Encapsulation of Rich-Carotenoids Extract from Guaraná (Paullinia cupana) Byproduct by a Combination of Spray Drying and Spray Chilling
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Production of Carotenoid-Rich Extract from Guaraná Peels
2.3. Production of Microparticles from the Carotenoid-Rich Extract
2.3.1. Microparticles Obtained by Spray Drying (SD)
2.3.2. Microparticles Obtained by Spray Chilling (SC)
2.3.3. Microparticles Obtained by the Combination of Spray Drying and Chilling (SDC)
2.4. Characterization of Microparticles and Storage Stability
2.4.1. Water Activity
2.4.2. Instrumental Color Analysis
2.4.3. Particle Size and Distribution
2.4.4. Determination of Total Carotenoid Content in the Nonencapsulated and Encapsulated Extract
2.4.5. Encapsulation Efficiency (EE)
2.4.6. Kinetics of Carotenoid Degradation
2.4.7. Carotenoid Retention (CR)
2.5. Analysis of Selected Microparticles
2.5.1. Scanning Electron Microscopy (SEM)
2.5.2. Oxidative Stability
2.5.3. Differential Scanning Calorimetry (DSC)
2.5.4. Dynamic Vapor Sorption (DVS)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Microparticles and Their Changes during Storage
3.1.1. Water Activity (aw)
3.1.2. Color Parameters
3.1.3. Mean Diameter and Particle Size Distribution
3.2. Encapsulation Efficiency (EE)
3.3. Chemical Stability of Nonencapsulated and Encapsulated Carotenoid-Rich Extract
3.4. Characterization of Selected Microparticles by Morphology, Thermal Properties, and Moisture Sorption
3.4.1. Scanning Electron Microscopy (SEM)
3.4.2. Oxidative Stability
3.4.3. Thermophysical Properties
3.4.4. Sorption Isotherms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- da Silva, L.M.R.; de Sousa, P.H.M.; de Sousa Sabino, L.B.; do Prado, G.M.; Torres, L.B.V.; Maia, G.A.; de Figueiredo, R.W.; Ricardo, N.M.P.S. Brazilian (North and Northeast) Fruit By-Products. Food Wastes By-Prod. Nutraceutical Health Potential 2020, 45, 127–158. [Google Scholar] [CrossRef]
- Schimpl, F.C.; da Silva, J.F.; de Carvalho Gonçalves, J.F.; Mazzafera, P. Guarana: Revisiting a highly caffeinated plant from the Amazon. J. Ethnopharmacol. 2013, 150, 14–31. [Google Scholar] [CrossRef] [PubMed]
- Santana, Á.L.; Zanini, J.A.; Macedo, G.A. Dispersion-assisted extraction of guarana processing wastes on the obtaining of polyphenols and alkaloids. J. Food Process. Eng. 2020, 43, e13381. [Google Scholar] [CrossRef]
- Pinho, L.S.; da Silva, M.P.; Thomazini, M.; Cooperstone, J.L.; Campanella, O.H.; da Costa Rodrigues, C.E.; Favaro-Trindade, C.S. Guaraná (Paullinia cupana) by-product as a source of bioactive compounds and as a natural antioxidant for food applications. J. Food Process. Preserv. 2021, 45, e15854. [Google Scholar] [CrossRef]
- During, A.; Harrison, E.H. Mechanisms of provitamin A (carotenoid) and vitamin A (retinol) transport into and out of intestinal Caco-2 cells. J. Lipid Res. 2007, 48, 2283–2294. [Google Scholar] [CrossRef]
- Liu, X.H.; Yu, R.B.; Liu, R.; Hao, Z.X.; Han, C.C.; Zhu, Z.H.; Ma, L. Association between lutein and zeaxanthin status and the risk of cataract: A meta-analysis. Nutrients 2014, 6, 452–465. [Google Scholar] [CrossRef]
- Chuyen, H.; Van Eun, J.B. Marine carotenoids: Bioactivities and potential benefits to human health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2600–2610. [Google Scholar] [CrossRef]
- Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, pharmacology and treatment. Br. J. Pharmacol. 2017, 174, 1290–1324. [Google Scholar] [CrossRef]
- Cano, M.P.; Gómez-Maqueo, A.; García-Cayuela, T.; Welti-Chanes, J. Characterization of carotenoid profile of Spanish Sanguinos and Verdal prickly pear (Opuntia ficus-indica, spp.) tissues. Food Chem. 2017, 237, 612–622. [Google Scholar] [CrossRef]
- Fraser, P.D.; Bramley, P.M. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 2004, 43, 228–265. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; ILSI Human Nutrition Institute: Washington DC, USA, 2001. Available online: https://pdf.usaid.gov/pdf_docs/Pnacq929.pdf (accessed on 13 January 2022).
- Sartori, T.; Consoli, L.; Hubinger, M.D.; Menegalli, F.C. Ascorbic acid microencapsulation by spray chilling: Production and characterization. LWT-Food Sci. Technol. 2015, 63, 353–360. [Google Scholar] [CrossRef]
- Troya, D.; Tupuna-Yerovi, D.S.; Ruales, J. Effects of wall materials and operating parameters on physicochemical properties, process efficiency, and total carotenoid content of microencapsulated banana passionfruit pulp (Passiflora tripartita var. mollissima) by spray-drying. Food Bioprocess Technol. 2018, 11, 1828–1839. [Google Scholar] [CrossRef]
- Anthero, A.G.D.S.; Bezerra, E.O.; Comunian, T.A.; Procópio, F.R.; Hubinger, M.D. Effect of modified starches and gum arabic on the stability of carotenoids in paprika oleoresin microparticles. Dry. Technol. 2020, 39, 1927–1940. [Google Scholar] [CrossRef]
- Santos, P.D.F.; Rubio, F.T.V.; de Carvalho Balieiro, J.C.; Thomazini, M.; Favaro-Trindade, C.S. Application of spray drying for production of microparticles containing the carotenoid-rich tucumã oil (Astrocaryum vulgare Mart.). LWT 2021, 143, 111106. [Google Scholar] [CrossRef]
- Islam, M.Z.; Kitamura, Y.; Yamano, Y.; Kitamura, M. Effect of vacuum spray drying on the physicochemical properties, water sorption and glass transition phenomenon of orange juice powder. J. Food Eng. 2016, 169, 131–140. [Google Scholar] [CrossRef]
- Selim, K.; Tsimidou, M.; Biliaderis, C.G. Kinetic studies of degradation of saffron carotenoids encapsulated in amorphous polymer matrices. Food Chem. 2000, 71, 199–206. [Google Scholar] [CrossRef]
- Souza, V.B.; Thomazini, M.; Barrientos, M.A.E.; Nalin, C.M.; Ferro-Furtado, R.; Genovese, M.I.; Favaro-Trindade, C.S. Functional properties and encapsulation of a proanthocyanidin-rich cinnamon extract (Cinnamomum zeylanicum) by complex coacervation using gelatin and different polysaccharides. Food Hydrocoll. 2018, 77, 297–306. [Google Scholar] [CrossRef]
- Carneiro, H.C.; Tonon, R.V.; Grosso, C.R.; Hubinger, M.D. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng. 2013, 115, 443–451. [Google Scholar] [CrossRef]
- Okuro, P.K.; de Matos Junior, F.E.; Favaro-Trindade, C.S. Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technol. Biotechnol. 2013, 51, 171. [Google Scholar]
- Chambi, H.N.M.; Alvim, I.D.; Barrera-Arellano, D.; Grosso, C.R.F. Solid lipid microparticles containing water-soluble compounds of different molecular mass: Production, characterisation and release profiles. Food Res. Int. 2008, 41, 229–236. [Google Scholar] [CrossRef]
- Sillick, M.; Gregson, C.M. Spray chill encapsulation of flavors within anhydrous erythritol crystals. LWT-Food Sci. Technol. 2012, 48, 107–113. [Google Scholar] [CrossRef]
- Zuidam, N.J.; Shimoni, E. Overview of microencapsulates for use in food products or processes and methods to make them. In Encapsulation Technologies for Active Food Ingredients and Food Processing; Springer: New York, NY, USA, 2010; pp. 3–29. [Google Scholar]
- Consoli, L.; Grimaldi, R.; Sartori, T.; Menegalli, F.C.; Hubinger, M.D. Gallic acid microparticles produced by spray chilling technique: Production and characterization. LWT-Food Sci. Technol. 2016, 65, 79–87. [Google Scholar] [CrossRef]
- Arslan-Tontul, S.; Erbas, M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT 2017, 81, 160–169. [Google Scholar] [CrossRef]
- Fadini, A.L.; Alvim, I.D.; Ribeiro, I.P.; Ruzene, L.G.; da Silva, L.B.; Queiroz, M.B.; de OliveiraMiguel, A.M.R.; Chaves, F.C.M.; Rodrigues, R.A.F. Innovative strategy based on combined microencapsulation technologies for food application and the influence of wall material composition. LWT 2018, 91, 345–352. [Google Scholar] [CrossRef]
- Cuevas, M.S.; Rodrigues, C.E.; Gomes, G.B.; Meirelles, A.J. Vegetable Oils Deacidification by Solvent Extraction: Liquid− Liquid Equilibrium Data for Systems Containing Sunflower Seed Oil at 298.2 K. J. Chem. Eng. Data 2021, 55, 3859–3862. [Google Scholar] [CrossRef]
- Rocha, G.A.; Fávaro-Trindade, C.S.; Grosso, C.R.F. Microencapsulation of lycopene by spray drying: Characterization, stability and application of microcapsules. Food Bioprod. Process. 2012, 90, 37–42. [Google Scholar] [CrossRef]
- Pelissari, J.R.; Souza, V.B.; Pigoso, A.A.; Tulini, F.L.; Thomazini, M.; Rodrigues, C.E.; Urbano, A.; Favaro-Trindade, C.S. Production of solid lipid microparticles loaded with lycopene by spray chilling: Structural characteristics of particles and lycopene stability. Food Bioprod. Process. 2016, 98, 86–94. [Google Scholar] [CrossRef]
- Tonon, R.V.; Brabet, C.; Hubinger, M.D. Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Res. Int. 2010, 43, 907–914. [Google Scholar] [CrossRef]
- Hart, D.J.; Scott, K.J. Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chem. 1995, 54, 101–111. [Google Scholar] [CrossRef]
- Alvim, I.D.; Stein, M.A.; Koury, I.P.; Dantas, F.B.H.; Cruz, C.L.D.C.V. Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT-Food Sci. Technol. 2016, 65, 689–694. [Google Scholar] [CrossRef]
- Xiao, Y.D.; Huang, W.Y.; Li, D.J.; Song, J.F.; Liu, C.Q.; Wei, Q.Y.; Zhang, M.; Yang, Q.M. Thermal degradation kinetics of all-trans and cis-carotenoids in a light-induced model system. Food Chem. 2018, 239, 360–368. [Google Scholar] [CrossRef] [PubMed]
- De Leonardis, A.; Macciola, V. Heat-oxidation stability of palm oil blended with extra virgin olive oil. Food Chem. 2012, 135, 1769–1776. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.X.; Dai, Z.Q.; Li, D.J.; Liu, C.Q.; Wu, C.E.; Song, J.F. Preparation, optimization, characterization, and in vitro bioaccessibility of a lutein microparticle using spray drying with β-cyclodextrin and stevioside. J. Food Process. Preserv. 2021, 45, e15032. [Google Scholar] [CrossRef]
- Sanchez, C.; Nigen, M.; Tamayo, V.M.; Doco, T.; Williams, P.; Amine, C.; Renard, D. Acacia gum: History of the future. Food Hydrocolloids 2018, 78, 140–160. [Google Scholar] [CrossRef]
- Labuza, T.P. Properties of water as related to the keeping quality of foods. In Proceedings of the International Congress of Food Science and Technology, Washington, DC, USA, 9–14 August 1971. [Google Scholar]
- Silva, M.P.; Tulini, F.L.; Matos-Jr, F.E.; Oliveira, M.G.; Thomazini, M.; Fávaro-Trindade, C.S. Application of spray chilling and electrostatic interaction to produce lipid microparticles loaded with probiotics as an alternative to improve resistance under stress conditions. Food Hydrocoll. 2018, 83, 109–117. [Google Scholar] [CrossRef]
- McClements, D.J. Theoretical prediction of emulsion color. Adv. Colloid Interface Sci. 2002, 97, 63–89. [Google Scholar] [CrossRef]
- Favaro-Trindade, C.S.; Okuro, P.K.; de Matos, F.E., Jr. 5 Encapsulation via Spray. In Handbook of Encapsulation and Controlled release; CRC Press: Boca Raton, FL, USA, 2015; Volume 71. [Google Scholar]
- De Lara Pedroso, D.; Thomazini, M.; Heinemann, R.J.B.; Favaro-Trindade, C.S. Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. Int. Dairy J. 2012, 26, 127–132. [Google Scholar] [CrossRef]
- Hansen, L.T.; Allan-Wojtas, P.M.; Jin, Y.L.; Paulson, A.T. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 2002, 19, 35–45. [Google Scholar] [CrossRef]
- Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm. 2002, 242, 121–128. [Google Scholar] [CrossRef]
- Ghotra, B.S.; Dyal, S.D.; Narine, S.S. Lipid shortenings: A review. Food Res. Int. 2002, 35, 1015–1048. [Google Scholar] [CrossRef]
- Navarro-Guajardo, N.; García-Carrillo, E.M.; Espinoza-González, C.; Téllez-Zablah, R.; Dávila-Hernández, F.; Romero-García, J.; Ledezma-Pérez, A.; Mercado-Silva, J.A.; Torres, C.A.P.; Pariona, N. Candelilla wax as natural slow-release matrix for fertilizers encapsulated by spray chilling. J. Renew. Mater. 2018, 6, 226–236. [Google Scholar] [CrossRef]
- Khoo, H.E.; Prasad, K.N.; Kong, K.W.; Jiang, Y.; Ismail, A. Carotenoids and their isomers: Color pigments in fruits and vegetables. Molecules 2011, 16, 1710–1738. [Google Scholar] [CrossRef] [PubMed]
- Provesi, J.G.; Dias, C.O.; Amante, E.R. Changes in carotenoids during processing and storage of pumpkin puree. Food Chem. 2011, 128, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Amaya, D.B. Effects of processing and storage on food carotenoids. Sight Life Newsl. 2002, 3, 25–35. [Google Scholar]
- Sarabandi, K.; Jafari, S.M.; Mahoonak, A.S.; Mohammadi, A. Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. Int. J. Biol. Macromol. 2019, 140, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Lima, P.M.; Dacanal, G.C.; Pinho, L.S.; Pérez-Córdoba, L.J.; Thomazini, M.; Moraes, I.C.F.; Favaro-Trindade, C.S. Production of a rich-carotenoid colorant from pumpkin peels using oil-in-water emulsion followed by spray drying. Food Res. Int. 2021, 148, 110627. [Google Scholar] [CrossRef]
- Medina-Torres, L.; Santiago-Adame, R.; Calderas, F.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Rocha-Guzmán, N.E.; Núñez-Ramírez, D.M.; Manero, O. Microencapsulation by spray drying of laurel infusions (Litsea glaucescens) with maltodextrin. Ind. Crops Prod. 2016, 90, 1–8. [Google Scholar] [CrossRef]
- Elik, A.; Yanık, D.K.; Göğüş, F. A comparative study of encapsulation of carotenoid enriched-flaxseed oil and flaxseed oil by spray freeze-drying and spray drying techniques. LWT 2021, 143, 111153. [Google Scholar] [CrossRef]
- Bhusari, S.N.; Muzaffar, K.; Kumar, P. Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technol. 2014, 266, 354–364. [Google Scholar] [CrossRef]
- Silva, M.P.; Thomazini, M.; Holkem, A.T.; Pinho, L.S.; Genovese, M.I.; Fávaro-Trindade, C.S. Production and characterization of solid lipid microparticles loaded with guaraná (Paullinia cupana) seed extract. Food Res. Int. 2019, 123, 144–152. [Google Scholar] [CrossRef]
- Alves, A.I.; Rodrigues, M.Z.; Ribeiro Pinto, M.R.M.; Lago Vanzela, E.S.; Stringheta, P.C.; Perrone, Í.T.; Ramos, A.M. Morphological characterization of pequi extract microencapsulated through spray drying. Int. J. Food Prop. 2017, 20 (Suppl. 2), 1298–1305. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Microencapsulation of pineapple peel extract by spray drying using maltodextrin, inulin, and arabic gum as wall matrices. Foods 2020, 9, 718. [Google Scholar] [CrossRef] [PubMed]
- Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Rutz, J.K.; Borges, C.D.; Zambiazi, R.C.; da Rosa, C.G.; da Silva, M.M. Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food. Food Chem. 2016, 202, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Mothé, C.G.; Rao, M.A. Thermal behavior of gum arabic in comparison with cashew gum. Thermochim. Acta 2000, 357, 9–13. [Google Scholar] [CrossRef]
- Peinado, I.; Mason, M.; Romano, A.; Biasioli, F.; Scampicchio, M. Stability of β-carotene in polyethylene oxide electrospun nanofibers. Appl. Surf. Sci. 2016, 370, 111–116. [Google Scholar] [CrossRef]
- Sy, C.; Gleize, B.; Dangles, O.; Landrier, J.F.; Veyrat, C.C.; Borel, P. Effects of physicochemical properties of carotenoids on their bioaccessibility, intestinal cell uptake, and blood and tissue concentrations. Mol. Nutr. Food Res. 2012, 56, 1385–1397. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, W. Coacervation processes. In Microencapsulation in the Food Industry; Academic Press: New York, NY, USA, 2014; pp. 125–137. [Google Scholar] [CrossRef]
- Isobe, N.; Sagawa, N.; Ono, Y.; Fujisawa, S.; Kimura, S.; Kinoshita, K.; Miuchi, T.; Iwata, T.; Isogai, A.; Nishino, M.; et al. Primary structure of gum arabic and its dynamics at oil/water interface. Carbohydr. Polym. 2020, 249, 116843. [Google Scholar] [CrossRef]
Formulation | Core (%) | Carrier Material (%) |
---|---|---|
Extract | Gum Arabic solution (20%, w/v) | |
SD20 | 20 | 80 |
SD25 | 25 | 75 |
SD33 | 33 | 67 |
Extract | Vegetable fat | |
SC20 | 20 | 80 |
SC30 | 30 | 70 |
SC40 | 40 | 60 |
SD33 microparticles | Vegetable fat | |
SDC10 | 10 | 90 |
SDC20 | 20 | 80 |
Response | Time (Days) | SD20 | SD25 | SD33 | SC20 | SC30 | SC40 | SDC10 | SDC20 | |
---|---|---|---|---|---|---|---|---|---|---|
aw | 0 | 0.132 ± 0.004 h,B | 0.210 ± 0.001 f,B | 0.161± 0.005 g,B | 0.913 ± 0.001 a,B | 0.872 ± 0.002 b,B | 0.801 ± 0.002 c,B | 0.47 ± 0.01 d,B | 0.412 ± 0.003 e,B | |
90 | 0.456 ± 0.002 e,A | 0.449 ± 0.001 e,A | 0.418 ± 0.003 e,A | 0.953 ± 0.004 a,A | 0.897 ± 0.006 b,A | 0.833 ± 0.008 c,A | 0.52 ± 0.01 d,A | 0.468 ± 0.008 e,A | ||
Color parameters | L* | 0 | 80.61 ± 0.01 d,B | 76.44 ± 0.01 f,B | 74.11 ± 0.01 h,B | 84.15 ± 0.01 a,A | 82.51 ± 0.24 b,A | 79.20 ± 1.82 e,A | 81.26 ± 0.02 c,B | 74.39 ± 0.01 g,B |
90 | 81.46 ± 0.01 b,A | 78.80 ± 0.01 c,A | 75.18 ± 0.01 f,A | 76.31 ± 0.01 d,B | 75.63 ± 1.42 e,B | 71.01 ± 2.29 h,B | 81.75 ± 0.01 a,A | 75.12 ± 0.01 g,A | ||
a* | 0 | 1.08 ± 0.04 d,A | 2.06 ± 0.03 b,A | 4.05 ± 0.02 a,A | 0.79 ± 0.02 e,B | 0.84 ± 0.26 e,B | 1.97 ± 016 b,B | 0.14 ± 0.02 f,A | 1.81 ± 0.05 c,A | |
90 | 0.51 ± 0.03 f,B | 1.04 ± 0.02 e,B | 3.17 ± 0.04 a,B | 1.08 ± 0.03 e,A | 1.42 ± 0.02 c,A | 2.29 ± 0.07 b,A | 0.06 ± 0.01 g,B | 1.60 ± 0.06 d,B | ||
b* | 0 | 23.07 ± 0.02 g,A | 33.39 ± 0.05 b,A | 39.68 ± 0.02 a,A | 27.29 ± 0.05 e,A | 24.12 ± 0.59 f,A | 30.76 ± 1.47 d,A | 20.35 ± 0.05 h,A | 31.04 ± 0.08 c,A | |
90 | 20.36 ± 0.05 g,B | 29.62 ± 0.02 b,B | 35.12 ± 0.07 a,B | 24.07 ± 0.09 e,B | 23.39 ± 0.03 f,B | 25.27 ± 0.07 d,B | 19.89 ± 0.06 h,B | 29.02 ± 0.10 c,B | ||
Mean diameter (µm) | 0 | 16.2 ± 0.3 d,B | 10.8 ± 0.2 e,A | 10.9 ± 0.6 e,B | 59 ± 2 b,B | 56.6 ± 0.4 b,B | 52 ± 1 c,B | 73 ± 1 a,A | 60 ± 1 b,B | |
90 | 20 ± 1 c,A | 13 ± 2 c,A | 15 ± 2 c,A | 74 ± 2 b,A | 71.3 ± 0.8 b,A | 71.7 ± 0.8 b,A | 75 ± 2 b,A | 96 ± 2 a,A |
Formulation | Encapsulation Efficiency (%) |
---|---|
SD20 | 96 ± 7 ab |
SD25 | 100 ± 2 a |
SD33 | 90 ± 2 bc |
SC20 | 96 ± 2 ab |
SC30 | 97 ± 1 ab |
SC40 | 90 ± 1 bc |
SDC10 | 82 ± 7 c |
SDC20 | 94.4 ± 0.5 ab |
Sample | Zero-Order | First-Order | t1/2 (Days) | ||
---|---|---|---|---|---|
k0 (µg/(g·s)) | R2 | k1 (1/s) | R2 | ||
Nonencapsulated extract | 1.558 | 0.957 | 0.006 | 0.857 | 108.08 |
SD20 | 0.089 | 0.911 | 0.003 | 0.901 | 236.93 |
SD25 | 0.176 | 0.844 | 0.003 | 0.847 | 212.20 |
SD33 | 0.284 | 0.805 | 0.004 | 0.783 | 168.07 |
SC20 | 0.025 | 0.925 | 0.001 | 0.919 | 606.36 |
SC30 | 0.035 | 0.909 | 0.001 | 0.792 | 581.55 |
SC40 | 0.075 | 0.949 | 0.001 | 0.859 | 546.95 |
SDC10 | 0.021 | 0.610 | 0.003 | 0.755 | 316.59 |
SDC20 | 0.058 | 0.942 | 0.003 | 0.940 | 223.45 |
Sample | Induction Time (h) |
---|---|
Nonencapsulated extract | 0.04 ± 0.00 d |
SD33 | 2.10 ± 0.01 b |
SC40 | 0.11 ± 0.02 c |
SDC20 | 21.8 ± 0.3 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinho, L.S.; de Lima, P.M.; de Sá, S.H.G.; Chen, D.; Campanella, O.H.; da Costa Rodrigues, C.E.; Favaro-Trindade, C.S. Encapsulation of Rich-Carotenoids Extract from Guaraná (Paullinia cupana) Byproduct by a Combination of Spray Drying and Spray Chilling. Foods 2022, 11, 2557. https://doi.org/10.3390/foods11172557
Pinho LS, de Lima PM, de Sá SHG, Chen D, Campanella OH, da Costa Rodrigues CE, Favaro-Trindade CS. Encapsulation of Rich-Carotenoids Extract from Guaraná (Paullinia cupana) Byproduct by a Combination of Spray Drying and Spray Chilling. Foods. 2022; 11(17):2557. https://doi.org/10.3390/foods11172557
Chicago/Turabian StylePinho, Lorena Silva, Priscilla Magalhães de Lima, Samuel Henrique Gomes de Sá, Da Chen, Osvaldo H. Campanella, Christianne Elisabete da Costa Rodrigues, and Carmen Sílvia Favaro-Trindade. 2022. "Encapsulation of Rich-Carotenoids Extract from Guaraná (Paullinia cupana) Byproduct by a Combination of Spray Drying and Spray Chilling" Foods 11, no. 17: 2557. https://doi.org/10.3390/foods11172557
APA StylePinho, L. S., de Lima, P. M., de Sá, S. H. G., Chen, D., Campanella, O. H., da Costa Rodrigues, C. E., & Favaro-Trindade, C. S. (2022). Encapsulation of Rich-Carotenoids Extract from Guaraná (Paullinia cupana) Byproduct by a Combination of Spray Drying and Spray Chilling. Foods, 11(17), 2557. https://doi.org/10.3390/foods11172557