Development of a Check-All-That-Apply (CATA) Ballot and Machine Learning for Generation Z Consumers for Innovative Traditional Food
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meat Preparation
2.2. Cooking Methods
2.3. Design of CATA Ballot
2.3.1. Focus Groups
2.3.2. Data Analysis
2.4. Evaluation of Samples
2.4.1. Sensory Evaluation
2.4.2. Data Analysis
2.5. Machine Learning
2.6. After Evaluation
2.6.1. Interview
2.6.2. Data Analysis
3. Results
3.1. CATA Ballot Development and Overall Liking
3.2. Sensory Discrimination and Correspondence Analysis
3.3. Important Variables
3.4. Qualitative Research
4. Discussion
4.1. Application of Machine Learning
4.2. Identification of Sensory Attributes of Lamb Shashliks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parzonko, A.; Balińska, A.; Sieczko, A. Pro-Environmental Behaviors of Generation Z in the Context of the Concept of Homo Socio-Oeconomicus. Energies 2021, 14, 1597. [Google Scholar] [CrossRef]
- Su, C.-H.; Tsai, C.-H.; Chen, M.-H.; Lv, W.Q. U.S. Sustainable Food Market Generation Z Consumer Segments. Sustainability 2019, 11, 3607. [Google Scholar] [CrossRef] [Green Version]
- Hanifawati, T.; Dewanti, V.W.; Saputri, G.D. The Role of Social Media Influencer on Brand Switching of Millennial and Gen Z: A Study of Food-Beverage Products. JAM 2019, 17, 625–638. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2018. [Google Scholar]
- For the New Crowd: 2021 Generation Z Food and Beverage Consumption Insight Report. Available online: https://www.hainanexpo.org.cn/information/646.html (accessed on 28 August 2021).
- Szakály, Z.; Kontor, E.; Kovács, S.; Popp, J.; Pető, K.; Polereczki, Z. Adaptation of the Food Choice Questionnaire: The Case of Hungary. Br. Food J. 2018, 120, 1474–1488. [Google Scholar] [CrossRef] [PubMed]
- Kymäläinen, T.; Seisto, A.; Malila, R. Generation Z Food Waste, Diet and Consumption Habits: A Finnish Social Design Study with Future Consumers. Sustainability 2021, 13, 2124. [Google Scholar] [CrossRef]
- Sañudo, C.; Alfonso, M.; Julián, R.S.; Thorkelsson, G.; Valdimarsdottir, T.; Zygoyiannis, D.; Stamataris, C.; Piasentier, E.; Mills, C.; Berge, P.; et al. Regional variation in the hedonic evaluation of lamb meat from diverse production systems by consumers in six European countries. Meat Sci. 2007, 75, 610–621. [Google Scholar] [CrossRef]
- Campo, M.; Muela, E.; Olleta, J.; Moreno, L.; Santaliestra-Pasías, A.; Mesana, M.; Sañudo, C. Influence of cooking method on the nutrient composition of Spanish light lamb. J. Food Compos. Anal. 2013, 31, 185–190. [Google Scholar] [CrossRef]
- Cabrera, M.C.; Saadoun, A. An overview of the nutritional value of beef and lamb meat from South America. Meat Sci. 2014, 98, 435–444. [Google Scholar] [CrossRef]
- Xiao, X.; Hou, C.; Zhang, D.; Li, X.; Ren, C.; Ijaz, M.; Hussain, Z.; Liu, D. Effect of pre- and post-rigor on texture, flavor, heterocyclic aromatic amines and sensory evaluation of roasted lamb. Meat Sci. 2020, 169, 108220. [Google Scholar] [CrossRef]
- Hou, X.; Zhuang, G.; Lin, Y.; Li, J.; Jiang, Y.; Fu, J.S. Emission of fine organic aerosol from traditional charcoal broiling in China. J. Atmos. Chem. 2008, 61, 119–131. [Google Scholar] [CrossRef]
- Shrivastava, M.; Andreae, M.O.; Artaxo, P.; Barbosa, H.M.J.; Berg, L.K.; Brito, J.; Ching, J.; Easter, R.C.; Fan, J.; Fast, J.D.; et al. Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, L.; Gu’ardia, M.D.; Xicola, J.; Verbeke, W.; Vanhonacker, F.; Zakowska- Biemans, S.; Sajdakowska, M.; Sulmont-Ross´e, C.; Issanchou, S.; Contel, M.; et al. Consumer-driven definition of traditional food products and innovation in traditional foods. A qualitative cross-cultural study. Appetite 2009, 52, 345–354. [Google Scholar] [CrossRef]
- Çoker, E.N.; van der Linden, S. Fleshing out the theory of planned of behavior: Meat consumption as an environmentally significant behavior. Curr. Psychol. 2020, 41, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Macdiarmid, J.I.; Douglas, F.; Campbell, J. Eating like there’s no tomorrow: Public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. Appetite 2016, 96, 487–493. [Google Scholar] [CrossRef]
- Stubbs, R.J.; Scott, S.E.; Duarte, C. Responding to food, environment and health challenges by changing meat consumption behaviours in consumers. Nutr. Bull. 2018, 43, 125–134. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, G.; Zhang, F.; Xu, L.; Jin, Q.; Huang, J.; Wang, X. A Comparative Study of Physicochemical and Flavor Characteristics of Chicken Nuggets during Air Frying and Deep Frying. J. Am. Oil Chem. Soc. 2020, 97, 901–913. [Google Scholar] [CrossRef]
- Devi, S.; Zhang, M.; Ju, R.; Bhandari, B. Recent development of innovative methods for efficient frying technology. Crit. Rev. Food Sci. Nutr. 2020, 61, 3709–3724. [Google Scholar] [CrossRef]
- Domínguez, R.; Gómez, M.; Fonseca, S.; Lorenzo, J.M. Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat. Meat Sci. 2014, 97, 223–230. [Google Scholar] [CrossRef]
- Farhadian, A.; Jinap, S.; Abas, F.; Sakar, Z.I. Determination of polycyclic aromatic hydrocarbons in grilled meat. Food Control 2010, 21, 606–610. [Google Scholar] [CrossRef]
- Farhadian, A.; Jinap, S.; Hanifah, H.; Zaidul, I. Effects of meat preheating and wrapping on the levels of polycyclic aromatic hydrocarbons in charcoal-grilled meat. Food Chem. 2011, 124, 141–146. [Google Scholar] [CrossRef]
- Zaghi, A.N.; Barbalho, S.M.; Guiguer, E.L.; Otoboni, A.M. Frying Process: From Conventional to Air Frying Technology. Food Rev. Int. 2019, 35, 763–777. [Google Scholar] [CrossRef]
- Ares, G.; de Andrade, J.C.; Antúnez, L.; Alcaire, F.; Swaney-Stueve, M.; Gordon, S.; Jaeger, S.R. Hedonic product optimisation: CATA questions as alternatives to JAR scales. Food Qual. Prefer. 2016, 55, 67–78. [Google Scholar] [CrossRef]
- Grasso, S.; Monahan, F.; Hutchings, S.; Brunton, N. The effect of health claim information disclosure on the sensory characteristics of plant sterol-enriched turkey as assessed using the Check-All-That-Apply (CATA) methodology. Food Qual. Prefer. 2017, 57, 69–78. [Google Scholar] [CrossRef]
- Dooley, L.; Lee, Y.-S.; Meullenet, J.-F. The application of check-all-that-apply (CATA) consumer profiling to preference mapping of vanilla ice cream and its comparison to classical external preference mapping. Food Qual. Prefer. 2010, 21, 394–401. [Google Scholar] [CrossRef]
- Jaeger, S.; Chheang, S.L.; Yin, J.; Bava, C.M.; Giménez, A.; Vidal, L. Check-all-that-apply (CATA) responses elicited by consumers: Within-assessor reproducibility and stability of sensory product characterizations. Food Qual. Prefer. 2013, 30, 56–67. [Google Scholar] [CrossRef]
- Ares, G.; Jaeger, S.R. Check-all-that-apply (CATA) questions with consumers in practice. Experimental considerations and impact on outcome. In Rapid Sensory Profiling Techniquesand Related Methods; Delarue, J., Lawlor, J.B., Rogeaux, M., Eds.; Woodhead Publishing: Sawston, Cambridge, UK, 2015; pp. 227–245. [Google Scholar]
- Jaeger, S.R.; Ares, G. Lack of evidence that concurrent sensory product characterization using CATA questions bias hedonic scores. Food Qual. Prefer. 2014, 35, 1–5. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Giacalone, D.; Roigard, C.M.; Pineau, B.; Vidal, L.; Giménez, A.; Frøst, M.; Ares, G. Investigation of bias of hedonic scores when co-eliciting product attribute information using CATA questions. Food Qual. Prefer. 2013, 30, 242–249. [Google Scholar] [CrossRef]
- Bi, J.; Chung, J. Identification of Drivers of Overall Liking-Determination of Relative Importances of Regressor Variables. J. Sens. Stud. 2011, 26, 245–254. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Spring: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Partridge, H.; Edwards, S.L.; Thorpe, C. Evidence-based practice: Information professionals’ experience of information literacy in the workplace. In Practising Information Literacy: Bringing Theories of Learning, Practice and Information Literacy Together; Lloyd, A., Talja, S., Eds.; Centre for Information Studies, Charles Sturt University: Wagga, NSW, Australia, 2010. [Google Scholar]
- Rose, G.; Laing, D.; Oram, N.; Hutchinson, I. Sensory profiling by children aged 6–7 and 10–11 years. Part 1: A descriptor approach. Food Qual. Prefer. 2004, 15, 585–596. [Google Scholar] [CrossRef]
- Peryam, D.R.; Pilgrim, F.J. Hedonic scale method of measuring food preferences. Food Technol. 1957, 11, 9–14. [Google Scholar]
- Meyners, M.; Castura, J.C. Randomization of CATA attributes: Should attribute lists be allocated to assessors or to samples? Food Qual. Prefer. 2016, 48, 210–215. [Google Scholar] [CrossRef]
- Macfie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to balace the effect of order of presentation and first-order carry-over effects in hall tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Parente, M.E.; Manzoni, A.V.; Ares, G. External Preference Mapping of Commercial Antiaging Creams Based on Consumers’ Responses to A Check-All-That-Apply Question. J. Sens. Stud. 2011, 26, 158–166. [Google Scholar] [CrossRef]
- Ares, G.; Varela, P.; Rado, G.; Giménez, A. Are consumer profiling techniques equivalent for some product categories? The case of orange-flavoured powdered drinks. Int. J. Food Sci. Technol. 2011, 46, 1600–1608. [Google Scholar] [CrossRef]
- Ge, H.; Zhu, Z.; Lou, K. Tracking Video Target via Particle Filtering on Manifold. Inf. Technol. Control 2019, 48, 538–544. [Google Scholar] [CrossRef]
- Iswanto, I.A.; Li, B. Visual Object Tracking Based on Mean-shift and Particle-Kalman Filter. Procedia Comput. Sci. 2017, 116, 587–595. [Google Scholar] [CrossRef]
- MacLean, J.; Tsotsos, J. Fast pattern recognition using gradient-descent search in an image pyramid. In Proceedings of the 15th International Conference on Pattern Recognition. ICPR-2000, Barcelona, Spain, 3–7 September 2000. [Google Scholar]
- Liu, H.; Ma, J.; Pan, T.; Suleman, R.; Wang, Z.; Zhang, D. Effects of roasting by charcoal, electric, microwave and superheated steam methods on (non)volatile compounds in oyster cuts of roasted lamb. Meat Sci. 2021, 172, 108324. [Google Scholar] [CrossRef]
- Tamura, H.; Ueno, S.; Naka, A.; Zhao, H.; Yonekura, L.; Isogai, T.; Wakui, R.; Shiota, M. Characterisation of aroma profile and evaluation of aroma quality in sweet cream butter. Int. Dairy J. 2020, 114, 104935. [Google Scholar] [CrossRef]
- Brodsky, C. The Discovery of Grounded Theory: Strategies for Qualitative Research. Psychosomatics 1968, 9, 188. [Google Scholar] [CrossRef]
- Ritchie, M.D.; Hahn, L.W.; Roodi, N.; Bailey, L.R.; Dupont, W.D.; Parl, F.F.; Moore, J.H. Multifactor-Dimensionality Reduction Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer. Am. J. Hum. Genet. 2001, 69, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Meyners, M.; Castura, J.C. Check-All-That-Apply Questions. Novel Techniquesin Sensory Characterization and Consumer Pro-Filing; CRC Press: Boca Raton, FL, USA, 2014; Volume 271. [Google Scholar]
- Ares, G.; Jaeger, S.R. Check-all-that-apply (CATA) questions with consumers in practice. Experimental considerations and impact on outcome. In Rapid Sensory Profiling Techniques: Applications in New Product Development and Consumer Research; Woodhead publishing: Thorston, UK, 2014; Volume 227. [Google Scholar]
- Francis, J.J.; Johnston, M.; Robertson, C.; Glidewell, L.; Entwistle, V.; Eccles, M.P.; Grimshaw, J. What is an adequate sample size? Operationalising data saturation for theory-based interview studies. Psychol. Health 2010, 25, 1229–1245. [Google Scholar] [CrossRef] [Green Version]
- Rocha, R.S.; Calvalcanti, R.N.; Silva, R.; Guimarães, J.T.; Balthazar, C.F.; Pimentel, T.C.; Esmerino, E.A.; Freitas, M.Q.; Granato, D.; Costa, R.G.; et al. Consumer acceptance and sensory drivers of liking of Minas Frescal Minas cheese manufactured using milk subjected to ohmic heating: Performance of machine learning methods. LWT 2020, 126, 109342. [Google Scholar] [CrossRef]
- Grabež, V.; Bjelanović, M.; Rohloff, J.; Martinović, A.; Berg, P.; Tomović, V.; Rogić, B.; Egelandsdal, B. The relationship between volatile compounds, metabolites and sensory attributes: A case study using lamb and sheep meat. Small Rumin. Res. 2019, 181, 12–20. [Google Scholar] [CrossRef]
- Merlo, T.C.; Lorenzo, J.M.; Saldaña, E.; Patinho, I.; Oliveira, A.C.; Menegali, B.S.; Selani, M.M.; Domínguez, R.; Contreras-Castillo, C.J. Relationship between volatile organic compounds, free amino acids, and sensory profile of smoked bacon. Meat Sci. 2021, 181, 108596. [Google Scholar] [CrossRef]
Attributes | BC | AF | EH | MH | |
---|---|---|---|---|---|
Aroma | Intensity aroma ***1 | 48 | 77 | 35 | 26 |
Char grilled aroma *** | 102 | 45 | 51 | 18 | |
Roast lamb aroma *** | 96 | 90 | 90 | 65 | |
Liver aroma *** | 20 | 67 | 31 | 47 | |
Buttery aroma*** | 13 | 105 | 39 | 45 | |
Oily aroma ns | 44 | 56 | 58 | 48 | |
Fatty aroma *** | 82 | 67 | 57 | 43 | |
Appearance | Caramel on bottom external appearance *** | 60 | 64 | 58 | 34 |
Light color external appearance *** | 47 | 30 | 48 | 87 | |
Dark external appearance ns | 68 | 86 | 73 | 43 | |
Juicy external appearance *** | 78 | 32 | 39 | 40 | |
Pink internal appearance ns | 27 | 16 | 24 | 13 | |
Brown internal appearance *** | 91 | 82 | 73 | 52 | |
Juicy internal appearance *** | 46 | 30 | 19 | 22 | |
Connective tissue internal appearance *** | 20 | 26 | 25 | 26 | |
Wet external appearance ns | 54 | 40 | 37 | 54 | |
Greasy external appearance ns | 59 | 28 | 43 | 42 | |
Flavor | Intensity flavor ***2 | 50 | 27 | 35 | 25 |
Smoky flavor *** | 113 | 23 | 37 | 11 | |
Roast lamb flavor *** | 114 | 97 | 90 | 61 | |
Liver flavor ns | 16 | 72 | 45 | 66 | |
Bloody flavor *** | 43 | 33 | 50 | 39 | |
Metallic flavor *** | 78 | 46 | 33 | 50 | |
Fatty flavor *** | 21 | 22 | 57 | 26 | |
Gamey flavor *** | 60 | 66 | 79 | 64 | |
Greasy flavor ns | 38 | 30 | 39 | 20 | |
Gravy flavor *** | 39 | 64 | 58 | 41 | |
Bitter flavor ns | 20 | 16 | 23 | 17 | |
Sour flavor ns | 34 | 36 | 31 | 39 | |
Sweet flavor ns | 14 | 23 | 18 | 11 | |
Texture | Tenderness texture ** | 41 | 40 | 30 | 39 |
Rubbery texture *** | 62 | 40 | 43 | 46 | |
Chewy texture *** | 68 | 86 | 65 | 53 | |
Lumpy on chewing texture *** | 23 | 38 | 44 | 53 | |
Crumbly texture *** | 44 | 50 | 27 | 45 | |
Spongy texture ns | 12 | 15 | 23 | 26 | |
Dry texture * | 55 | 63 | 72 | 59 | |
Hard texture *** | 42 | 56 | 59 | 53 | |
Aftertaste | Intensity aftertaste ***3 | 25 | 37 | 22 | 28 |
Meaty aftertaste *** | 79 | 82 | 72 | 53 | |
Liver aftertaste ns | 12 | 43 | 28 | 41 | |
Bloody aftertaste * | 40 | 29 | 35 | 32 | |
Oily aftertaste ns | 45 | 45 | 51 | 43 | |
Lactic aftertaste ns | 13 | 13 | 16 | 30 | |
Sour aftertaste ns | 17 | 31 | 32 | 24 | |
Sweet aftertaste ns | 8 | 22 | 12 | 17 |
Cooking Methods | Mean (±SD) | F p |
---|---|---|
BC | 6.91 (± 1.65) | F = 181.514 p < 0.001 |
AF | 6.64 (± 1.66) | |
EH | 5.23 (± 1.83) | |
MH | 4.65 (± 1.93) |
Control Product | Product | Mean Value Difference (I–J) | Significance | 95% Confidence Interval | |
---|---|---|---|---|---|
Lower Limit | Upper Limit | ||||
AF | BC | −0.263 * | 0.022 | −0.49 | −0.04 |
EH | 1.410 * | 0 | 1.19 | 1.63 | |
MH | 1.992 * | 0 | 1.77 | 2.22 | |
BC | AF | 0.263 * | 0.022 | 0.04 | 0.49 |
EH | 1.673 * | 0 | 1.45 | 1.9 | |
MH | 2.254 * | 0 | 2.03 | 2.48 | |
EH | AF | −1.410 * | 0 | −1.63 | −1.19 |
BC | −1.673 * | 0 | −1.9 | −1.45 | |
MH | 0.581 * | 0 | 0.36 | 0.81 | |
MH | AF | −1.992 * | 0 | −2.22 | −1.77 |
BC | −2.254 * | 0 | −2.48 | −2.03 | |
EH | −0.581 * | 0 | −0.81 | −0.36 |
Overall Preference | ||||
---|---|---|---|---|
BC | AF | EH | MH | |
DNN | 0.9152 | 0.9575 | 0.957 | 0.9543 |
OMP-SGD | 0.9082 | 0.9596 | 0.9567 | 0.9567 |
SVM | 0.9798 | 0.9184 | 0.9444 | 0.912 |
GDBT | 0.8878 | 0.9378 | 0.8275 | 0.9311 |
Lamb shashliks of preference | ||||
BC | AF | EH | MH | |
DNN | 0.9807 | 0.9823 | 0.9780 | 0.9698 |
OMP-SGD | 0.9819 | 0.9874 | 0.9776 | 0.9775 |
SVM | 0.9761 | 0.9763 | 0.9775 | 0.9678 |
GDBT | 0.9584 | 0.9678 | 0.9275 | 0.9810 |
Interaction Order | Factors Included in the Model | Training Set Balance Accuracy | Test Set Balance Accuracy | Cross-Validation Consistency Rate (Ratio) | Odds Ratio (OR) Value | p-Value |
---|---|---|---|---|---|---|
1 | A5 (Have you tasted air fryer food) | 0.56 | 0.50 | 8:10 | 1.55 | 0.04 |
2 | A5 (Have you tasted air fryer food), B1 (Age) | 0.61 | 0.58 | 9:10 | 0.88 | 0.97 |
3 | A5 (Have you tasted air fryer food), B1 (Age) C2 (gender) | 0.87 | 0.86 | 10:10 | 2.59 | 0.03 |
Primary Node | Secondary Node | Reference Node Example |
---|---|---|
Cognition of buttery aroma | Comparison with products with a similar aroma | The buttery aroma is similar to that of Lay’s honey potato chips. |
Cognition of duration and intensity | Compared with the aroma of dairy products, it is not as strong as dairy products. The duration of milk aroma is short. | |
Cognition of AF | Cognition of roasting process | The roasting speed is fast. The strong aroma can be smelled in a few minutes. It is mixed with a light milky aroma, but it dissipates quickly. |
Cognition of comparison with other roasting methods | It is healthy and suitable for a fast-paced life. It tastes more delicious than EH and MH. | |
Self-awareness | describe the self-awareness process and experience | Not affected by the surroundings, I smelled the buttery aroma. Although I have rhinitis, it does not affect my smell. |
Try to recognize the reason why you can smell the buttery aroma of AF | I think other cooking methods may have a buttery aroma, such as BC, which is just covered by the char-grilled aroma. The EH is a relatively dry texture, and the other aroma also covers the buttery aroma. The AF can more purely restore the taste of the ingredients. It instantly releases a lot of aromatic substances. Maybe I prefer sweets and am more sensitive to the buttery aroma, so the perception priority is higher. However, the milk aroma substances are volatilized afterward, which may be related to the roasted part. | |
Cognition of the future | What are expectations for AF? | It is more delicious. |
What are your expectations for the future development of barbecue | It is healthier and tastes better. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Shen, C.; Zhao, T.; Zhai, X.; Ding, M.; Dai, L.; Gai, S.; Liu, D. Development of a Check-All-That-Apply (CATA) Ballot and Machine Learning for Generation Z Consumers for Innovative Traditional Food. Foods 2022, 11, 2409. https://doi.org/10.3390/foods11162409
Wang B, Shen C, Zhao T, Zhai X, Ding M, Dai L, Gai S, Liu D. Development of a Check-All-That-Apply (CATA) Ballot and Machine Learning for Generation Z Consumers for Innovative Traditional Food. Foods. 2022; 11(16):2409. https://doi.org/10.3390/foods11162409
Chicago/Turabian StyleWang, Bo, Che Shen, Ting Zhao, Xiuwen Zhai, Meiqi Ding, Limei Dai, Shengmei Gai, and Dengyong Liu. 2022. "Development of a Check-All-That-Apply (CATA) Ballot and Machine Learning for Generation Z Consumers for Innovative Traditional Food" Foods 11, no. 16: 2409. https://doi.org/10.3390/foods11162409
APA StyleWang, B., Shen, C., Zhao, T., Zhai, X., Ding, M., Dai, L., Gai, S., & Liu, D. (2022). Development of a Check-All-That-Apply (CATA) Ballot and Machine Learning for Generation Z Consumers for Innovative Traditional Food. Foods, 11(16), 2409. https://doi.org/10.3390/foods11162409