Cephalopods as Challenging and Promising Blue Foods: Structure, Taste, and Culinary Highlights and Applications
Abstract
:1. Introduction
Cephalopod Overview
2. Cephalopod Structure by Biological Constraints
2.1. Muscular Hydrostatic Mechanics
2.2. Biological Variation
2.2.1. Biological Variation within Specimen
2.2.2. Biological Variations across Species
2.2.3. Biological Variation across Cephalopod Families (Squid, Octopus, and Cuttlefish)
Squid vs. Octopus
Squid vs. Cuttlefish
3. Molecular Structure of Cephalopods
3.1. Microscopy
3.2. Spectroscopy
3.3. Chemical Analysis
3.3.1. Collagen
3.3.2. Amino Acids
4. Cephalopod Texture
Texture Analysis
5. Flavour of Cephalopods
5.1. Taste Components of Squid
5.1.1. Umami Taste Compounds
5.1.2. Other Taste Compounds
5.2. Degradation Processes of Umami Taste Compounds in Cephalopods
6. Food Safety
6.1. Biogenic Amines
6.2. Trace Elements
7. Cephalopod Gastronomy and Gastrophysics
7.1. Cephalopod Cooking and Cookbooks
7.2. Culinary Gastrophysical Investigations of Cephalopods
8. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Greenpeace. Available online: https://www.greenpeace.org/usa/oceans/sustainable-seafood/red-list-fish/ (accessed on 25 June 2022).
- Gephart, J.A.; Henriksson, P.J.G.; Parker, R.W.R.; Shepon, A.; Gorospe, K.D.; Bergman, K.; Eshel, G.; Golden, C.D.; Halpern, B.S.; Hornborg, S.; et al. Environmental performance of blue foods. Nature 2021, 597, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.V.; Mouritsen, O.G. The solution to sustainable eating is not a one-way street. Front. Psychol. 2020, 11, 531. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.V.; Poojary, M.M.; Mouritsen, O.G.; Olsen, K. Umami potential of Nordic squid (Loligo forbesii). Int. J. Gast. Food Sci. 2020, 22, 100275. [Google Scholar] [CrossRef]
- Schmidt, C.V.; Olsen, K.; Mouritsen, O.G. Umami synergy as the scientific principle behind taste-pairing champagne and oysters. Nat. Sci. Rep. 2020, 10, 20077. [Google Scholar] [CrossRef]
- Mouritsen, O.G.; Williams, L.; Bjerregaard, R.; Duelund, L. Seaweeds for umami flavor in the New Nordic Cuisine. Flavour 2012, 1, 4. [Google Scholar] [CrossRef]
- Doubleday, Z.A.; Prowse, A.A.; Pierce, G.J.; Semmens, J.; Steer, M.; Leporati, S.C.; Lourenco, S.; Quetglas, A.; Sauer, W.; Gillanders, B.M. Global proliferation of cephalopods. Curr. Biol. 2016, 26, R387–R407. [Google Scholar] [CrossRef]
- Keller, S.; Quetglas, A.; Puerta, P.; Bitetto, I.; Casciaro, L.; Cuccu, D.; Esteban, A.; Garcia, C.; Garofalo, G.; Guijarro, B.; et al. Environmentally driven synchronies of Mediterranean cephalopod Populations. Prog. Oceanogr. 2017, 152, 1–14. [Google Scholar] [CrossRef]
- Mouritsen, O.G.; Styrbæk, K. Cephalopod gastronomy-a promise for the future. Front. Comm. Sci. Environ. Comm. 2018, 3, 38. [Google Scholar] [CrossRef]
- Mouritsen, O.G.; Styrbæk, K. Octopuses, Squid & Cuttlefish: Seafood for Today and for the Future; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Fiorito, G.; Affuso, A.; Basil, J.; Cole, A.; de Girolamo, P.; D’Angelo, L.; Dickel, L.; Gestal, C.; Grasso, F.; Kuba, M.; et al. Guidelines for the care and welfare of cephalopods in research–a consensusbased on an initiative by CephRes, FELASA, and the Boyd Group. Lab. Anim. 2015, 49, 1–90. [Google Scholar] [CrossRef]
- Godfrey-Smith, P. Other Minds: The Octopus, the Sea, and the Deep Origins of Consciousness; Farrar, Straus, and Giroux: New York, NY, USA, 2016. [Google Scholar]
- Vilgis, T.A. Soft matter food physics—the physics of food and cooking. Rep. Prog. Phys. 2015, 78, 124602. [Google Scholar] [CrossRef]
- Pedersen, M.T.; Hansen, P.L.; Clausen, M.P. Gastronomy unraveled by physics: Gastrophysics. Int. J. Food Des. 2021, 6, 153–180. [Google Scholar]
- Mouritsen, O.G. The emerging science of astrophysics and its application to the algal cuisine. Flavour 2012, 1, 6. [Google Scholar] [CrossRef]
- Marinespecies. Available online: www.marinespecies.org (accessed on 25 June 2022).
- Wikipedia. Available online: www.wikipedia.org (accessed on 25 June 2022).
- Sealifebase. Available online: www.sealifebase.ca (accessed on 25 June 2022).
- Provost, J.J.; Colabroy, K.L.; Kelly, B.S.; Wallert, M.A. Meat and Fish. In The Science of Cooking: Understanding the Biology and Chemistry behind Food and Cooking, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 273–309. [Google Scholar]
- Kier, W.M. The functional morphology of the musculature of squid (Loliginidae) arms and tentacles. J. Morphol. 1982, 172, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Kier, W.M. The Musculature of Coleoid Cephalopod Arms and Tentacles. Front. Cell Dev. Biol. 2016, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Kier, W.M.; Smith, K.K. Tongues, tentacles and trunks: The biomechanics of movement in muscular hydrostats. Zool. J. Linn. Soc. 1985, 83, 307–324. [Google Scholar] [CrossRef]
- Kier, W.M.; Thompson, J.T. Muscle arrangement, function and specialisation in recent coleoids. Berl. Paläobiol. Abh. 2003, 3, 141–162. [Google Scholar]
- Zullo, L.; Fossati, S.M.; Imperadore, P.; Nödl, M. Molecular Determinants of cephalopod muscles and their implication in muscle regeneration. Front. Cell Dev. Biol. 2017, 5, 53. [Google Scholar] [CrossRef]
- Moltschaniwskyj, N.J. Changes in mantle muscle structure associated with growth and reproduction in the tropical squid Photololigo sp. (Cephalopoda: Loliginidae). Molluscan Stud. 1997, 63, 290–293. [Google Scholar] [CrossRef]
- Bailey, A.J.; Light, N.D. Connective Tissues in Meat and Meat Products, 1st ed.; Elsevier Science Publishers LTD.: Essex, UK, 1989. [Google Scholar]
- Otwell, S.T.; Hamann, D.D. Textural characterisation of squid (Loligo pealei): Instrumental and panel evaluation. J. Food Sci. 1979, 44, 1636–1643. [Google Scholar] [CrossRef]
- Otwell, S.T.; Giddings, G.G. Scanning electron microscopy of squid, Loligo pealei: Raw, cooked, and frozen mantle. J. Food Sci. 1979, 4, 1629–1635. [Google Scholar] [CrossRef]
- Schmidt, C.V. Gastrophysical and Chemical Characterization of Umami, Taste Pairing, and Texture in Relation to Sustainable Food Sources: Squid, Oysters, and Fermented Beverages. Ph.D. Thesis, Department of Food Science, University of Copenhagen, København, Denmark, 2021. [Google Scholar]
- Kuo, J.; Peleg, M.; Hultin, H.O. Tensile characterisation of squid mantle. J. Food Sci. 1990, 55, 369–371. [Google Scholar] [CrossRef]
- Schmidt, C.V.; Plankensteiner, L.; Clausen, M.P.; Walhter, A.R.; Kirkensgaard, J.J.K.; Olsen, K.; Mouritsen, O.G. Gastrophysical and chemical characterization of structural changes in cooked squid mantle. J. Food Sci. 2021, 86, 4811–4827. [Google Scholar] [CrossRef] [PubMed]
- Kolodziejska, I.; Sikorski, Z.E.; Sadowska, M. Texture of cooked mantle of squid Illex argentinus as influenced by specimen characteristics and treatments. J. Food Sci. 1987, 52, 932–935. [Google Scholar] [CrossRef]
- Ozogul, Y.; Duysak, O.; Ozogul, F.; Özkütük, A.S.; Türeli, C. Seasonal effects in the nutritional quality of the body structural tissue of cephalopods. J. Food Chem. 2008, 108, 847–852. [Google Scholar] [CrossRef]
- Storelli, M.M.; Garofalo, R.; Giungato, D.; Giacominelli-Stuffler, R. Intake of essential and non-essential elements from consumption of octopus, cuttlefish and squid. Food Addit. Contam. Part B Surveill. 2010, 3, 14–18. [Google Scholar] [CrossRef]
- Gokoglu, N.; Topuz, O.K.; Yerlikayaa, P.; Yatmazb, H.A.; Ucak, I. Effects of Freezing and Frozen Storage on Protein Functionality and Texture of Some Cephalopod Muscles. J. Aquat. 2018, 27, 2. [Google Scholar] [CrossRef]
- Tapia-Vasquez, A.E.; Rodriguez-Ramirez, R.; Ezquerra-Brauer, J.M.; Suárez-Jiménez, G.M.; Ramírez-Guerra, H.E.; Cota-Arriola, O.; Torres-Arreola, W. Collagen in cephalopods: An overview of its physicochemical properties and influence on muscle texture. J. Aquat. 2021, 30, 1038–1046. [Google Scholar] [CrossRef]
- Ando, M.; Makino, M.; Tsukamasa, Y.; Makinodan, Y.; Miyosh, M. Interdependence between heat solubility and pyridinoline contents of squid mantle collagen. J. Food Sci. 2001, 66, 265–269. [Google Scholar] [CrossRef]
- Tantasuttikul, A.; Kijroongrojana, K.; Benjakul, S. Quality Indices of Squid (Photololigo duvaucelii) and Cuttlefish (Sepia aculeata) Stored in Ice. J. Aquat. 2011, 20, 129–147. [Google Scholar] [CrossRef]
- Cozza, N.; Bonani, W.; Motta, A.; Migliaresi, C. Evaluation of alternative sources of collagen fractions from Loligo vulgaris squid mantle. Int. J. Biol Macromol. 2016, 87, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Luo, Y.; Wang, Y.; Zhao, Y. Effect of different drying methods on the myosin structure, amino acid composition, protein digestibility and volatile profile of squid fillets. J. Food Chem. 2015, 171, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Luo, Y.; Wang, Y.; Yue, J.; Liu, Z.; Zhong, Y.; Zhao, Y.; Yang, H. Drying-induced protein and microstructure damages of squid fillets affected moisture distribution and rehydration ability during rehydration. J. Food Eng. 2014, 123, 23–31. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, Y.; Yue, J.; Liu, Z.; Zheng, Y.; Qian, B.; Zhong, Y.; Zhao, Y. Thermal behavior, microstructure and protein quality of squid fillets dried by far-infrared assisted heat pump drying. J. Food Contr. 2014, 36, 102–110. [Google Scholar] [CrossRef]
- Hsu, C.; Huang, H.; Wang, C. Effects of high-pressure processing on the quality of chopped raw octopus. LWT 2014, 56, 303–308. [Google Scholar] [CrossRef]
- Gou, J.G.; Choi, G.P.; He, X.; Ahn, J.H. Dimethylamine, trimethylamine, and biogenic amine formation in high-pressure processed semidried squid (Todarodes pacificius) during refrigerated storage. J. Food Sci. 2010, 75, M489–M495. [Google Scholar] [CrossRef]
- Ketnawa, S.; Rawdkuen, S. Application of bromelain extract for muscle foods tenderisation. Food Sci. Nutr. 2011, 2, 393–401. [Google Scholar]
- Llorca, E.; Hernando, I.; Pérez-Munuera, I.; Quiles, A.; Larrea, V.; Lluch, M.A. Protein breakdown during the preparation of frozen batter-coated squid rings. Eur. Food Res. Technol. 2007, 225, 807–813. [Google Scholar] [CrossRef]
- Ando, M.; Ando, M.; Tsukamasa, Y.; Makinodan, Y.; Miyoshi, M. Muscle firmness and structure of raw and cooked arrow squid mantle as affected by freshness. J. Food Sci. 1999, 64, 4. [Google Scholar] [CrossRef]
- Kugino, M.; Kugino, K. Changes in the microstructure and rheological properties of squid mantle due to cooking in a NaCl solution and soy sauce. J. Home Econ. 1995, 46, 751–757. [Google Scholar]
- Kugino, M.; Kugino, K. Microstructural and rheological properties of cooked squid mantle. J. Food Sci. 1994, 59, 792–796. [Google Scholar] [CrossRef]
- Kungino, M.; Kungino, K.; Wu, Z.-H. Rheological properties of dried squid mantle change on softening. J. Food Sci. 1993, 58, 321–324. [Google Scholar] [CrossRef]
- Otwell, S.T.; Hamann, D.D. Textural characterisation of squid (Loligo pealei): Scanning electron microscopy of cooked mantle. J. Food Sci. 1979, 44, 1629–1635. [Google Scholar] [CrossRef]
- Sarabia-Sainz, H.M.; Torres-Arreola, W.; Brauer, J.M.E. Spectroscopic imaging: Nuclear magnetic resonance and Raman spectrometry for the detection of collagen cross-linking from giant squid mantle, fin, and tentacle tissues. Instrum. Sci. Technol. 2018, 46, 567–581. [Google Scholar] [CrossRef]
- Schmidt, C.V.; Plankensteiner, L.; Faxholm, P.L.; Olsen, K.; Mouritsen, O.G.; Frøst, M.B. Physicochemical characterization of sous-vide cooked squid (Loligo forbesii and Loligo vulgaris) and the relationship to selected sensory properties and hedonic response. Int. J. Gast. Food Sci. 2021, 23, 100298. [Google Scholar] [CrossRef]
- Abdelmalek, B.E.; Gómez-Estaca, J.; Sila, A.; Alvarez, M.; Gómez-Guillén, M.C.; Chaabouni-Ellouz, S.; Ayadi, M.A.; Bougatef, A. Characteristics and functional properties of gelatin extracted from squid (Loligo vulgaris) skin. LWT 2016, 65, 924–931. [Google Scholar] [CrossRef]
- Ezquerra-Brauer, J.M.; Márquez-Ríos, E.; López-Corona, B.E.; Ocaño-Higuera, V.M.; Ramírez-Guerra, H.E.; Cota-Arriola, O.; Torres-Arreola, W. Physicochemical changes of pepsin-solubilized and insoluble collagen in jumbo squid (Dosidicus gigas) muscle after cooking process. Int. J. Food Prop. 2018, 21, 821–834. [Google Scholar] [CrossRef]
- Uriarte-Monotoya, M.H.; Arias-Moscoso, J.L.; Plascencia-Jatomea, M.; Santacruz-Ortega, H.; Rouzaud-Sández, O.; Cardenas-Lopez, J.L.; Marquez-Rios, E.; Ezquerra-Brauer, J.M. Jumbo squid (Dosidicus gigas) mantle collagen: Extraction, characterization, and potential application in the preparation of chitosan–collagen biofilms. Bioresour. Technol. 2010, 101, 4212–4219. [Google Scholar] [CrossRef]
- Sirkorski, Z.E.; Kolodziejska, I. The composition and properties of squid meat. Food Chem. 1986, 20, 213–224. [Google Scholar] [CrossRef]
- Raman, M.; Saleena, M. Physiochemical and textural alterations in Indian squid (Loligo Duvauceli) mantle during frozen storage and cooking. J. Aquat. Food Prod. Technol. 2015, 24, 454–467. [Google Scholar] [CrossRef]
- Bourne, J.W.; Lippell, J.M.; Torzilli, P.A. Glycation cross-linking induced mechanical–enzymatic cleavage of microscale tendon fibers. Matrix. Biol. 2014, 34, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Mouritsen, O.G.; Styrbæk, K. Mouthfeel: How Texture Makes Taste; Mouritsen, O.G., Styrbæk, K., Eds.; Columbia University Press: New York, NY, USA, 2017. [Google Scholar]
- Vilgis, T.A. Texture, taste and aroma: Multi-scale materials and the gastrophysics of food. Flavour 2013, 2, 12. [Google Scholar] [CrossRef]
- Kuo, J.; Hultin, H.O.; Atallah, M.T.; Sun, B. Role of collagen and contractile elements in ultimate tensile strength of squid mantle. J. Agric. Food Chem. 1991, 39, 1149–1154. [Google Scholar] [CrossRef]
- Márquez-Alvarez, L.R.; Ocano_Higuera, V.M.; Rodriguez-Félix, F.; Ruiz-Cruz, S. Production and functional evaluation of a protein concentrate from giant squid (Dosidicus Gigas) fins obtained by alkaline dissolution. J. Food Process. Preserv. 2015, 39, 6. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, H.; Dong, K.; Yang, S.; Ye, X.; Chen, S. Analysis of the tenderisation of jumbo squid (Dosidicus gigas) meat by ultrasonic treatment using response surface methodology. J. Food Chem. 2014, 160, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Suárez, J.C.; Pacheco-Aguilar, R.; Scheuren-Acevedo, S.M.; García-Sánchez, G.; Carvallo-Ruiz, G.; Lugo-Sánchez, M.E.; Cumplido-Barbeitia, G.; Jiménez-Ruiz, E.I. Microbiological and physiochemical quality changes in frankfurters made from jumbo squid (Dosidicus Gigas) mantle muscle in the presence and absence of a natural antimicrobial agent. J. Food Saf. 2015, 35, 473–481. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Miranda, M.; Clavería, R.; Quispe, I.; Vergara, J.; Uribe, E.; Paez, H.; Di Scala, K. Effect of air temperature on drying kinetics and quality characteristics of osmo-treated jumbo squid (Dosidicus gigas). Food Sci. Technol. 2011, 44, 16–23. [Google Scholar] [CrossRef]
- García-Sanchez, G.; Sotelo-Romero, C.R.; Pacheco-Aguilar, R.; Ramírez-Suárez, J.C.; Sotelo-Mundo, R.; Scheuren-Acevedo, S.M.; García-Sifuentes, C.M.; Martínez-Porchas, M. Effect of freezing on protein denaturation and gelling capacity of jumbo squid (Dosidicus gigas) mantle muscle. Lebensm. Wiss. Technol. 2015, 62, 737–742. [Google Scholar] [CrossRef]
- Ramirez-Suarez, J.C.; Ibarra-León, L.R.; Pacheco-Aguilar, R.; Lugo-Sánchez, M.E.; García-Sánchez, G.; Carvallo-Ruiz, G. Physicochemical and functional changes in jumbo squid (Dosidicus gigas) mantle muscle during ice storage. Food Chem. 2008, 111, 586–591. [Google Scholar] [CrossRef]
- Torres-Arreola, W.; Ocano-Higuera, V.M.; Ezquerra-Brauer, J.M.; Lopez-Corona, B.E.; Rodríguez-Felix, F.; Castro-Longoria, R.; Ramírez-Guerra, H.E. Effect of cooking on physicochemical and structural properties of jumbo squid (Dosidicus gigas) muscle. J. Food Process. Preserv. 2018, 42, e13528. [Google Scholar] [CrossRef]
- Kolodziejska, I.; Niecikowska, C.; Sirkorski, Z.E. Dimethylamine and formaldehyde in cooked squid (lllex argentinus) muscle extract and mantle. J. Food Chem. 1994, 50, 281–283. [Google Scholar] [CrossRef]
- Cui, Z.; Dubova, H.; Mo, H. Effects of sous vide cooking on physicochemical properties of squid. J. Hyg. Eng. Des. 2019, 29, 35–40. [Google Scholar]
- Kolodziejska, I.; Pacana, J.; Sikorski, Z.E. Effect of squid liver extract on proteins and on the texture of cooked squid mantle. J. Food Bio. Chem. 1992, 16, 141–150. [Google Scholar] [CrossRef]
- Collignan, A.; Montet, D. Tenderizing squid mantle by marination at different pH and temperature levels. LWT. 1998, 31, 7–8. [Google Scholar] [CrossRef]
- Stanley, D.W.; Hultin, H.O. Quality factors in cooked north atlantic squid. Can. Inst. Food Technol. J. 1982, 15, 277–282. [Google Scholar] [CrossRef]
- Gopinath, S.P.; Kochery Anthony, M.X.; Ravishankar Chandragiri, N.; Bindu, J.; Srinivasa Gopal Teralandur, K. Standardisation of process parameters for ready-to-eat squid masala in indigenous polymer-coated tin-free steel cans. Int. J. Food Sci. 2007, 42, 1148–1155. [Google Scholar] [CrossRef]
- Ueng, Y.-E.; Chow, C.-J. Textural and histological changes of different squid mantle muscle during frozen storage. J. Agric. Food Chem. 1998, 46, 4728–4733. [Google Scholar] [CrossRef]
- Zavadlav, S.; Janči, T.; Lacković, I.; Karlović, S.; Rogulj, I.; Vidaček, S. Assessment of storage shelf life of European squid (cephalopod: Loliginidae, Loligo vulgaris) by bioelectrical impedance measurements. J. Food Eng. 2016, 184, 44–52. [Google Scholar] [CrossRef]
- Gokoglu, N.; Yerlikaya, P.; Ucak, I.; Yatmaz, H.A. Effect of bromelain and papain enzymes addition on physicochemical and textural properties of squid (Loligo vulgaris). J. Food Meas. Charact. 2017, 11, 1. [Google Scholar] [CrossRef]
- Agrafioti, P.T.; Katsanidis, E. Effects of additives on the selected quality attributes and cooking yield of squid: Modelling and optimization. Int. J. Food Prop. 2012, 15, 579–589. [Google Scholar] [CrossRef]
- Katsanidis, E. Impact of physical and chemical pretreatments on texture of octopus (Eledone moschata). J. Food Sci. 2004, 69, S264–S267. [Google Scholar] [CrossRef]
- Katsanidis, E.; Agrafioti, P.T. Application of organic acids for texture modification of octopus (Octopus vulgaris) muscle. J. Texture Stud. 2009, 40, 637–645. [Google Scholar] [CrossRef]
- Mouritsen, O.G.; Styrbæk, K. Umami. Unlocking the Secrets of the Fifth Taste; Columbia University Press: New York, NY, USA, 2014. [Google Scholar]
- Seibel, B.A.; Walsh, P.J. Trimethylamine oxide accumulation in marine animals: Relationship to acylglycerol storage. J. Exp. Biol. 2002, 205, 297–306. [Google Scholar] [CrossRef] [PubMed]
- UIC. Umami Information Center. Available online: https://www.umamiinfo.com/richfood/ (accessed on 25 June 2022).
- Kani, Y.; Yoshikawa, N.; Okada, S.; Abe, H. Taste-active components in the mantle muscle of the oval squid Sepioteuthis lessoniana and their effects on squid taste. Int. Food Res. J. 2008, 41, 371–379. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Yoshikawa, T.; Ikeda, S.; Ninomiya, T. Measurement of the relative taste intensity of some L-amino acids and 5′-nucleotides. J. Food Sci. 1971, 36, 846–849. [Google Scholar] [CrossRef]
- Kani, Y.; Yoshikawa, N.; Okada, S.; Abe, H. Comparison of extractive components in muscle and liver of three Loliginidae squids with those of one Ommastrephidae species. JSFS 2007, 73, 940–949. [Google Scholar] [CrossRef]
- Yue, J.; Zhang, Y.; Jin, Y.; Deng, Y.; Zhao, Y. Impact of high hydrostatic pressure on non-volatile and volatile compounds of squid muscles. Food Chem. 2016, 194, 12–19. [Google Scholar] [CrossRef]
- Kagawa, M.; Matsumoto, M.; Hatae, K. Taste differences among three kinds of squid and the effect of cold storage on the taste. J. Home Econ. Jpn. 1999, 50, 1245–1254. [Google Scholar]
- Shirai, T.; Kikuchi, N.; Matsuo, S.; Uchida, S.; Inada, H.; Suzuki, T.; Hirano, T. Taste components of Boreo Pacific Gonate Squid Gonatopsis borealis. Fish. Sci. 1997, 63, 772–778. [Google Scholar] [CrossRef]
- Chiou, T.-K.; Chang, H.-K.; Lo, L.; Lan, H.-L.; Shiau, C.-Y. Changes in chemical constituents and physical indices during processing of dried-seasoned squid. Fish. Sci. 2000, 66, 708–715. [Google Scholar] [CrossRef]
- Bi, S.; Chen, L.; Sun, Z.; Wen, Y.; Xue, Q.; Xue, C.; Li, Z.; Sun, C.; Wei, Z.; Liu, H. Investigating influence of aquaculture seawater with different salinities on non-volatile taste-active compounds in Pacific oyster (Crassostrea gigas). J. Food Meas. Carract. 2021, 15, 2078–2087. [Google Scholar] [CrossRef]
- Fuke, S.; Konosu, S. Taste-active components in some foods: A review of Japanese research. Physiol. Behav. 1991, 49, 863–868. [Google Scholar] [CrossRef]
- Ma, L.-X.; Huang, X.-H.; Zheng, J.; Dong, L.; Chen, J.-N.; Dong, X.-P.; Zhou, D.-Y.; Zhu, B.-W.; Qin, L. Free amino acid, 5′-Nucleotide, and lipid distribution in different tissues of blue mussel (Mytilis edulis (L.)) determined by mass spectrometry based metabolomics. Food Chem. 2022, 373, 131435. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Ninomiya, K.J. The use and utility of glutamates as flavoring agents in food. Umami and food palatability. Nuture 2000, 130, 921S–926S. [Google Scholar]
- Vazquez-Ortiz, F.A.; Caire, G.; Higuera-Ciapara, I.; Hernandez, G. High performance liquid chromatographic determination of free amino acids in shrimp. J. Liq. Chromatogr. 1995, 18, 2059. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Moral, A. Free amino acids in muscle of Norway lobster (Nephrops novergicus (L.)) in controlled and modified atmospheres during chilled storage. Food Chem. 2004, 86, 85–91. [Google Scholar] [CrossRef]
- Hong, H.; Regenstein, J.M.; Luo, Y. The importance of ATP-related compounds for the freshness and flavor of post-mortem fish and shellfish muscle: A review. Crit. Rev. Food Sci. Nutr. 2017, 13, 1787–1798. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Takahashi, S.; Sakaguchi, M.; Kawai, F.; Kanamori, M. Postmortem Changes of ATP and its related compounds and freshness indices in spear squid Doryteuthis bleekeri Muscles. Fish. Sci. 1994, 60, 583–587. [Google Scholar] [CrossRef]
- Márquez-Ríos, E.; Morán-Palacio, E.F.; Lugo-Sánchez, M.E.; Ocano-Higuera, V.M.; Pacheco-Aguilar, R. Postmortem biochemical behavior of giant squid (Dosidicus gigas) mantle muscle stored in ice and its relation with quality parameters. J. Food Sci. 2007, 72, C356–C362. [Google Scholar] [CrossRef]
- Kumiko Ninomiya, K. Natural occurrence. Food Rev. Int. 1998, 14, 177–211. [Google Scholar] [CrossRef]
- Nishimura, T.; Rhue, M.R.; Okitani, A.; Kato, H. Components contributing to the improvement of meat taste during storage. Agric. Biol. Chem. 1988, 52, 2323. [Google Scholar]
- Shiba, T.; Shiraki, N.; Furushita, M.; Maeda, T. Free amino acid and ATP-related compounds in sterile tiger puffer fish (Takifugu rubripes) fillets stored at 4 °C. J. Food Proces. Pres. 2012, 38, 791–797. [Google Scholar] [CrossRef]
- Gômez-Limia, L.; Cutillas, R.; Carballo, J.; Franco, I.; Martínex, S. European eels: Influence of processing step, filling medium and storage time. Foods 2020, 9, 1377. [Google Scholar] [CrossRef] [PubMed]
- Gou, J.; Lee, H.; Ahn, J. Effect of high pressure processing on the quality of squid (Todarodes pacificus) during refrigerated storage. J. Food Chem. 2010, 119, 471–476. [Google Scholar] [CrossRef]
- Shalini, R.; Jeyasekaran, G.; Shakila, R.J.; Arisekar, U.S.S.; Jawahar, P.; Aanand, S.; HemaMalini, A. Concentrations of trace elements in the organs of commercially exploited crustaceans and cephalopods caught in the waters of Thoothukudi, South India. Mar. Pollut. Bull. 2020, 154, 111045. [Google Scholar] [CrossRef] [PubMed]
- Cronin, I. The International Squid Cookbook; Aris Books: New York, NY, USA, 1981. [Google Scholar]
- Schultz, J.; Regardz, B. Calamari Cookbook: Exploring the World’s Cuisines through Squid; Celestialarts: Berkeley, CA, USA, 1987. [Google Scholar]
- Grocock, C.; Grainger, S. Prospect Books; Apicius: Totnes, UK, 2006. [Google Scholar]
- Schweid, N. Reaktion Books; Octopus: London, UK, 2014. [Google Scholar]
- Power, A.M. Cephs & Chefs Recipe Book. Available online: https://www.ucviden.dk/ws/files/136570615/Egenvurdering_Smag_for_livet_Med_smagen_som_brobygger_digital.pdf (accessed on 25 June 2022).
- Melendo, J.A.; Beltrán, J.A.; Roncalés, P. Tenderisation of squid (Loligo vulgaris and Illex coindetii) with bromelain and a bovine spleen lysosomal-enriched extract. Int. Food Res. J. 1997, 30, 335–341. [Google Scholar] [CrossRef]
- Faxholm, P.L.; Schmidt, C.V.; Brønnum, L.B.; Sun, Y.-T.; Clausen, M.P.; Flore, R.; Olsen, K.; Mouritsen, O.G. Squid of the North: Gastronomy and gastrophysics of Danish squid. Int. J. Gast. Food Sci. 2018, 14, 66–76. [Google Scholar] [CrossRef]
- Mouritsen, O.G.; Schmidt, C.V. A role for macroalgae and cephalopods in sustainable eating. Front. Psychol. 2020, 11, 1402. [Google Scholar] [CrossRef]
Cephalopod | Latin Name | Common Name | Origin | |
---|---|---|---|---|
Family | Genus | Species | ||
Squid | Doryteuthis | bleekeri | Spear squid | Western Pacific Ocean |
Dosidicus | gigas | Jumbo squid | Eastern Pacific Ocean | |
Gonatopsis | boralis | Boreopacific arm hook squid | North Pacific Ocean | |
Illex | argentinus | Argentine squid | Southwestern Atlantic Ocean | |
coindetii | Southern shortfin squid or broadtail shortfin squid | Mediterranean Sea | ||
illecebrosus | Northern shortfin squid | Northwest Atlantic Ocean | ||
Loligo | bleekeri | Spear squid | Western Pacific Ocean | |
chinensis | Mitre squid | China Sea | ||
duvauceli | Indian squid | Mediterranean Sea | ||
edulis | Sword tip squid | Indian Ocean, The Arabian Sea | ||
forbesii | Veined squid and long-finned squid | North-east Atlantic Ocean | ||
guncula brevis | Atlantic brief squid | Atlantic Ocean | ||
opalescens | California market squid | Pacific Ocean | ||
pealei | Longfin inshore squid | Atlantic Ocean | ||
vulgaris | European squid and common squid | North Sea and South | ||
Heterololigo | bleekeri | Arrow squid, spear squid | Western Pacific Ocean | |
Ommastrephes | bartramii | Neon flying squid | Northwest Pacific Ocean | |
Sepiteuthis | lesoniana | Oval squid, bigfin reef squid | Indo-Pacific Ocean | |
Todarodes | pacificus | Japanese flying squid, Japanese common squid, or Pacific flying squid | Northwest Pacific Ocean, Sea of Japan, Yellow Sea, and East China Sea | |
pacificus steenstrup | Japanese flying squid | Western Pacific, excluding the Bering Sea; northern and eastern Pacific | ||
sagittatus | Sea arrow sagittate squid, red squid, European flying squid | Eastern Atlantic Ocean and the Mediterranean Sea | ||
Octopus | Eledone | moschata | White octopus and musky octopus | Mediterranean Sea |
cirrhosa | Horned octopus, lesser octopus, and northern octopus | Northeast Atlantic | ||
Octopus | vulgaris | Pulpo, common octopus | Atlantic Ocean (Andalusia) | |
salutii | Spider octopus | Mediterranean Sea and northeast Atlantic | ||
Cuttlefish | Sepia | aculeata | Needle cuttlefish | Indian and Pacific Ocean |
elegans | Elegant cuttlefish | Eastern Atlantic, Mediterranean Sea including the Adriatic Sea, West Africa, and Agulhas Bank | ||
officinalis | Common cuttlefish and European common cuttlefish | Eastern Atlantic, Mediterranean Sea | ||
orbignyana | Pink cuttlefish | Atlantic Sea, Mediterranean Sea | ||
pharaonis | Pharaoh cuttlefish | Gulf and the Andaman Sea |
Family | Species | Cut | Test Type | Parameters | Fixture | Reference |
---|---|---|---|---|---|---|
Squid | D. gigas | Fins (gel) | Compression | Stress and strain | Cylindrical probe (dia. 38 mm), deformation 75%, load cell 100 N | [64] |
D. gigas | Mantle | Double compression | Flexibility, firmness | Cylindrical probe (dia. 5 mm) | [65] | |
D. gigas | Mantle (cooked) | Double compression | Hardness, springiness, cohesiveness; shear force | Cylindrical probe (dia. 50 mm), deformation 75%; Warner–Bratzler shear blade | [66] | |
D. gigas | Mantle (dried) | Firmness | Cylindrical probe (dia. 3 mm) | [67] | ||
D. gigas | Mantle (gel) | Double bite | Hardness, cohesiveness, elasticity | Knife blade, load cell 100 N | [68] | |
D. gigas | Mantle (gel) | Double compression | Gel strength, elasticity, cohesiveness | Cylindrical probe, deformation 75% | [69] | |
D. gigas | Mantle, fins, arms (cooked) | Shear force | Shear force | [70] | ||
I. argentinus | Mantle | Shear force | Shear force | [71] | ||
I. argentinus | Mantle (cooked) | Hardness, elasticity, chewiness | [72] | |||
I. argentinus | Mantle (raw) | Shear force | Wedge plunger | [33] | ||
I. argentinus | Mantle (raw, enzymes) | Toughness | [73] | |||
I. coindetii | Mantle | Tensile | Stress and strain | Two hooks | [74] | |
I. illecebrosus, L. pealei | Mantle (raw, cooked) | Shear force | Modified Kramer shear cell | [75] | ||
L- vulgaris | Mantle (raw) | Compression test | Toughness | Cylindrical probe (5 kg load cell) | [36] | |
L. duvauceli | Mantle (cooked) | Double compression | Hardness 1, hardness 2, cohesiveness, gumminess, springiness, chewiness; shear force | Cylindrical probe (dia. 50 mm), 50 N load cell, deformation 40%; Warner–Bratzler shear blade, 50 N load cell | [76] | |
L. duvauceli | Mantle (raw, cooked) | Double compression | Cohesiveness, springiness, stiffness | Cylindrical probe (dia. 50 mm), deformation 40% | [59] | |
L. duvauceli | Shear force | Shear force | Warner–Bratzler shear blade | [39] | ||
L. edulis, I. argentinus | Mantle (raw) | Shear force | Toughness | Plunger knife blade | [77] | |
L. forbesii, L. vulgaris | Mantle (raw, cooked) | Shear force | Hardness, work | Warner–Bratzler shear blade | [32,54] | |
L. pealei | Mantle (cooked) | Shear force | Force, energy | Single blade; punch and die | [28] | |
L. pealei, I. illecebrosus | Mantle (raw, cooked) | Tension | Stress and strain | Tensile grips | [31,63] | |
L. vulgaris | Mantle (raw) | Penetration | Firmness, elasticity, work | Flat bottom stainless-steel cylinder (dia. 6 mm) 100 kg load cell. | [78] | |
L. vulgaris | Mantle (raw) | Texture profile analysis | Hardness, cohesiveness, springiness, gumminess, chewiness | Cylindrical compression probe | [36] | |
L. vulgaris | Mantle (raw, enzymes) | Compression test | Toughness | Cylindrical probe using 40% compression (5 kg load cell) | [79] | |
O. sloanipacifcus | Mantle (raw, dried) | Rupture | Shear force | Razor blade | [51] | |
S. lessoniana | Mantle (cooked) | Tension | Stress and strain | [49] | ||
T. pacificus | Mantle (raw) | Compression | Hardness | Cylindrical probe (dia. 2 mm) | [42] | |
T. sagittatus | Mantle (cooked) | Shear force | Toughness | Warner–Bratzler shear blade | [80] | |
Octopus | E. moschata | Mantle | Penetration | Toughness | Cylindrical probe (dia. 2 mm) | [81] |
O. vulgaris | Mantle | Penetration | Toughness | Cylindrical probe (dia. 2 mm) | [82] | |
O. vulgaris | Arm (raw) | Texture profile analysis | Hardness, cohesiveness, springiness, gumminess, chewiness | Cylindrical compression probe | [36] | |
O. vulgaris | Arm (raw) | Compression test | Toughness | Cylindrical probe (5 kg load cell) | [36] | |
Cuttlefish | S. aculeata | Mantle (raw) | Shear force | Shear force | Warner–Bratzler shear blade | [39] |
S. officinalis | Mantle (raw) | Texture profile analysis | Hardness, cohesiveness, springiness, gumminess, chewiness | Cylindrical compression probe | [36] | |
S. officinalis | Mantle (raw) | Compression test | Toughness | Cylindrical probe (5 kg load cell) | [36] | |
S. pharaonis | Mantle (raw) | Shear force | Toughness | Plunger knife blade | [77] |
Family | Species | Cut | Glutamate | Nucleotides | Nucleotides Identified | EUC | Reference | |
---|---|---|---|---|---|---|---|---|
mg/100 g | mg/100 g | |||||||
Cephalopod | Squid | L. forbesii | Mantle | 110 | 24 | AMP, IMP, XMP, GMP | 3300 | [5] |
Fins | 72 | 26 | 2350 | |||||
Arms | 101 | 18 | 2300 | |||||
Liver | 462 | 39 | 22,400 | |||||
L. bleekeri | Mantle | 8 | 52 | AMP | 500 | [88] | ||
Liver | 90 | 12 | AMP, IMP | 1400 | ||||
L. edulis | Mantle | 16 | 45 | AMP, IMP | 900 | [88] | ||
Liver | 91 | 8 | AMP, IMP | 980 | ||||
S. lessoniana | Mantle | 4 | 44 | AMP | 220 | [88] | ||
Liver | 25 | 32 | AMP, IMP | 1000 | ||||
T. pacificus | Mantle | 7 | 40 | AMP, IMP | 350 | [88] | ||
Liver | 80 | 23 | AMP, IMP | 2320 | ||||
T. pacificus | 40 | 19 | AMP, GMP, IMP | 970 | [89] | |||
T. pacificus | 17 | - | AMP, IMP | - | [90] | |||
G. boralis | Mantle | 11 | 5 | AMP | 80 | [91] | ||
Arms | 28 | 7 | AMP | 270 | ||||
I. argentinus | Mantle | 170 | 3 | AMP, IMP | 790 | [92] | ||
O. bartrami | Mantle | 62 | 2 | AMP, IMP | 210 | [92] | ||
S. lessoniana | 4 | - | [86] | |||||
S. lessoniana | 21 | - | AMP, IMP | - | [90] | |||
Heterololigo bleekeri | 28 | - | AMP, IMP | - | [90] | |||
Octopus | - | 25 * | 90 * | AMP | [85] | |||
Cuttlefish | - | - | - | |||||
Bivalve | Oysters | C. gigas | Whole body | 160 | 44 | AMP, GMP, IMP | 8740 | [6] |
O. edulis | Whole body | 257 | 88 | AMP, GMP, IMP | 27,800 | [6] | ||
C. gigas | 145 | 26 | AMP, IMP, GMP | 4740 | [93] | |||
Clam | Paratapes undulatus | 90 | 5 | AMP | 640 | [94] | ||
Mussel | Mytilis edulis L. | Female specimen, mantle | 108 | 18 | AMP, GMP, IMP, XMP | 2480 | [95] | |
Female specimen, adductor muscle | 233 | 31 | 9030 | |||||
Male specimen, mantle | 335 | 23 | 9720 | |||||
Male specimen, adductor muscle | 94 | 22 | 2560 | |||||
Scallop | - | 140 | 31 | AMP, GMP | 5430 | [96] | ||
Crustaceans | Shrimp | Litopenaeus vannamei | 20 | 16 | AMP | 410 | [97] | |
Lobster | Nephrops novergicus L. | 31 | - | - | [98] | |||
Crab | Chionoecetes opilio | 19 | 20 | IMP, GMP, AMP | 480 | [96] | ||
Teleost | Tuna | - | 287 | IMP, AMP | - | [96] | ||
Anguillidae | Eel | Anguilla anguilla | 22 | - | - | [99] | ||
>Algae | >Kelp | > Saccharina japonica | > | >1608 | >- | > | >- | >[96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, C.V.; Mouritsen, O.G. Cephalopods as Challenging and Promising Blue Foods: Structure, Taste, and Culinary Highlights and Applications. Foods 2022, 11, 2559. https://doi.org/10.3390/foods11172559
Schmidt CV, Mouritsen OG. Cephalopods as Challenging and Promising Blue Foods: Structure, Taste, and Culinary Highlights and Applications. Foods. 2022; 11(17):2559. https://doi.org/10.3390/foods11172559
Chicago/Turabian StyleSchmidt, Charlotte Vinther, and Ole G. Mouritsen. 2022. "Cephalopods as Challenging and Promising Blue Foods: Structure, Taste, and Culinary Highlights and Applications" Foods 11, no. 17: 2559. https://doi.org/10.3390/foods11172559
APA StyleSchmidt, C. V., & Mouritsen, O. G. (2022). Cephalopods as Challenging and Promising Blue Foods: Structure, Taste, and Culinary Highlights and Applications. Foods, 11(17), 2559. https://doi.org/10.3390/foods11172559