How Does Income Heterogeneity Affect Future Perspectives on Food Consumption? Empirical Evidence from Urban China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Two-Stage EASI Demand System Model
2.2.1. First Stage: Engel Model
2.2.2. Second Stage: EASI Demand System Model
2.2.3. Censoring Problem
2.2.4. Endogeneity
2.2.5. Elasticity
2.3. Dynamic Prediction Method
2.4. Data and Variables
2.4.1. Data Collection
2.4.2. Major Variables and Statistical Analysis
3. Results
3.1. Model Estimation Results
3.2. Elasticity Estimation Results
3.3. Simulation Results
3.3.1. Food Consumption Perspectives
3.3.2. Impact of Income Heterogeneity on Food Prediction
3.4. Robustness Check
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Food Items | Low-Income Group | Lower-Middle-Income Group | Middle-Income Group | Upper-Middle-Income Group | High-Income Group | F-Statistic |
---|---|---|---|---|---|---|
Rice | 91.80 | 109.60 | 116.77 | 122.11 | 143.86 | 242.40 *** |
(65.10) | (75.28) | (84.60) | (86.95) | (91.07) | ||
Wheat | 41.99 | 46.68 | 46.88 | 41.21 | 25.71 | 103.45 *** |
(59.94) | (59.80) | (61.09) | (55.65) | (46.10) | ||
Oils | 26.01 | 30.29 | 31.60 | 31.42 | 31.81 | 74.06 *** |
(16.72) | (17.80) | (19.41) | (19.49) | (20.34) | ||
Pork | 44.70 | 55.92 | 61.95 | 66.05 | 83.90 | 552.00 *** |
(31.11) | (36.66) | (41.92) | (43.59) | (48.88) | ||
Beef | 4.58 | 6.40 | 7.01 | 7.75 | 8.70 | 258.02 *** |
(5.10) | (6.26) | (6.46) | (6.96) | (7.14) | ||
Mutton | 2.84 | 3.98 | 4.39 | 4.47 | 3.44 | 49.79 *** |
(5.80) | (6.75) | (7.20) | (6.93) | (5.43) | ||
Poultry | 21.40 | 28.41 | 31.66 | 35.61 | 49.30 | 732.64 *** |
(17.22) | (22.01) | (25.07) | (27.86) | (32.72) | ||
Eggs | 25.86 | 32.76 | 34.51 | 35.44 | 33.65 | 182.75 *** |
(17.25) | (19.09) | (19.25) | (19.88) | (18.45) | ||
Diary | 45.11 | 61.86 | 68.75 | 75.02 | 78.87 | 302.40 *** |
(41.26) | (49.17) | (52.22) | (54.08) | (56.81) | ||
Seafood | 18.03 | 24.90 | 29.67 | 34.46 | 48.57 | 773.34 *** |
(16.83) | (22.09) | (27.40) | (31.38) | (35.82) | ||
Vegetables | 301.04 | 368.95 | 391.33 | 401.08 | 409.78 | 324.62 *** |
(149.93) | (152.54) | (161.81) | (168.25) | (175.54) | ||
Fruits | 104.85 | 139.33 | 151.56 | 162.82 | 176.32 | 476.29 *** |
(72.65) | (81.59) | (84.70) | (87.43) | (88.48) | ||
Other grains | 27.69 | 30.67 | 30.63 | 30.65 | 28.95 | 14.64 *** |
(24.15) | (24.30) | (23.92) | (23.79) | (21.57) |
Variable | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
OLS | GMM | OLS | GMM | OLS | GMM | |
log expenditure | −0.104 *** | −0.096 *** | −0.104 *** | −0.094 *** | −0.109 *** | 0.187 *** |
(0.001) | (0.001) | (0.001) | (0.001) | (0.017) | (0.030) | |
Square of log expenditure | 0.0003 | −0.014 *** | ||||
(0.001) | (0.001) | |||||
Food price index | 0.043 *** | 0.043 *** | 0.043 *** | 0.041 *** | ||
(0.002) | (0.002) | (0.002) | (0.002) | |||
Other good price index | 0.008 *** | 0.007 *** | 0.008 *** | 0.007 *** | ||
(0.001) | (0.002) | (0.001) | (0.002) | |||
Family size | 0.011 *** | 0.010 *** | 0.011 *** | 0.010 *** | 0.011 *** | 0.010 *** |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | |
Seniors aged 65 and above | 0.003 ** | 0.003 *** | 0.004 *** | 0.004 *** | 0.004 *** | 0.005 *** |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | |
Children aged 14 and below | 0.014 *** | 0.015 *** | 0.013 *** | 0.014 *** | 0.013 *** | 0.014 *** |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | |
Proportion of FAFH | −0.003 *** | −0.003 *** | −0.003 *** | −0.003 *** | −0.003 *** | −0.003 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Local urban household registration | 0.007 *** | 0.006 *** | 0.005 ** | 0.004 ** | 0.005 ** | 0.004 * |
(0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | |
Education in high school | −0.014 *** | −0.017 *** | −0.014 *** | −0.017 *** | −0.014 *** | −0.016 *** |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | |
Age of meal planner | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Han nationality of meal planner | 0.002 | 0.004 | 0.003 | 0.004 | 0.003 | 0.003 |
(0.003) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | |
Town size | 0.000 | 0.000 | −0.001 | 0.000 | −0.001 | −0.001 |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | |
Guangdong | 0.086 *** | 0.084 *** | 0.073 *** | 0.071 *** | 0.073 *** | 0.075 *** |
(0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | |
Sichuan | 0.045 *** | 0.047 *** | 0.038 *** | 0.039 *** | 0.038 *** | 0.040 *** |
(0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | |
Jilin | 0.003 | 0.004 | 0.002 | 0.002 | 0.002 | 0.004 |
(0.003) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | |
Hebei | −0.010 *** | −0.009 *** | −0.001 | −0.002 | −0.001 | −0.003 |
(0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | |
Henan | −0.028 *** | −0.027 *** | −0.027 *** | −0.026 *** | −0.027 *** | −0.027 *** |
(0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | |
Year 2008 | 0.015 *** | 0.015 *** | 0.002 | 0.004 ** | 0.002 | 0.005 ** |
(0.001) | (0.001) | (0.002) | (0.002) | (0.002) | (0.002) | |
Year 2009 | 0.022 *** | 0.021 *** | 0.007 ** | 0.008 *** | 0.007 ** | 0.009 *** |
(0.001) | (0.001) | (0.003) | (0.003) | (0.003) | (0.003) | |
Constant | 1.171 *** | 1.091 *** | 1.082 *** | 0.994 *** | 1.110 *** | −0.437 *** |
(0.011) | (0.015) | (0.013) | (0.015) | (0.091) | (0.155) |
Coef. | S.E. | Coef. | S.E. | Coef. | S.E. | Coef. | S.E. | Coef. | S.E. | Coef. | S.E. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
α10 | −0.195 | 0.261 | α61 | −0.301 *** | 0.058 | α112 | −0.082 *** | 0.018 | A0,25 | 0.021 *** | 0.005 | A0,47 | −0.029 *** | 0.007 | A0,77 | 0.014 *** | 0.005 |
α11 | 0.034 | 0.099 | α62 | 0.047 *** | 0.008 | α113 | 0.004 *** | 0.001 | A0,26 | 0.001 | 0.005 | A0,48 | 0.002 | 0.017 | A0,78 | −0.004 | 0.003 |
α12 | 0.005 | 0.013 | α63 | −0.002 *** | 0.000 | α120 | −1.528 *** | 0.255 | A0,27 | −0.001 | 0.003 | A0,49 | 0.008 | 0.012 | A0,79 | −0.002 | 0.005 |
α13 | −0.001 | 0.001 | α70 | 1.073 *** | 0.194 | α121 | 0.739 *** | 0.109 | A0,28 | 0.000 | 0.004 | A0,410 | 0.044 *** | 0.012 | A0,710 | 0.001 | 0.004 |
α20 | −0.648 | 0.160 | α71 | −0.429 *** | 0.084 | α122 | −0.109 *** | 0.016 | A0,29 | 0.007 | 0.005 | A0,411 | 0.139 *** | 0.028 | A0,711 | −0.017 *** | 0.005 |
α21 | 0.244 *** | 0.068 | α72 | 0.062 *** | 0.012 | α123 | 0.005 *** | 0.001 | A0,210 | −0.033 *** | 0.005 | A0,412 | −0.031 * * | 0.015 | A0,712 | −0.008 * | 0.005 |
α22 | −0.032 *** | 0.010 | α73 | −0.003 *** | 0.001 | A0,11 | −0.167 *** | 0.034 | A0,211 | 0.037 *** | 0.007 | A0,55 | 0.045 *** | 0.011 | A0,88 | 0.081 *** | 0.018 |
α23 | 0.002 *** | 0.000 | α80 | −0.635 *** | 0.133 | A0,12 | −0.011 * | 0.006 | A0,212 | 0.017 *** | 0.005 | A0,56 | −0.033 *** | 0.009 | A0,89 | −0.011 ** | 0.004 |
α30 | 0.800 *** | 0.232 | α81 | 0.307 *** | 0.055 | A0,13 | −0.015 * | 0.008 | A0,33 | −0.039 *** | 0.011 | A0,57 | 0.019 *** | 0.004 | A0,810 | −0.024 *** | 0.005 |
α31 | −0.341 *** | 0.096 | α82 | −0.048 *** | 0.008 | A0,14 | 0.110 *** | 0.026 | A0,34 | 0.051 *** | 0.014 | A0,58 | −0.006 | 0.009 | A0,811 | −0.032 ** | 0.013 |
α32 | 0.052 *** | 0.014 | α83 | 0.002 *** | 0.000 | A0,15 | 0.026 ** | 0.013 | A0,35 | −0.005 | 0.007 | A0,59 | 0.003 | 0.006 | A0,812 | −0.008 | 0.006 |
α33 | −0.003 *** | 0.001 | α90 | −0.301 | 0.288 | A0,16 | −0.012 | 0.012 | A0,36 | 0.004 | 0.008 | A0,510 | −0.018 *** | 0.006 | A0,99 | −0.004 | 0.011 |
α40 | 0.367 | 0.304 | α91 | 0.157 | 0.124 | A0,17 | 0.019 *** | 0.004 | A0,37 | 0.011 *** | 0.004 | A0,511 | 0.000 | 0.013 | A0,910 | 0.017 ** | 0.007 |
α41 | −0.172 | 0.131 | α92 | −0.023 | 0.018 | A0,18 | −0.058 *** | 0.018 | A0,38 | −0.021 *** | 0.005 | A0,512 | −0.021 *** | 0.007 | A0,911 | −0.043 *** | 0.010 |
α42 | 0.024 | 0.019 | α93 | 0.001 | 0.001 | A0,19 | 0.012 | 0.007 | A0,39 | 0.029 *** | 0.007 | A0,66 | 0.059 *** | 0.011 | A0,912 | 0.016 * | 0.008 |
α43 | −0.001 | 0.001 | α100 | 1.091 *** | 0.231 | A0,110 | 0.023 *** | 0.008 | A0,310 | −0.004 | 0.006 | A0,67 | 0.014 *** | 0.004 | A0,1010 | −0.025 *** | 0.009 |
α50 | 1.267 *** | 0.192 | α101 | −0.425 *** | 0.102 | A0,111 | −0.018 | 0.020 | A0,311 | −0.031 *** | 0.011 | A0,68 | 0.001 | 0.007 | A0,1011 | −0.034 *** | 0.010 |
α51 | −0.559 *** | 0.085 | α102 | 0.058 *** | 0.015 | A0,112 | 0.043 *** | 0.011 | A0,312 | 0.017 ** | 0.008 | A0,69 | −0.007 | 0.007 | A0,1012 | 0.018 ** | 0.008 |
α52 | 0.081 *** | 0.012 | α103 | −0.003 *** | 0.001 | A0,22 | −0.048 *** | 0.004 | A0,44 | −0.148 *** | 0.046 | A0,610 | −0.004 | 0.007 | A0,1111 | −0.067 ** | 0.030 |
α53 | −0.004 *** | 0.001 | α110 | −0.808 *** | 0.293 | A0,23 | −0.012 ** | 0.005 | A0,45 | 0.014 | 0.018 | A0,611 | 0.006 | 0.013 | A0,1112 | −0.073 *** | 0.012 |
α60 | 0.641 *** | 0.142 | α111 | 0.526 *** | 0.125 | A0,24 | 0.011 | 0.009 | A0,46 | 0.013 | 0.018 | A0,612 | 0.005 | 0.008 | A0,1212 | 0.019 | 0.013 |
References
- Yu, X.H. Meat consumption in China and its impact on international food security: Status quo, trends, and policies. J. Integr. Agric. 2015, 14, 989–994. [Google Scholar] [CrossRef]
- Zhu, W.B.; Chen, Y.F.; Zheng, Z.H.; Zhao, J.; Li, G.J.; Si, W. Impact of changing income distribution on fluid milk consumption in urban China. China Agric. Econ. Rev. 2020, 12, 623–645. [Google Scholar] [CrossRef]
- Hovhannisyan, V.; Gould, B.W. Quantifying the structure of food demand in China: An econometric approach. Agric. Econ.-Blackwell 2011, 42, 1–18. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Henneberry, S.R.; Zhao, Y.Y.; Gao, Y. Predicting the changes in the structure of food demand in China. Agribusiness 2019, 35, 301–328. [Google Scholar] [CrossRef]
- Zhu, W.B.; Chen, Y.F.; Zhao, J.; Wu, B.B. Impacts of household income on beef at-home consumption: Evidence from urban China. J. Integr. Agric. 2021, 20, 1701–1715. [Google Scholar] [CrossRef]
- Hovhannisyan, V.; Devadoss, S. Effects of urbanization on food demand in China. Empir. Econ. 2020, 58, 699–721. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- Popkin, B.M.; Horton, S.; Kim, S.; Mahal, A.; Shuigao, J. Trends in diet, nutritional status, and diet-related noncommunicable diseases in China and India: The economic costs of the nutrition transition. Nutr. Rev. 2001, 59, 379–390. [Google Scholar] [CrossRef]
- Willett, W.; Rockstrom, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Z.; Wang, H.; Zhao, L.; Jiang, H.; Zhang, B.; Ding, G. Nutrition transition and related health challenges over decades in China. J. Integr. Agric. 2021, 75, 247–252. [Google Scholar] [CrossRef]
- He, P.; Baiocchi, G.; Hubacek, K.; Feng, K.S.; Yu, Y. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nat. Sustain. 2018, 1, 122–127. [Google Scholar] [CrossRef]
- Li, G.J.; Han, X.R.; Luo, Q.Y.; Zhu, W.B.; Zhao, J. A Study on the Relationship between Income Change and the Water Footprint of Food Consumption in Urban China. Sustainability 2021, 13, 7076. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, X.; Huang, W.; Liu, L.; Zhang, Y.; Yang, D.; Hao, Y.; Chen, Y. The potential benefits of dietary shift in China: Synergies among acceptability, health, and environmental sustainability. Sci. Total. Environ. 2021, 779, 146497. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Rosenzweig, C.; Conchedda, G.; Karl, K.; Gütschow, J.; Xueyao, P.; Obli-Laryea, G.; Wanner, N.; Qiu, S.Y.; De Barros, J. Greenhouse gas emissions from food systems: Building the evidence base. Environ. Res. Lett. 2021, 16, 065007. [Google Scholar] [CrossRef]
- Gandhi, V.P.; Zhou, Z.Y. Food demand and the food security challenge with rapid economic growth in the emerging economies of India and China. Food Res. Int. 2014, 63, 108–124. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Alae-Carew, C.; Bird, F.A.; Choudhury, S.; Harris, F.; Aleksandrowicz, L.; Milner, J.; Joy, E.J.M.; Agrawal, S.; Dangour, A.D.; Green, R. Future diets in India: A systematic review of food consumption projection studies. Glob. Food Secur.-Agric. 2019, 23, 182–190. [Google Scholar] [CrossRef]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six transformations to achieve the sustainable development goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- Deaton, A.; Muellbauer, J. Economics and Consumer Behavior; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Zhou, D.; Yu, X.H.; Abler, D.; Chen, D.H. Projecting meat and cereals demand for China based on a meta-analysis of income elasticities. China Econ. Rev. 2020, 59, 101135. [Google Scholar] [CrossRef]
- Li, L.; Zhai, S.X.; Bai, J.F. The dynamic impact of income and income distribution on food consumption among adults in rural China. J. Integr. Agric. 2021, 20, 330–342. [Google Scholar]
- Chen, D.H.; Abler, D.; Zhou, D.; Yu, X.H.; Thompson, W. A Meta-analysis of Food Demand Elasticities for China. Appl. Econ. Perspect. Policy 2016, 38, 50–72. [Google Scholar] [CrossRef]
- Seale, J.L.; Bai, J.F.; Wahl, T.I.; Lohmar, B.T. Household Engel curve analysis for food, Beijing, China. China Agric. Econ. Rev. 2012, 4, 427–439. [Google Scholar] [CrossRef]
- Timmer, C.P.; Falcon, W.P.; Pearson, S.R.; World Bank. Food Policy Analysis; Published for the World Bank by The Johns Hopkins University Press: Baltimore, MD, USA, 1983; p. 301. [Google Scholar]
- Huang, J.K.; Wei, W.; Cui, Q.; Xie, W. The prospects for China’s food security and imports: Will China starve the world via imports? J. Integr. Agric. 2017, 16, 2933–2944. [Google Scholar] [CrossRef]
- Bu, T.; Tang, D.S.; Liu, Y.H.; Chen, D.G. Trends in Dietary Patterns and Diet-related Behaviors in China. Am. J. Health Behav. 2021, 45, 371–383. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Henneberry, S.R. Household Food Demand by Income Category: Evidence From Household Survey Data in an Urban Chinese Province. Agribusiness 2011, 27, 99–113. [Google Scholar] [CrossRef]
- Carpentier, A.; Guyomard, H. Unconditional elasticities in two-stage demand systems: An approximate solution. Am. J. Agric. Econ. 2001, 83, 222–229. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Henneberry, S.R. The Impact of Changes in Income Distribution on Current and Future Food Demand in Urban China. J. Agric. Resour Econ. 2010, 35, 51–71. [Google Scholar]
- Han, X.R.; Chen, Y.F. Food consumption of outgoing rural migrant workers in urban area of China A QUAIDS approach. China Agric. Econ. Rev. 2016, 8, 230–249. [Google Scholar] [CrossRef]
- Ecker, O.; Qaim, M. Analyzing Nutritional Impacts of Policies: An Empirical Study for Malawi. World Dev. 2011, 39, 412–428. [Google Scholar] [CrossRef]
- Khanal, A.R.; Mishra, A.K.; Keithly, W. Heterogeneity in Food Demand among Rural Indian Households: The Role of Demographics. Can. J. Agric. Econ. 2016, 64, 517–544. [Google Scholar] [CrossRef]
- Lewbel, A.; Pendakur, K. Tricks with Hicks: The EASI Demand System. Am. Econ. Rev. 2009, 99, 827–863. [Google Scholar] [CrossRef]
- Zhen, C.; Finkelstein, E.A.; Nonnemaker, J.M.; Karns, S.A.; Todd, J.E. Predicting the Effects of Sugar-Sweetened Beverage Taxes on Food and Beverage Demand in a Large Demand System. Am. J. Agric. Econ. 2014, 96, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Hovhannisyan, V.; Mendis, S.; Bastian, C. An econometric analysis of demand for food quantity and quality in urban China. Agric. Econ.-Blackwell 2019, 50, 3–13. [Google Scholar] [CrossRef]
- Hovhannisyan, V.; Shanoyan, A. An Empirical Analysis of the Welfare Consequences of Rising Food Prices in Urban China: The Easi Approach. Appl. Econ. Perspect. Policy 2020, 42, 796–814. [Google Scholar] [CrossRef]
- Lee, L.F.; Pitt, M.M. Microeconometric Demand Systems with Binding Nonnegativity Constraints—the Dual Approach. Econometrica 1986, 54, 1237–1242. [Google Scholar] [CrossRef]
- Shonkwiler, J.S.; Yen, S.T. Two-step estimation of a censored system of equations. Am. J. Agric. Econ. 1999, 81, 972–982. [Google Scholar] [CrossRef]
- Hovhannisyan, V.; Gould, B.W. Structural change in urban Chinese food preferences. Agric. Econ.-Blackwell 2014, 45, 159–166. [Google Scholar] [CrossRef]
- Ren, Y.J.; Zhang, Y.J.; Loy, J.P.; Glauben, T. Food consumption among income classes and its response to changes in income distribution in rural China. China Agric. Econ. Rev. 2018, 10, 406–424. [Google Scholar] [CrossRef]
- Gould, B.W. Household composition and food expenditures in China. Agribusiness 2002, 18, 387–407. [Google Scholar] [CrossRef]
- Tedford, J.R.; Capps, O.; Havlicek, J. Adult Equivalent Scales Once More—a Developmental-Approach. Am. J. Agric. Econ. 1986, 68, 322–333. [Google Scholar] [CrossRef]
- Chen, Y.F.; Zhu, W.B.; Chen, Z.Y. The determinants of mutton consumption-at-home in urban China using an IHS double-hurdle model. Brit. Food J. 2018, 120, 952–968. [Google Scholar] [CrossRef]
- Han, X.R.; Yang, S.S.; Chen, Y.F.; Wang, Y.C. Urban segregation and food consumption The impacts of China’s household registration system. China Agric. Econ. Rev. 2019, 11, 583–599. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Henneberry, S.R. Estimating the impacts of rising food prices on nutrient intake in urban China. China Econ. Rev. 2012, 23, 1090–1103. [Google Scholar] [CrossRef]
- Wang, J.J.; Chen, Y.F.; Zheng, Z.H.; Si, W. Determinants of pork demand by income class in urban western China. China Agric. Econ. Rev. 2014, 6, 452–469. [Google Scholar] [CrossRef]
- Yen, S.T.; Fang, C.; Su, S.H. Household food demand in urban China: A censored system approach. J. Comp. Econ. 2004, 32, 564–585. [Google Scholar] [CrossRef]
- Bai, J.F.; Seale, J.L.; Wahl, T.I. Meat demand in China: To include or not to include meat away from home? Aust. J. Agric. Resour Ec. 2020, 64, 150–170. [Google Scholar] [CrossRef]
- Huang, K.S.; Gale, F. Food demand in China: Income, quality, and nutrient effects. China Agric. Econ. Rev. 2009, 1, 395–409. [Google Scholar] [CrossRef]
- Bai, J.F.; McCluskey, J.J.; Wang, H.N.; Min, S. Dietary Globalization in Chinese Breakfasts. Can. J. Agric. Econ. 2014, 62, 325–341. [Google Scholar] [CrossRef]
- Yuan, M.; Seale, J.L.; Wahl, T.; Bai, J.F. The changing dietary patterns and health issues in China. China Agric. Econ. Rev. 2019, 11, 143–159. [Google Scholar] [CrossRef]
- Society, C.N. Chinese Dietary Guidelines; Peoples’ Medical Publishing House: Beijing, China, 2022. [Google Scholar]
- Dauchet, L.; Amouyel, P.; Hercberg, S.; Dallongeville, J. Fruit and vegetable consumption and risk of coronary heart disease: A meta-analysis of cohort studies. J. Nutr. 2006, 136, 2588–2593. [Google Scholar] [CrossRef]
- Heng, Y.; House, L.A. Cluster analysis for fruit consumption patterns: An international study. Brit. Food J. 2018, 120, 1942–1952. [Google Scholar] [CrossRef]
- Garnett, T. Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 2011, 36, S23–S32. [Google Scholar] [CrossRef]
Variables | Mean | S.D. | Variables | Mean | S.D. |
---|---|---|---|---|---|
Budget share (%) | Social economic variables | ||||
Rice in food expenditure | 6.61 | 3.17 | Rice price (kg/RMB) | 3.34 | 0.37 |
Wheat in food expenditure | 2.29 | 3.07 | Wheat price (kg/RMB) | 0.67 | 0.50 |
Oils in food expenditure | 7.07 | 3.89 | Oils price (kg/RMB) | 5.34 | 2.49 |
Pork in food expenditure | 20.26 | 7.83 | Pork price (kg/RMB) | 12.46 | 1.59 |
Beef in food expenditure | 3.01 | 2.68 | Beef price (kg/RMB) | 16.60 | 3.32 |
Mutton in food expenditure | 2.02 | 3.50 | Mutton price (kg/RMB) | 19.15 | 4.12 |
Poultry in food expenditure | 10.22 | 5.29 | Poultry price (kg/RMB) | 9.27 | 9.09 |
Eggs in food expenditure | 4.56 | 2.60 | Eggs price (kg/RMB) | 5.92 | 0.79 |
Diary in food expenditure | 7.24 | 4.87 | Diary price (kg/RMB) | 3.06 | 1.49 |
Seafood in food expenditure | 6.86 | 4.91 | Seafood price (kg/RMB) | 5.53 | 2.74 |
Vegetables in food expenditure | 18.36 | 5.25 | Vegetables price (kg/RMB) | 2.55 | 0.47 |
Fruits in food expenditure | 9.99 | 4.69 | Fruits price (kg/RMB) | 1.90 | 0.79 |
Other grains in food expenditure | 1.53 | 1.12 | Other grains price (kg/RMB) | 2.28 | 0.78 |
Food in total expenditure | 20.55 | 10.59 | Food expenditure (RMB) | 6351.73 | 3504.36 |
Demographic variables | Region and time dummy variables | ||||
Family size | 2.93 | 0.92 | Guangdong (Yes = 1; No = 0) | 0.28 | 0.45 |
Seniors aged 65 and above (Yes = 1; No = 0) | 0.35 | 0.48 | Sichuan(Yes = 1; No = 0) | 0.23 | 0.42 |
Children aged 14 and below (Yes = 1; No = 0) | 0.21 | 0.41 | Jilin (Yes = 1; No = 0) | 0.04 | 0.21 |
Proportion of FAFH (%) | 5.11 | 5.21 | Hebei (Yes = 1; No = 0) | 0.17 | 0.38 |
Local urban household registration (Yes = 1; No = 0) | 0.94 | 0.24 | Henan (Yes = 1; No = 0) | 0.22 | 0.41 |
High school (Yes = 1; No = 0) | 0.34 | 0.47 | Xinjiang (Reference) | 0.06 | 0.25 |
Age (years old) | 47.72 | 12.27 | Year 2007 (Reference) | 0.20 | 0.40 |
Han nationality (Yes = 1; No = 0) | 0.98 | 0.15 | Year 2008 (Yes = 1; No = 0) | 0.38 | 0.49 |
Town size (small = 1; middle = 2; big = 3) | 1.87 | 0.53 | Year 2009 (Yes = 1; No = 0) | 0.42 | 0.49 |
Rice | Wheat | Oils | Pork | Beef | Mutton | Poultry | Eggs | Diary | Seafood | Vegetables | Fruits | Other Grains | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unconditional price elasticity | |||||||||||||
Rice | −1.049 *** | 0.012 *** | −0.002 *** | 0.017 *** | −0.003 *** | 0.021 *** | 0.020 *** | −0.075 *** | −0.004 *** | −0.036 *** | −0.081 *** | 0.021 *** | 0.428 *** |
Wheat | 0.027 *** | −1.189 *** | −0.024 *** | 0.044 *** | 0.038 *** | 0.036 *** | 0.059 *** | −0.078 *** | −0.010 *** | 0.006 *** | 0.148 *** | 0.010 *** | 0.190 *** |
Oils | −0.019 *** | −0.004 *** | −0.955 *** | 0.043 *** | −0.008 *** | 0.005 *** | 0.016 *** | −0.010 *** | 0.020 *** | −0.005 *** | 0.009 *** | 0.025 *** | 0.060 *** |
Pork | 0.041 *** | 0.012 *** | 0.014 *** | −0.764 *** | −0.002 *** | −0.020 *** | 0.016 *** | −0.033 *** | −0.005 *** | −0.014 *** | −0.051 *** | −0.019 *** | 0.019 *** |
Beef | 0.225 *** | 0.010 *** | 0.032 *** | 0.032 *** | −0.792 *** | −0.017 *** | 0.063 *** | 0.072 *** | −0.025 *** | 0.058 *** | 0.090 *** | 0.037 *** | −0.911 *** |
Mutton | −0.005 *** | 0.019 *** | 0.047 *** | −0.154 *** | −0.003 ** | −0.775 *** | 0.044 *** | 0.145 *** | −0.019 *** | 0.052 *** | 0.041 *** | 0.059 *** | −0.491 *** |
Poultry | 0.026 *** | 0.015 *** | 0.011 *** | 0.032 *** | 0.013 *** | 0.007 *** | −0.982 *** | 0.007 *** | 0.002 *** | 0.011 *** | 0.038 *** | 0.019 *** | −0.010 *** |
Eggs | −0.108 *** | 0.006 *** | −0.021 *** | −0.141 *** | −0.044 *** | −0.009 *** | 0.018 *** | −0.664 *** | −0.008 *** | −0.024 *** | −0.112 *** | 0.010 *** | 0.442 *** |
Diary | −0.027 *** | −0.005 *** | 0.011 *** | 0.092 *** | −0.018 *** | −0.017 *** | 0.005 *** | 0.193 *** | −0.845 *** | 0.032 *** | 0.113 *** | 0.074 *** | −0.455 *** |
Seafood | −0.023 *** | 0.010 *** | −0.007 *** | −0.045 *** | −0.008 *** | 0.001 ** | 0.015 *** | −0.018 *** | −0.002 *** | −0.854 *** | −0.049 *** | 0.041 *** | 0.007 *** |
Vegetables | −0.035 *** | 0.005 *** | 0.004 *** | −0.054 *** | −0.025 *** | −0.005 *** | 0.022 *** | −0.028 *** | −0.004 *** | −0.017 *** | −0.707 *** | −0.009 *** | 0.106 *** |
Fruits | 0.034 *** | 0.004 *** | 0.018 *** | −0.037 *** | −0.024 *** | 0.004 *** | 0.020 *** | 0.004 *** | 0.023 *** | 0.030 *** | −0.016 *** | −0.870 *** | 0.048 *** |
Other grains | 1.854 *** | 0.285 *** | 0.278 *** | 0.257 *** | −1.792 *** | −0.649 *** | −0.066 *** | 1.319 *** | −2.154 *** | 0.035 *** | 1.279 *** | 0.318 *** | −1.558 *** |
Income elasticity | 0.483 *** | 0.491 *** | 0.545 *** | 0.533 *** | 0.743 *** | 0.687 *** | 0.536 *** | 0.433 *** | 0.560 *** | 0.616 *** | 0.493 *** | 0.503 *** | 0.392 *** |
Items | Baseline Scenario | Scenario 1 | Scenario 2 | Scenario 3 |
---|---|---|---|---|
Income groups | 100 groups | 5 groups | 1 group | 100 groups |
Income heterogeneity | Yes | Yes | No | Yes |
Dynamic procedure | Yes | Yes | Yes | No |
Rice | 11.8 | 14.8 | 30.1 | 26.5 |
Wheat | 23.1 | 23.9 | 33.9 | 35.1 |
Oils | 7.9 | 10.3 | 26.2 | 23.5 |
Pork | 30.2 | 34.8 | 57.4 | 50.8 |
Beef | 32.1 | 36.3 | 66.9 | 59.1 |
Mutton | 42.0 | 44.3 | 70.7 | 67.6 |
Poultry | 24.4 | 29.5 | 52.8 | 44.3 |
Eggs | 21.6 | 24.2 | 38.0 | 35.7 |
Diary | 15.6 | 19.5 | 39.0 | 33.9 |
Seafood | 18.9 | 24.7 | 51.5 | 41.2 |
Vegetables | 33.8 | 37.4 | 56.8 | 53.3 |
Fruits | 36.5 | 40.9 | 62.5 | 57.4 |
Other grains | 20.7 | 24.8 | 41.1 | 39.8 |
Average | 24.5 | 28.1 | 48.2 | 43.7 |
Items | Baseline Scenario with Original Elasticity | Sensitive Scenario 1 with All Elasticity Reduced by 20% | Sensitive Scenario 2 with All Elasticity Increased by 20% | ||
---|---|---|---|---|---|
Percentage Growth (%) | Percentage Growth (%) | Deviation | Percentage Growth (%) | Deviation | |
Rice | 11.8 | 9.1 | −2.7 | 14.6 | 2.8 |
Wheat | 23.1 | 18.0 | −5.1 | 28.4 | 5.3 |
Oils | 7.9 | 6.0 | −1.9 | 10.0 | 2.1 |
Pork | 30.2 | 23.2 | −7.0 | 37.7 | 7.5 |
Beef | 32.1 | 24.5 | −7.6 | 40.5 | 8.4 |
Mutton | 42.0 | 32.1 | −9.9 | 52.8 | 10.8 |
Poultry | 24.4 | 18.8 | −5.6 | 30.5 | 6.1 |
Eggs | 21.6 | 16.7 | −4.9 | 26.6 | 5.0 |
Diary | 15.6 | 12.0 | −3.6 | 19.5 | 3.9 |
Seafood | 18.9 | 14.5 | −4.4 | 23.8 | 4.9 |
Vegetables | 33.8 | 26.0 | −7.8 | 42.2 | 8.4 |
Fruits | 36.5 | 28.0 | −8.5 | 45.6 | 9.1 |
Other grains | 20.7 | 15.9 | −4.8 | 25.9 | 5.2 |
Average | 24.5 | 18.8 | −5.7 | 30.6 | 6.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Chen, Y.; Han, X.; Wen, J.; Li, G.; Yang, Y.; Liu, Z. How Does Income Heterogeneity Affect Future Perspectives on Food Consumption? Empirical Evidence from Urban China. Foods 2022, 11, 2597. https://doi.org/10.3390/foods11172597
Zhu W, Chen Y, Han X, Wen J, Li G, Yang Y, Liu Z. How Does Income Heterogeneity Affect Future Perspectives on Food Consumption? Empirical Evidence from Urban China. Foods. 2022; 11(17):2597. https://doi.org/10.3390/foods11172597
Chicago/Turabian StyleZhu, Wenbo, Yongfu Chen, Xinru Han, Jinshang Wen, Guojing Li, Yadong Yang, and Zixuan Liu. 2022. "How Does Income Heterogeneity Affect Future Perspectives on Food Consumption? Empirical Evidence from Urban China" Foods 11, no. 17: 2597. https://doi.org/10.3390/foods11172597
APA StyleZhu, W., Chen, Y., Han, X., Wen, J., Li, G., Yang, Y., & Liu, Z. (2022). How Does Income Heterogeneity Affect Future Perspectives on Food Consumption? Empirical Evidence from Urban China. Foods, 11(17), 2597. https://doi.org/10.3390/foods11172597