Effect of Brown Seaweed (Macrocystis pyrifera) Addition on Nutritional and Quality Characteristics of Yellow, Blue, and Red Maize Tortillas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials, Chemicals, and Standards
2.2. Tortilla Elaboration
2.3. Nutritional Composition
2.4. Mineral Profile
2.5. Quality Characteristics
2.6. Total Phenolic Content and Antioxidant Capacity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Composition of Tortillas
3.2. Mineral Profile of Tortillas
3.3. Quality Characteristics of Masas and Tortillas
3.4. Total Phenolic Content and Antioxidant Capacity of Masas and Tortillas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oghbaei, M.; Prakash, J. Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review. Cogent Food Agric. 2016, 2, 1136015. [Google Scholar] [CrossRef]
- Yaqoob, S.; Cai, D.; Liu, M.; Zheng, M.; Zhao, C.B.; Liu, J.S. Characterization of microstructure, physicochemical and functional properties of corn varieties using different analytical techniques. Int. J. Food Prop. 2019, 22, 572–582. [Google Scholar] [CrossRef]
- FAO. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 16 May 2022).
- Rouf Shah, T.; Prasad, K.; Kumar, P. Maize—A potential source of human nutrition and health: A review. Cogent Food Agric. 2016, 2, 1166995. [Google Scholar] [CrossRef]
- Alvarez-Poblano, L.; Roman-Guerrero, A.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. Exogenous addition of muicle (Justicia spicigera Schechtendal) extract to white maize tortillas affects the antioxidant activity, texture, color, and in vitro starch digestibility. LWT 2020, 133, 110120. [Google Scholar] [CrossRef]
- SIAP. Anuario Estadístico de la Producción Agrícola. Available online: https://nube.siap.gob.mx/cierreagricola/ (accessed on 12 May 2022).
- SIAP. Panorama Agroalimentario 2020. Available online: https://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2020/Atlas-Agroalimentario-2020 (accessed on 12 May 2022).
- Singh, N.; Singh, S.; Shevkani, K. Maize: Composition, Bioactive Constituents, and Unleavened Bread. In Flour and Breads and their Fortification in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 111–121. [Google Scholar] [CrossRef]
- Aguayo-Rojas, J.; Mora-Rochín, S.; Cuevas-Rodríguez, E.O.; Serna-Saldivar, S.O.; Gutierrez-Uribe, J.A.; Reyes-Moreno, C.; Milán-Carrillo, J. Phytochemicals and Antioxidant Capacity of Tortillas Obtained after Lime-Cooking Extrusion Process of Whole Pigmented Mexican Maize. Mater. Veg. 2012, 67, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Mora-Rochin, S.; Gutiérrez-Uribe, J.A.; Serna-Saldivar, S.O.; Sánchez-Peña, P.; Reyes-Moreno, C.; Milán-Carrillo, J. Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking. J. Cereal Sci. 2010, 52, 502–508. [Google Scholar] [CrossRef]
- Cornejo-Villegas, M.A.; Acosta-Osorio, A.A.; Rojas-Molina, I.; Gutiérrez-Cortéz, E.; Quiroga, M.A.; Gaytán, M.; Herrera, G.; Rodríguez-García, M.E. Study of the physicochemical and pasting properties of instant corn flour added with calcium and fibers from nopal powder. J. Food Eng. 2010, 96, 401–409. [Google Scholar] [CrossRef]
- Arnés, E.; Severiano-Pérez, P.; Astier, M. Sensory profile and acceptance of maize tortillas by rural and urban consumers in Mexico. J. Sci. Food Agric. 2021, 102, 2300–2308. [Google Scholar] [CrossRef]
- Topete-Betancourt, A.; Santiago-Ramos, D.; Figueroa-Cárdenas, J. de D. Relaxation tests and textural properties of nixtamalized corn masa and their relationships with tortilla texture. Food Biosci. 2020, 33, 100500. [Google Scholar] [CrossRef]
- Salazar, D.; Rodas, M.; Arancibia, M. Production of tortillas from nixtamalized corn flour enriched with Andean crops flours: Faba-bean (Vicia faba) and white-bean (Phaseolus vulgaris). Emir. J. Food Agric. 2020, 32, 731–738. [Google Scholar] [CrossRef]
- Cornejo-Villegas, M.A.; Gutiérrez-Cortez, E.; Rojas-Molina, I.; Del Real-López, A.; Zambrano-Zaragoza, M.L.; Martínez-Vega, V.; Rodríguez-García, M.E. Physicochemical, morphological, and pasting properties of nixtamalized flours from quality protein maize and its particle distribution. LWT Food Sci. Technol. 2013, 53, 81–87. [Google Scholar] [CrossRef]
- De La Parra, C.; Serna Saldivar, S.O.; Liu, R.H. Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. J. Agric. Food Chem. 2007, 55, 4177–4183. [Google Scholar] [CrossRef] [PubMed]
- León-Murillo, J.R.; Gutiérrez-Dorado, R.; Reynoso-Camacho, R.; Milán-Carrillo, J.; Perales-Sánchez, J.X.K.; Cuevas-Rodríguez, E.O.; Reyes-Moreno, C. Tortillas Made with Extruded Flours of Blue Maize and Chía Seeds as an Nutritious and Nutraceutical Food Option. Agrociencia 2021, 55, 487–506. [Google Scholar] [CrossRef]
- Contreras Jiménez, B.; Oseguera Toledo, M.E.; Garcia Mier, L.; Martínez Bravo, R.; González Gutiérrez, C.A.; Curiel Ayala, F.; Rodríguez-García, M.E. Physicochemical study of nixtamalized corn masa and tortillas fortified with “chapulin” (grasshopper, Sphenarium purpurascens) flour. CyTA J. Food 2020, 18, 527–534. [Google Scholar] [CrossRef]
- Leyton, A.; Flores, L.; Mäki-Arvela, P.; Lienqueo, M.E.; Shene, C. Macrocystis pyrifera source of nutrients for the production of carotenoids by a marine yeast Rhodotorula mucilaginosa. J. Appl Microbiol. 2019, 127, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Astorga-España, M.S.; Mansilla, A.; Ojeda, J.; Marambio, J.; Rosenfeld, S.; Mendez, F.; Rodriguez, J.P.; Ocaranza, P. Nutritional properties of dishes prepared with sub-Antarctic macroalgae—an opportunity for healthy eating. J. Appl. Phycol. 2017, 29, 2399–23406. [Google Scholar] [CrossRef]
- Shannon, E.; Abu-Ghannam, N. Seaweeds as nutraceuticals for health and nutrition. Phycologia 2019, 58, 563–577. [Google Scholar] [CrossRef]
- Ford, L.; Theodoridou, K.; Sheldrake, G.N.; Walsh, P.J. A critical review of analytical methods used for the chemical characterisation and quantification of phlorotannin compounds in brown seaweeds. Phytochem. Anal. 2019, 30, 587–599. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 17th ed.; AOAC: Washington, DC, USA, 1997. [Google Scholar]
- Kumaravel, S.; Alagusundaram, K. Determination of Mineral Content in Indian Spices by ICP-OES. Orient. J. Chem. 2014, 30, 631–636. [Google Scholar] [CrossRef] [Green Version]
- Méndez-Lagunas, L.L.; Cruz-Gracida, M.; Barriada-Bernal, L.G.; Rodríguez-Méndez, L.I. Profile of phenolic acids, antioxidant activity and total phenolic compounds during blue corn tortilla processing and its bioaccessibility. J. Food Sci. Technol. 2020, 57, 4688–4696. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Smith, D.E. Color Analysis. In Food Analysis; Nielsen, S.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 545–555. [Google Scholar] [CrossRef]
- Montemayor-Mora, G.; Hernández-Reyes, K.E.; Heredia-Olea, E.; Pérez-Carrillo, E.; Chew-Guevara, A.A.; Serna-Saldívar, S.O. Rheology, acceptability and texture of wheat flour tortillas supplemented with soybean residue. J. Food Sci. Technol. 2018, 55, 4964–4972. [Google Scholar] [CrossRef] [PubMed]
- Argüello-García, E.; Martínez-Herrera, J.; Córdova-Téllez, L.; Sánchez-Sánchez, O.; Corona-Torres, T. Textural, chemical and sensorial properties of maize tortillas fortified with nontoxic Jatropha curcas L. flour. CyTA J. Food 2017, 15, 301–306. [Google Scholar] [CrossRef]
- Platt-Lucero, L.C.; Ramirez-Wong, B.; Torres-Chávez, P.I.; López-Cervantes, J.; Sánchez-Machado, D.I.; Reyes-Moreno, C.; Milán-Carrillo, J.; Morales-Rosas, I. Improving Textural Characteristics of Tortillas by Adding Gums During Extrusion to Obtain Nixtamalized Corn Flour. J. Texture Stud. 2010, 41, 736–755. [Google Scholar] [CrossRef]
- Xiang, L.; Xiao, L.; Wang, Y.; Li, H.; Huang, Z.; He, X. Health benefits of wine: Don’t expect resveratrol too much. Food Chem. 2014, 156, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Acevedo-Martinez, K.A.; Gonzalez de Mejia, E. Fortification of Maize Tortilla with an Optimized Chickpea Hydrolysate and Its Effect on DPPIV Inhibition Capacity and Physicochemical Characteristics. Foods 2021, 10, 1835. [Google Scholar] [CrossRef]
- Biancacci, C.; Sanderson, J.C.; Evans, B.; Callahan, D.L.; Francis, D.S.; Skrzypczyk, V.M.; Cumming, E.E.; Bellgrove, A. Variation in biochemical composition of wild-harvested Macrocystis pyrifera (Ochrophyta) from sites proximal and distal to salmon farms in Tasmania, Australia. Algal Res. 2022, 65, 102745. [Google Scholar] [CrossRef]
- Fradinho, P.; Raymundo, A.; Sousa, I.; Domínguez, H.; Torres, M.D. Edible Brown Seaweed in Gluten-Free Pasta: Technological and Nutritional Evaluation. Foods 2019, 8, 622. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. Available online: https://www.dietaryguidelines.gov/resources/2020-2025-dietary-guidelines-online-materials (accessed on 12 May 2022).
- Lozano Muñoz, I.; Díaz, N.F. Minerals in edible seaweed: Health benefits and food safety issues. Crit. Rev. Food Sci. Nutr. 2020, 62, 1–16. [Google Scholar] [CrossRef]
- Colín-Chávez, C.; Virgen-Ortiz, J.J.; Serrano-Rubio, L.E.; Martínez-Téllez, M.A.; Astier, M. Comparison of nutritional properties and bioactive compounds between industrial and artisan fresh tortillas from maize landraces. Curr. Res. Food Sci. 2020, 3, 189–194. [Google Scholar] [CrossRef]
- Hernández-Martínez, V.; Salinas-Moreno, Y.; Ramírez-Díaz, J.L.; Vázquez-Carrillo, G.; Domínguez-López, A.; Ramírez-Romero, A.G. Color, phenolic composition and antioxidant activity of blue tortillas from Mexican maize races. CyTA J. Food 2016, 14, 473–481. [Google Scholar] [CrossRef]
- Martínez-Bustos, F.; Martínez-Flores, H.E.; Sanmartín-Martínez, E.; Sánchez-Sinencio, F.; Chang, Y.K.; Barrera-Arellano, D.; Rios, E. Effect of the components of maize on the quality of masa and tortillas during the traditional nixtamalisation process. J. Sci. Food Agric. 2001, 81, 1455–1462. [Google Scholar] [CrossRef]
- Lecuona-Villanueva, A.; Betancur-Ancona, D.A.; Chel-Guerrero, L.A.; Castellanos-Ruelas, A.F. Protein Fortification of Corn Tortillas: Effects on Physicochemical Characteristics, Nutritional Value and Acceptance. Food Nutr. Sci. 2012, 3, 1658–1663. [Google Scholar]
- Singh, J.; Singh, N. Effect of Process Variables and Sodium Alginate on Extrusion Behavior of Nixtamalized Corn Grit. Int. J. Food Prop. 2004, 7, 329–340. [Google Scholar] [CrossRef]
- Žilić, S.; Serpen, A.; Akıllıoğlu, G.; Gökmen, V.; Vančetović, J. Phenolic Compounds, Carotenoids, Anthocyanins, and Antioxidant Capacity of Colored Maize (Zea mays L.) Kernels. J. Agric. Food Chem. 2012, 60, 1224–1231. [Google Scholar] [CrossRef]
- Bhebhe, M.; Füller, T.N.; Chipurura, B.; Muchuweti, M. Effect of Solvent Type on Total Phenolic Content and Free Radical Scavenging Activity of Black Tea and Herbal Infusions. Food Anal. Methods 2016, 9, 1060–1067. [Google Scholar] [CrossRef]
- Chen, L.; Guo, Y.; Li, X.; Gong, K.; Liu, K. Phenolics and related in vitro functional activities of different varieties of fresh waxy corn: A whole grain. BMC Chem. 2021, 15, 14. [Google Scholar] [CrossRef]
- Yalcin, G.; Sogut, O. Influence of extraction solvent on antioxidant capacity value of oleaster measured by ORAC method. Nat. Prod. Res. 2014, 28, 1513–1517. [Google Scholar] [CrossRef]
- Rivera, S.M.; Christou, P.; Canela-Garayoa, R. Identification of carotenoids using mass spectrometry. Mass Spectrom. Rev. 2014, 33, 353–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type of Nixtamalized Masa | ||||||
---|---|---|---|---|---|---|
Seaweed concentration (%) | Yellow maize | Blue maize | Red maize | |||
YM0 | 0 | BM0 | 0 | RM0 | 0 | |
YM3 | 3 | BM3 | 3 | RM3 | 3 | |
YM6 | 6 | BM6 | 6 | RM6 | 6 | |
YM9 | 9 | BM9 | 9 | RM9 | 9 |
Moisture Content (%) | Ash (%) | Protein (%) | Lipids (%) | Carbohydrates (%) | Total Fiber * (%) | |
---|---|---|---|---|---|---|
YT0 | 44.1 ± 0.17 c,d | 1.16 ± 0.02 h | 4.49 ± 0.02 h | 0.36 ± 0.01 d | 49.9 ± 0.23 a | 7.01 ± 0.48 i,j |
YT3 | 43.0 ± 0.17 e,f | 2.20 ± 0.02 f | 4.56 ± 0.02 g,h | 0.36 ± 0.01 d | 49.8 ± 0.22 a | 7.96 ± 0.47 g,h |
YT6 | 41.9 ± 0.16 g | 3.24 ± 0.03 d | 4.64 ± 0.02 f,g | 0.35 ± 0.1 d | 49.8 ± 0.21 a | 8.92 ± 0.45 d,e,f |
YT9 | 40.9 ± 0.16 h | 4.28 ± 0.04 b | 4.72 ± 0.02 e,f | 0.35 ± 0.01 d | 49.8 ± 0.20 a | 9.88 ± 0.44 b,c |
BT0 | 46.7 ± 0.65 a | 1.31 ± 0.02 g | 4.65 ± 0.01 f,g | 0.55 ± 0.01 b,c | 46.8 ± 0.61 d | 6.72 ± 0.39 j |
BT3 | 45.5 ± 0.63 b | 2.35 ± 0.02 e | 4.72 ± 0.01 e,f | 0.54 ± 0.01 c | 46.9 ± 0.59 d | 7.68 ± 0.38 h,i |
BT6 | 44.4 ± 0.61 c | 3.39 ± 0.03 c | 4.80 ± 0.01 d,e | 0.53 ± 0.1 c | 46.9 ± 0.57 d | 8.65 ± 0.37 e,f,g |
BT9 | 43.2 ± 0.59 e | 4.42 ± 0.04 a | 4.87 ± 0.01 c,d | 0.52 ± 0.01 c | 46.9 ± 0.55 c,d | 9.62 ± 0.36 b,c,d |
RT0 | 45.5 ± 0.05 b | 1.12 ± 0.01 h | 4.88 ± 0.06 c,d | 0.62 ± 0.03 a | 47.8 ± 0.15 b,c | 8.24 ± 0.02 f,g,h |
RT3 | 44.4 ± 0.05 c | 2.16 ± 0.02 f | 4.95 ± 0.06 b,c | 0.60 ± 0.03 a | 47.9 ± 0.15 b,c | 9.16 ± 0.02 c,d,e |
RT6 | 43.3 ± 0.05 d, e | 3.21 ± 0.02 d | 5.01 ± 0.05 a,b | 0.59 ± 0.03 a | 47.9 ± 0.14 b | 10.1 ± 0.04 b |
RT9 | 42.1 ± 0.05 f,g | 4.25 ± 0.03 b | 5.08 ± 0.05 a | 0.58 ± 0.03 a,b | 47.9 ± 0.14 b | 11.0 ± 0.05 a |
Na (mg/100 g) | Ca (mg/100 g) | P (mg/100 g) | K (mg/100 g) | Mg (mg/100 g) | |
---|---|---|---|---|---|
YT0 | 10.37 ± 0.26 j | 362.79 ± 3.11 h | 314.65 ± 3.60 c | 331.38 ± 0.11 j | 84.67 ± 0.01 g |
YT3 | 107.94 ± 0.28 g | 403.85 ± 3.03 g | 319.12 ± 3.49 b,c | 787.79 ± 0.59 g | 114.60 ± 0.21 e |
YT6 | 205.50 ± 0.37 d | 444.92 ± 2.96 f | 323.60 ± 3.39 a,b | 1244.21 ± 1.17 d | 144.52 ± 0.42 c |
YT9 | 303.07 ± 0.48 a | 485.98 ± 2.92 e | 328.07 ± 3.28 a | 1700.62 ± 1.75 a | 174.44 ± 0.63 a |
BT0 | 6.85 ± 0.01 k | 501.57 ± 1.03 d | 196.76 ± 3.57 g | 154.35 ± 4.87 k | 58.38 ± 1.53 h |
BT3 | 104.52 ± 0.14 h | 538.46 ± 1.03 c | 204.77 ± 3.47 f | 616.08 ± 4.76 h | 89.09 ± 1.49 f |
BT6 | 202.19 ± 0.28 e | 575.36 ± 1.08 b | 212.78 ± 3.36 e | 1077.80 ± 4.72 e | 119.80 ± 1.49 d |
BT9 | 299.86 ± 0.41 b | 612.26 ± 1.17 a | 220.79 ± 3.25 d | 1539.53 ± 4.76 b | 150.51 ± 1.52 b |
RT0 | 3.67 ± 0.18 l | 100.14 ± 0.78 l | 66.48 ± 1.13 k | 53.35 ± 0.12 l | 20.56 ± 0.38 j |
RT3 | 101.46 ± 0.22 i | 149.08 ± 0.80 k | 78.39 ± 1.09 j | 518.11 ± 0.59 i | 52.40 ± 0.43 i |
RT6 | 199.22 ± 0.32 f | 198.02 ± 0.87 j | 90.31 ± 1.06 i | 982.87 ± 1.17 f | 84.25 ± 0.55 g |
RT9 | 296.99 ± 0.44 c | 246.96 ± 1.00 i | 102.23 ± 1.02 h | 1447.62 ± 1.75 c | 116.10 ± 0.72 e |
L* | a* | b* | Hue | Chroma | ΔE* | ||
---|---|---|---|---|---|---|---|
YM0 | 85.72 ± 0.96 a | 0.14 ± 0.01 a | 16.91 ± 0.44 c | 89.51 ± 0.01 b | 16.91 ± 0.44 c | DNA ** | |
YM3 | 74.37 ± 0.52 b | −2.44 ± 0.11 b,c | 21.48 ± 0.42 a | 96.48 ± 0.35 a | 21.62 ± 0.42 a | 12.48 ± 0.58 c | |
YM6 | 68.76 ± 0.69 c | −2.65 ± 0.12 c | 21.65 ± 0.32 a | 96.98 ± 0.38 a | 21.81 ± 0.31 a | 17.80 ± 0.63 b | |
YM9 | 65.53 ± 0.42 d | −2.35 ± 0.12 b | 18.71 ± 0.42 b | 97.15 ± 0.28 a | 18.86 ± 0.42 b | 20.40 ± 0.37 a | |
BM0 | 66.69 ± 0.39 a | −1.48 ± 0.03 b | 17.35 ± 0.43 a | 94.88 ± 0.11 b | 17.42 ± 0.43 a | DNA ** | |
BM3 | 63.08 ± 0.09 b | −1.1 ± 0.01 a | 16.52 ± 0.06 a,b | 93.81 ± 0.02 c | 16.55 ± 0.06 a,b | 3.44 ± 0.07 c | |
BM6 | 57.02 ± 0.33 c | −1.15 ± 0.05 a | 16.98 ± 0.67 a,b | 93.87 ± 0.06 c | 17.02 ± 0.67 a,b | 9.33 ± 0.30 b | |
BM9 | 54.56 ± 0.58 d | −1.79 ± 0.07 c | 16.06 ± 0.41 b | 96.38 ± 0.41 a | 16.17 ± 0.40 b | 11.85 ± 0.59 a | |
RM0 | 67.52 ± 1.25 a | 5.09 ± 0.24 a | 12.43 ± 0.35 c | 67.73 ± 1.46 d | 13.44 ± 0.25 c | DNA ** | |
RM3 | 68.67 ± 1.15 a | 1.87 ± 0.09 b | 15.18 ± 0.28 b | 82.97 ± 0.19 c | 15.30 ± 0.29 b | 4.76 ± 0.17 b | |
RM6 | 67.27 ± 0.30 a | 0.81 ± 0.03 c | 12.81 ± 0.25 c | 86.37 ± 0.06 b | 12.84 ± 0.25 c | 4.90 ± 0.10 b | |
RM9 | 61.42 ± 0.23 b | 0.39 ± 0.02 d | 16.33 ± 0.44 a | 88.64 ± 0.07 a | 16.33 ± 0.44 a | 9.95 ± 0.36 a |
L* | a* | b* | Hue | Chroma | ΔE* | ||
---|---|---|---|---|---|---|---|
YT0 | 66.28 ± 0.86 a | 0.79 ± 0.03 d | 23.33 ± 0.39 a | 88.05 ± 0.05 a | 23.34 ± 0.39 a | DNA ** | |
YT3 | 44.40 ± 0.68 c | 4.38 ± 0.12 a | 19.99 ± 0.71 b | 77.63 ± 0.74 d | 20.46 ± 0.67 b | 21.53 ± 0.75 c | |
YT6 | 49.98 ± 0.41 b | 1.44 ± 0.05 c | 21.25 ± 0.73 b | 86.12 ± 0.19 b | 21.30 ± 0.73 b | 15.54 ± 0.50 b | |
YT9 | 40.90 ± 1.29 d | 3.42 ± 0.05 b | 17.17 ± 0.45 c | 78.74 ± 0.20 c | 17.51 ± 0.45 c | 25.36 ± 1.26 a | |
BT0 | 49.40 ± 1.19 a | 6.70 ± 0.19 a | 18.55 ± 0.41 a | 70.13 ± 0.44 b | 19.72 ± 0.43 a | DNA** | |
BT3 | 44.34 ± 0.19 b | 4.30 ± 0.04 b | 15.71 ± 0.21 b | 74.69 ± 0.23 a | 16.29 ± 0.21 b | 5.77 ± 0.14 c | |
BT6 | 40.88 ± 0.27 c | 3.75 ± 0.05 c | 12.71 ± 0.30 c | 73.55 ± 0.44 a | 13.25 ± 0.29 c | 10.22 ± 0.38 b | |
BT9 | 35.82 ± 0.73 d | 3.03 ± 0.14 d | 6.42 ± 0.17 d | 64.70 ± 1.34 c | 7.10 ± 0.14 d | 18.05 ± 0.59 a | |
RT0 | 52.39 ± 1.73 a | 6.35 ± 0.31 a | 16.53 ± 0.26 a | 68.98 ± 1.12 a | 17.71 ± 0.20 a | DNA** | |
RT3 | 44.48 ± 0.14 b | 5.07 ± 0.11 c | 14.76 ± 0.09 b | 71.03 ± 0.42 a | 15.61 ± 0.08 b | 7.28 ± 0.14 c | |
RT6 | 40.04 ± 0.44 c | 5.47 ± 0.19 b,c | 12.53 ± 0.29 c | 66.41 ± 0.61 b | 13.67 ± 0.31 c | 12.13 ± 0.32 b | |
RT9 | 37.30 ± 0.29 d | 6.00 ± 0.18 a,b | 10.52 ± 0.26 d | 60.29 ± 1.33 c | 12.12 ± 0.14 d | 15.49 ± 0.35 a |
Perforation (N) | Rollability * | ||
---|---|---|---|
Room Temperature (RT) Tortillas | Heated Tortillas | ||
YT0 | 2.61 ± 0.11 e,f | 5 ± 0.00 a | 3 ± 0.00 a |
YT3 | 3.43 ± 0.13 b | 4 ± 0.00 b | 2 ± 0.00 b |
YT6 | 2.30 ± 0.08 g | 2 ± 0.00 d | 1 ± 0.00 c |
YT9 | 4.55 ± 0.09 a | 5 ± 0.00 a | 2 ± 0.00 b |
BT0 | 3.30 ± 0.12 b,c | 1 ± 0.00 e | 1 ± 0.00 c |
BT3 | 1.40 ± 0.05 h | 3 ± 0.00 d | 1 ± 0.00 c |
BT6 | 1.62 ± 0.04 h | 5 ± 0.00 a | 1 ± 0.00 c |
BT9 | 1.49 ± 0.03 h | 5 ± 0.00 b | 1 ± 0.00 a |
RT0 | 3.10 ± 0.11 c,d | 1 ± 0.00 e | 1 ± 0.00 c |
RT3 | 2.50 ± 0.09 f,g | 2 ± 0.00 c | 1 ± 0.00 c |
RT6 | 2.27 ± 0.09 g | 5 ± 0.00 a | 1 ± 0.00 c |
RT9 | 2.83 ± 0.03 d, e | 4 ± 0.00 a | 3 ± 0.00 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Alva, A.; Baigts-Allende, D.K.; Ramírez-Rodrigues, M.A.; Ramírez-Rodrigues, M.M. Effect of Brown Seaweed (Macrocystis pyrifera) Addition on Nutritional and Quality Characteristics of Yellow, Blue, and Red Maize Tortillas. Foods 2022, 11, 2627. https://doi.org/10.3390/foods11172627
Pérez-Alva A, Baigts-Allende DK, Ramírez-Rodrigues MA, Ramírez-Rodrigues MM. Effect of Brown Seaweed (Macrocystis pyrifera) Addition on Nutritional and Quality Characteristics of Yellow, Blue, and Red Maize Tortillas. Foods. 2022; 11(17):2627. https://doi.org/10.3390/foods11172627
Chicago/Turabian StylePérez-Alva, Alexa, Diana K. Baigts-Allende, Melissa A. Ramírez-Rodrigues, and Milena M. Ramírez-Rodrigues. 2022. "Effect of Brown Seaweed (Macrocystis pyrifera) Addition on Nutritional and Quality Characteristics of Yellow, Blue, and Red Maize Tortillas" Foods 11, no. 17: 2627. https://doi.org/10.3390/foods11172627
APA StylePérez-Alva, A., Baigts-Allende, D. K., Ramírez-Rodrigues, M. A., & Ramírez-Rodrigues, M. M. (2022). Effect of Brown Seaweed (Macrocystis pyrifera) Addition on Nutritional and Quality Characteristics of Yellow, Blue, and Red Maize Tortillas. Foods, 11(17), 2627. https://doi.org/10.3390/foods11172627