In-Vitro Study on the Antibacterial and Antioxidant Activity of Four Commercial Essential Oils and In-Situ Evaluation of Their Effect on Quality Deterioration of Pacific White Shrimp (Litopenaeus vannamei) during Cold Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Bacterial Strains
2.3. In-Vitro Analysis of the Antioxidant and Antibacterial Ability
2.3.1. Preparation of the Preservatives
2.3.2. Total Phenolic Content
2.3.3. DPPH Scavenging Activity
2.3.4. Oxford Cup Assay
2.4. In-Situ Study on the Effect of the Selected Preservatives on the Qualities of Pacific White Shrimp
2.4.1. Sample Preparation
2.4.2. Preparation and Application of Preservatives
2.4.3. Microbiological Analysis
2.4.4. Total Volatile Basic Nitrogen (TVB-N)
2.4.5. Weight LOSS
2.4.6. Determination of TCA-Soluble Peptides Content
2.4.7. Determination of Sarcoplasmic and Myofibrillar Protein Contents
2.4.8. Colorimetric Measurement
2.4.9. Melanosis Ratio
2.4.10. Polyphenol Oxidase Activity
2.5. Statistical Analysis
3. Results and Discussion
3.1. In-Vitro Analysis of the Antioxidant and Antibacterial Ability
3.1.1. Total Phenolic Content
3.1.2. DPPH Scavenging Activity
3.1.3. Oxford Cup Assay
3.2. In-Situ Study on the Effect of the Selected Essential Oils on the Quality of Pacific White Shrimp
3.2.1. Microbiological Growth
3.2.2. Total Volatile Basic Nitrogen (TVB-N)
3.2.3. Weight Loss
3.2.4. Changes of TCA-Soluble Peptide Content
3.2.5. Changes of Sarcoplasmic and Myofibrillar Contents
3.2.6. Colorimetric Measurement
3.2.7. Melanosis Ratio
3.2.8. PPO Activity
3.3. Schematic Illustration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ju, J.; Chen, X.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of essential oil as a sustained release preparation in food packaging. Trends Food Sci. Technol. 2019, 92, 22–32. [Google Scholar] [CrossRef]
- Mancianti, F.; Ebani, V.V. Biological activity of essential oils. Molecules 2020, 25, 678. [Google Scholar] [CrossRef] [PubMed]
- Duque-Soto, C.; Borrás-Linares, I.; Quirantes-Piné, R.; Falcó, I.; Sánchez, G.; Segura-Carretero, A.; Lozano-Sánchez, J. Potential antioxidant and antiviral activities of hydroethanolic extracts of selected Lamiaceae species. Foods 2022, 11, 1862. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of edible coating with essential oil in food preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 2467–2480. [Google Scholar] [CrossRef]
- Perricone, M.; Arace, E.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Bioactivity of essential oils: A review on their interaction with food components. Front. Microb. 2015, 6, 76. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Chuesiang, P.; Sanguandeekul, R.; Siripatrawan, U. Enhancing effect of nanoemulsion on antimicrobial activity of cinnamon essential oil against foodborne pathogens in refrigerated Asian seabass (Lates calcarifer) fillets. Food Control 2021, 122, 107782. [Google Scholar] [CrossRef]
- Oğuzhan Yildiz, P. Effect of essential oils and packaging on hot smoked rainbow trout during storage. J. Food Process. Preserv. 2015, 39, 806–815. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, X.; Jia, S.; Zhang, L.; Luo, Y. The effect of essential oils on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets during chilled storage. Int. J. Food Microbiol. 2018, 266, 52–59. [Google Scholar] [CrossRef]
- Zheng, X.; Han, B.; Kumar, V.; Feyaerts, A.F.; Van Dijck, P.; Bossier, P. Essential oils improve the survival of Gnotobiotic brine shrimp (Artemia franciscana) challenged with Vibrio campbellii. Front. Immunol. 2021, 12, 693932. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microb. 2012, 3, 12. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Okpala, C.O.R.; Choo, W.S.; Dykes, G.A. Quality and shelf life assessment of Pacific white shrimp (Litopenaeus vannamei) freshly harvested and stored on ice. LWT-Food Sci. Technol. 2014, 55, 110–116. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture; Food and Agriculture Organization: Rome, Italy, 2022. [Google Scholar]
- Qian, Y.F.; Xie, J.; Yang, S.-P.; Huang, S.; Wu, W.H.; Li, L. Inhibitory effect of a quercetin-based soaking formulation and modified atmospheric packaging (MAP) on muscle degradation of Pacific white shrimp (Litopenaeus vannamei). LWT-Food Sci. Technol. 2015, 63, 1339–1346. [Google Scholar] [CrossRef]
- Sae-Leaw, T.; Benjakul, S. Prevention of quality loss and melanosis of Pacific white shrimp by cashew leaf extracts. Food Control 2019, 95, 257–266. [Google Scholar] [CrossRef]
- Bono, G.; Badalucco, C.; Corrao, A.; Cusumano, S.; Mammina, L.; Palmegiano, G.B. Effect of temporal variation, gender and size on cuticle polyphenol oxidase activity in deep-water rose shrimp (Parapenaeus longirostris). Food Chem. 2010, 123, 489–493. [Google Scholar] [CrossRef]
- Qian, Y.F.; Cheng, Y.; Ye, J.-X.; Zhao, Y.; Xie, J.; Yang, S.P. Targeting shrimp spoiler Shewanella putrefaciens: Application of ε-polylysine and oregano essential oil in Pacific white shrimp preservation. Food Control 2021, 123, 107702. [Google Scholar] [CrossRef]
- Alparslan, Y.; Baygar, T. Effect of chitosan film coating combined with Orange peel essential oil on the shelf life of Deepwater pink shrimp. Food Bioprocess Technol. 2017, 10, 842–853. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Benjakul, S.; Vongkamjan, K. Antioxidant and antibacterial properties of guava leaf extracts as affected by solvents used for prior dechlorophyllization. J. Food Biochem. 2018, 42, e12600. [Google Scholar] [CrossRef]
- Lu-Martínez, A.A.; Báez-González, J.G.; Castillo-Hernández, S.; Amaya-Guerra, C.; Rodríguez-Rodríguez, J.; García-Márquez, E. Studied of Prunus serotine oil extracted by cold pressing and antioxidant effect of P. longiflora essential oil. J. Food Sci. Technol. 2021, 58, 1420–1429. [Google Scholar] [CrossRef]
- Yu, Y.J.; Yang, S.P.; Lin, T.; Qian, Y.-F.; Xie, J.; Hu, C. Effect of cold chain logistic interruptions on lipid oxidation and volatile organic compounds of salmon (Salmo salar) and their correlations with water dynamics. Front. Nutr. 2020, 7, 155. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xiang, W.; Fan, H.; Xie, J.; Qian, Y.F. Study on the mobility of water and its correlation with the spoilage process of salmon (Salmo solar) stored at 0 and 4 °C by low-field nuclear magnetic resonance (LF NMR 1H). J. Food Sci. Technol. 2018, 55, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Jiao, D.; Liu, H.; Zhu, C.; Sun, Y.; Wu, J.; Zheng, M.; Zhang, D. Effects of water distribution and protein degradation on the texture of high pressure-treated shrimp (Penaeus monodon) during chilled storage. Food Control 2022, 132, 108555. [Google Scholar] [CrossRef]
- Lv, M.; Mei, K.; Zhang, H.; Xu, D.; Yang, W. Effects of electron beam irradiation on the biochemical properties and structure of myofibrillar protein from Tegillarca granosa meat. Food Chem. 2018, 254, 64–69. [Google Scholar] [CrossRef]
- Qian, Y.F.; Xie, J.; Yang, S.-P.; Wu, W.H. Study of the quality changes and myofibrillar proteins of white shrimp (Litopenaeus vannamei) under modified atmosphere packaging with varying CO2 levels. Eur. Food Res. Technol. 2013, 236, 629–635. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S.; Abushelaibi, A.; Alam, A. Phenolic compounds and plant phenolic extracts as natural antioxidants in prevention of lipid oxidation in seafood: A detailed review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1125–1140. [Google Scholar] [CrossRef]
- Kosakowska, O.; Węglarz, Z.; Pióro-Jabrucka, E.; Przybył, J.L.; Kraśniewska, K.; Gniewosz, M.; Bączek, K. Antioxidant and antibacterial activity of essential oils and hydroethanolic extracts of Greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common oregano (O. vulgare L. subsp. vulgare). Molecules 2021, 26, 988. [Google Scholar] [CrossRef]
- Hadidi, M.; Pouramin, S.; Adinepour, F.; Haghani, S.; Jafari, S.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr. Polym. 2020, 236, 116075. [Google Scholar] [CrossRef]
- Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Ramos-Gómez, M.; Rodríguez-Muñoz, M.E.; Reynoso-Camacho, R.; Rocha-Uribe, A.; Roque-Rosales, M.R. Antioxidant effect of oregano (Lippia berlandieri v. Shauer) essential oil and mother liquors. Food Chem. 2007, 102, 330–335. [Google Scholar] [CrossRef]
- Chang, Y.C.; Almy, E.A.; Blamer, G.A.; Gray, J.I.; Frost, J.W.; Strasburg, G.M. Antioxidant activity of 3-dehydroshikimic acid in liposomes, emulsions, and bulk oil. J. Agric. Food Chem. 2003, 51, 2753–2757. [Google Scholar] [CrossRef]
- Badola, R.; Panjagari, N.R.; Singh, R.R.B.; Singh, A.K.; Prasad, W.G. Effect of clove bud and curry leaf essential oils on the anti-oxidative and anti-microbial activity of burfi, a milk-based confection. J. Food Sci. Technol. 2018, 55, 4802–4810. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Antibacterial mechanism of oregano essential oil. Ind. Crops Prod. 2019, 139, 111498. [Google Scholar] [CrossRef]
- Hać-Szymańczuk, E.; Cegiełka, A.; Karkos, M.; Gniewosz, M.; Piwowarek, K. Evaluation of antioxidant and antimicrobial activity of oregano (Origanum vulgare L.) preparations during storage of low-pressure mechanically separated meat (BAADER meat) from chickens. Food Sci. Biotechnol. 2019, 28, 449–457. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Microbiological Specifications for Foods. Microorganisms in Foods. Microbiol. Test. Food Saf. Manag. 2002, 7, 362. [Google Scholar]
- Yang, S.P.; Xie, J.; Qian, Y.F. Determination of spoilage microbiota of Pacific white shrimp during ambient and cold storage using next-generation sequencing and culture-dependent method. J. Food Sci. 2017, 82, 1178–1183. [Google Scholar] [CrossRef]
- Annamalai, J.; Sivam, V.; Unnikrishnan, P.; Kuppa Sivasankara, S.; Kaushlesh Pansingh, R.; Shaik Abdul, K.; Lakshmi, N.M.; Chandragiri Nagarajarao, R. Effect of electron beam irradiation on the biochemical, microbiological and sensory quality of Litopenaeus vannamei during chilled storage. J. Food Sci. Technol. 2020, 57, 2150–2158. [Google Scholar] [CrossRef]
- Luan, L.; Wu, C.; Wang, L.; Li, Y.; Ishimura, G.; Yuan, C.; Ding, T.; Hu, Y. Protein denaturation and oxidation in chilled hairtail (Trichiutus haumela) as affected by electrolyzed oxidizing water and chitosan treatment. Int. J. Food Prop. 2018, 20, S2696–S2707. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, C.; Chen, S.; Xue, Y.; Wang, Y.; Wu, Y. Effects of modified atmosphere packaging with different gas ratios on the quality changes of golden pompano (Trachinotus ovatus) fillets during superchilling storage. Foods 2022, 11, 1943. [Google Scholar] [CrossRef]
- Benjakul, S.; Visessanguan, W.; Tueksuban, J. Changes in physico-chemical properties and gel-forming ability of lizardfish (Saurida tumbil) during post-mortem storage in ice. Food Chem. 2003, 80, 535–544. [Google Scholar] [CrossRef]
- Ertbjerg, P.; Puolanne, E. Muscle structure, sarcomere length and influences on meat quality: A review. Meat Sci. 2017, 132, 139–152. [Google Scholar] [CrossRef]
- Díaz-Tenorio, L.M.; García-Carreño, F.L.; Pacheco-Aguilar, R. Comparison of freezing and thawing treatments on muscle properties of whiteleg shrimp (Litopenaeus vannamei). J. Food Biochem. 2007, 31, 563–576. [Google Scholar] [CrossRef]
- Castañeda-López, G.G.; Ulloa, J.A.; Rosas-Ulloa, P.; Ramírez-Ramírez, J.C.; Gutiérrez-Leyva, R.; Silva-Carrillo, Y.; Ulloa-Rangel, B.E. Ultrasound use as a pretreatment for shrimp (Litopenaeus vannamei) dehydration and its effect on physicochemical, microbiological, structural, and rehydration properties. J. Food Process. Preserv. 2021, 45, e15366. [Google Scholar] [CrossRef]
- Sae-Leaw, T.; Benjakul, S. Distribution and characteristics of polyphenoloxidase from Pacific white shrimp (Litopenaeus vannamei). J. Food Sci. 2019, 84, 1078–1086. [Google Scholar] [CrossRef]
- Qian, Y.-F.; Xie, J.; Yang, S.-P.; Wu, W.-H.; Xiong, Q.; Gao, Z.-L. In vivo study of spoilage bacteria on polyphenoloxidase activity and melanosis of modified atmosphere packaged Pacific white shrimp. Food Chem. 2014, 155, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Ibrahim, M.S.C.; Bakar, K.; Bakar, J.; Ikhwanuddin, M.; Karim, N.U. Effects of Annona muricata extraction on inhibition of polyphenoloxidase and microbiology quality of Macrobrachium rosenbergii. J. Food Sci. Technol. 2022, 59, 859–868. [Google Scholar] [CrossRef]
- Goncalves, A.A.; de Oliveira, A.R.M. Melanosis in crustaceans: A review. LWT-Food Sci. Technol. 2016, 65, 791–799. [Google Scholar] [CrossRef]
- Sae-leaw, T.; Benjakul, S. Prevention of melanosis in crustaceans by plant polyphenols: A review. Trends Food Sci. Technol. 2019, 85, 1–9. [Google Scholar] [CrossRef]
- Xu, D.; Yang, X.; Wang, Y.; Sun, L. Cascading mechanism triggering the activation of polyphenol oxidase zymogen in shrimp Litopenaeus vannamei after postmortem and the correlation with melanosis development. Food Bioprocess Technol. 2020, 13, 1131–1145. [Google Scholar] [CrossRef]
Concentration (v/v) | OEO | TTEO | WOEO | CLEO | |
---|---|---|---|---|---|
TPC (mg GAE/100 g) | 10% | 20.97 ± 0.22 | 20.29 ± 0.35 | 13.34 ± 0.51 | 21.12 ± 0.01 |
DPPH scavenging activity (%) | 0.5% | 42.28 ± 1.15 | 22.76 ± 1.15 | 27.64 ± 1.15 | 79.67 ± 1.15 |
2% | 73.11 ± 0.54 | 28.22 ± 0.27 | 54.55 ± 0.54 | 84.85 ± 0.54 | |
10% | 84.55 ± 3.45 | 61.79 ± 2.30 | 65.85 ± 1.15 | 87.80 ± 2.30 |
Bacterium | Presser-Vatives | Concentrations (%) | ||||||
---|---|---|---|---|---|---|---|---|
10 | 2.5 | 0.5 | 0.1 | 0.025 | 0.005 | Negative Control | ||
S. aureus (+) | OEO | ++++ | ++++ | ++++ | ++ | + | − | − |
TTEO | ++ | + | + | − | − | − | − | |
WOEO | ++ | + | + | − | − | − | − | |
CLEO | ++++ | +++ | ++ | + | + | − | − | |
B. subtilis (+) | OEO | ++++ | ++++ | ++++ | ++ | + | − | − |
TTEO | ++ | ++ | + | − | − | − | − | |
WOEO | + | + | − | − | − | − | − | |
CLEO | ++++ | +++ | ++ | + | + | − | − | |
S. putrefaciens (−) | OEO | ++++ | ++++ | ++++ | ++ | + | + | − |
TTEO | ++ | ++ | + | − | − | − | − | |
WOEO | +++ | ++ | + | − | − | − | − | |
CLEO | ++++ | ++++ | ++ | + | + | + | − | |
E. coli (−) | OEO | ++++ | ++++ | ++++ | ++ | − | − | − |
TTEO | ++ | + | − | − | − | − | − | |
WOEO | + | + | − | − | − | − | − | |
CLEO | ++++ | +++ | ++ | + | + | + | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Y.-F.; Lin, T.; Liu, X.; Pan, J.; Xie, J.; Yang, S.-P. In-Vitro Study on the Antibacterial and Antioxidant Activity of Four Commercial Essential Oils and In-Situ Evaluation of Their Effect on Quality Deterioration of Pacific White Shrimp (Litopenaeus vannamei) during Cold Storage. Foods 2022, 11, 2475. https://doi.org/10.3390/foods11162475
Qian Y-F, Lin T, Liu X, Pan J, Xie J, Yang S-P. In-Vitro Study on the Antibacterial and Antioxidant Activity of Four Commercial Essential Oils and In-Situ Evaluation of Their Effect on Quality Deterioration of Pacific White Shrimp (Litopenaeus vannamei) during Cold Storage. Foods. 2022; 11(16):2475. https://doi.org/10.3390/foods11162475
Chicago/Turabian StyleQian, Yun-Fang, Ting Lin, Xiao Liu, Jiao Pan, Jing Xie, and Sheng-Ping Yang. 2022. "In-Vitro Study on the Antibacterial and Antioxidant Activity of Four Commercial Essential Oils and In-Situ Evaluation of Their Effect on Quality Deterioration of Pacific White Shrimp (Litopenaeus vannamei) during Cold Storage" Foods 11, no. 16: 2475. https://doi.org/10.3390/foods11162475
APA StyleQian, Y. -F., Lin, T., Liu, X., Pan, J., Xie, J., & Yang, S. -P. (2022). In-Vitro Study on the Antibacterial and Antioxidant Activity of Four Commercial Essential Oils and In-Situ Evaluation of Their Effect on Quality Deterioration of Pacific White Shrimp (Litopenaeus vannamei) during Cold Storage. Foods, 11(16), 2475. https://doi.org/10.3390/foods11162475