 37.62 | 36.46 | 0.424 | <0.001 | 0.360 | 0.613 |
ONFA | 2.040 a | 1.679 b | 1.679 b | 1.848 | 1.686 | 0.0419 | 0.0003 | 0.105 | 0.938 |
MUFA | 31.66 ab | 33.88 a | 30.54 b | 31.65 | 32.92 | 0.380 | 0.0013 | 0.145 | 0.926 |
PUFA | |||||||||
Total | 24.12 b | 27.44 a | 28.98 a | 26.88 | 26.78 | 0.496 | <0.001 | 0.414 | 0.790 |
N − 3 | 2.982b | 4.289 a | 2.977 b | 3.37 | 3.52 | 0.128 | <0.001 | 0.499 | 0.423 |
N − 6 | 21.07 b | 23.12 b | 25.97 a | 23.46 | 23.23 | 0.473 | <0.001 | 0.427 | 0.812 |
N − 6/n − 3 | 7.086 b | 5.404 c | 8.753 a | 7.18 | 6.85 | 0.2610 | <0.001 | 0.859 | 0.159 |
Indexes related to human health | |||||||||
AI | 0.8011 a | 0.6228 b | 0.6846 b | 0.6846 | 0.7099 | 0.0171 | <0.001 | 0.877 | 0.491 |
TI | 1.190 a | 0.886 c | 1.033 b | 1.033 | 1.053 | 0.0260 | <0.001 | 0.772 | 0.529 |
h/H | 0.6747 b | 0.8905 a | 0.9003 a | 0.9003 | 0.8199 | 0.0248 | <0.001 | 0.478 | 0.564 |
S/U | 0.7566 a | 0.5998 b | 0.6463 b | 0.6463 | 0.6775 | 0.0142 | <0.001 | 0.585 | 0.562 |
DFA (g/100 g FA) | 62.87 b | 67.74 a | 66.18 a | 65.45 | 65.94 | 0.466 | <0.001 | 0.706 | 0.464 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guedes, C.M.; Almeida, M.; Closson, M.; Garcia-Santos, S.; Lorenzo, J.M.; Domínguez, R.; Ferreira, L.; Trindade, H.; Silva, S.; Pinheiro, V. Effect of Total Replacement of Soya Bean Meal by Whole Lupine Seeds and of Gender on the Meat Quality and Fatty Acids Profile of Growing Rabbits. Foods 2022, 11, 2411. https://doi.org/10.3390/foods11162411
Guedes CM, Almeida M, Closson M, Garcia-Santos S, Lorenzo JM, Domínguez R, Ferreira L, Trindade H, Silva S, Pinheiro V. Effect of Total Replacement of Soya Bean Meal by Whole Lupine Seeds and of Gender on the Meat Quality and Fatty Acids Profile of Growing Rabbits. Foods. 2022; 11(16):2411. https://doi.org/10.3390/foods11162411
Chicago/Turabian StyleGuedes, Cristina M., Mariana Almeida, Maude Closson, Sofia Garcia-Santos, José M. Lorenzo, Rubén Domínguez, Luís Ferreira, Henrique Trindade, Severiano Silva, and Victor Pinheiro. 2022. "Effect of Total Replacement of Soya Bean Meal by Whole Lupine Seeds and of Gender on the Meat Quality and Fatty Acids Profile of Growing Rabbits" Foods 11, no. 16: 2411. https://doi.org/10.3390/foods11162411
APA StyleGuedes, C. M., Almeida, M., Closson, M., Garcia-Santos, S., Lorenzo, J. M., Domínguez, R., Ferreira, L., Trindade, H., Silva, S., & Pinheiro, V. (2022). Effect of Total Replacement of Soya Bean Meal by Whole Lupine Seeds and of Gender on the Meat Quality and Fatty Acids Profile of Growing Rabbits. Foods, 11(16), 2411. https://doi.org/10.3390/foods11162411