Comparison of Nutrition and Flavor Characteristics of Five Breeds of Pork in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Pork and Sample Preparation
2.2. Chemicals
2.3. Determination of Chemical Compositions
2.4. Determination of Fatty Acid Profile
2.5. Determination of Free and Hydrolyzed Amino Acids
2.6. Protein Nutrition Evaluation
2.7. Texture Profile
2.8. Cooking Loss
2.9. Color Measurements
2.10. Sensory Evaluation
2.11. SDS–Polyacrylamide Gel Electrophoresis (SDS–PAGE)
2.12. Determination of 5‘-Nucleotides
2.13. Equivalent Umami Calculation
2.14. Analysis of Volatile Aroma Compounds
2.15. Statistical Analysis
3. Results and Discussion
3.1. Pork Nutrition
3.1.1. Proximate Composition
3.1.2. Fatty Acid Profile
3.1.3. Protein Nutrition
Protein Expression Patterns
Amino Acid Composition and Nutrition
3.2. Pork Processing and Eating Qualities
3.2.1. Texture Profile
3.2.2. Color
3.2.3. Cooking Loss
3.2.4. Sensory Analysis
3.3. Taste Ingredients
3.3.1. Taste of Free Amino Acids
3.3.2. Nucleotides and Equivalent Umami Concentration (EUC) Value
3.4. Volatile Aroma Compounds
3.5. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nolan-Clark, D.J.; Neale, E.P.; Charlton, K.E. Processed pork is the most frequently consumed type of pork in a survey of Australian children. Nutr. Res. 2013, 33, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Pringle, T.D.; Williams, S.E. Fat thickness and loin eye area effects on pork carcass quality measures. J. Muscle Foods 2010, 11, 307–318. [Google Scholar] [CrossRef]
- Carvalho-Salemi, J.; Moreno, L.; Michael, M. Medical Nutrition Therapy for Pediatric Kidney Stone Prevention, Part 3: Cystinuria. J. Ren. Nutr. 2017, 27, E19–E20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, H.; Zhang, Y.; Wang, L.; Zhang, P.; Jia, J.; Peng, H.; Qian, Q.; Zhang, J.; Pan, Z.; et al. Storage Stability and Flavor Change of Marinated Pork. Foods 2022, 11, 1825. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Wang, Y. Current situation, cause analysis and countermeasures of China’s hog related products trade. Pract. Foreign Econ. Relat. Trade 2021, 8, 55–59. [Google Scholar]
- Wu, X. An overview of the distribution of pig breed resources in the world. Swine Ind. Sci. 2006, 23, 1. [Google Scholar]
- Skobrák, E.; Bodnár, K. The main chemical composition parameters of pork (review). Rev. Agric. Rural Dev. 2012, 1, 534–540. [Google Scholar]
- Kucha, C.T.; Liu, L.; Ngadi, M.O. Non-Destructive Spectroscopic Techniques and Multivariate Analysis for Assessment of Fat Quality in Pork and Pork Products: A Review. Sensors 2018, 18, 377. [Google Scholar] [CrossRef]
- Choi, Y.S.; Hwang, K.E.; Kim, H.W.; Song, D.H.; Jeon, K.H.; Park, J.D.; Sung, J.M.; Kim, Y.B.; Kim, C.J. Replacement of Pork Meat with Pork Head Meat for Frankfurters. Korean J. Food Sci. Anim. Resour. 2016, 36, 445–451. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, Z.L.; Venkitasamy, C.; Ma, H.L.; Li, Y.L. Umami taste amino acids produced by hydrolyzing extracted protein from tomato seed meal. LWT-Food Sci. Technol. 2015, 62, 1154–1161. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.Y.; Venkitasamy, C.; Guo, S.Y.; Pan, Z.L.; Ke, H.; Tang, H.; Huang, W.M.; Zhao, L.M. Improving the flavor of microbone meal with Flavourzyme by response surface method. J. Food Process Eng. 2019, 42, 11. [Google Scholar] [CrossRef]
- Zhang, Y.; Venkitasamy, C.; Pan, Z.L.; Liu, W.L.; Zhao, L.M. Novel Umami Ingredients: Umami Peptides and Their Taste. J. Food Sci. 2017, 82, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.; Seo, D.W.; Yeon, C.H. Quality Characteristics of Pork Patties Added with Soybean-Curd Residues. J. Korean Soc. Food Sci. Nutr. 2019, 48, 260–267. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Jeon, K.-H.; Ku, S.-K.; Sung, J.-M.; Choi, H.-W.; Seo, D.-H.; Kim, C.-J.; Kim, Y.-B. Quality Characteristics of Replacing Pork Hind Leg with Pork Head Meat for Hamburger Patties. Korean J. Food Cook. Sci. 2016, 32, 58–64. [Google Scholar] [CrossRef]
- Hoa, V.B.; Seong, P.N.; Cho, S.H.; Kang, S.M.; Kim, Y.S.; Moon, S.S.; Choi, Y.M.; Kim, J.H.; Seol, K.H. Quality characteristics and flavor compounds of pork meat as a function of carcass quality grade. Asian Australas. J. Anim. Sci. 2019, 32, 1448–1457. [Google Scholar] [CrossRef] [PubMed]
- Ngapo, T.M.; Vachon, L. Umami and related components in “chilled” pork for the Japanese market. Meat Sci. 2016, 121, 365–374. [Google Scholar] [CrossRef]
- Wojciak, K.M.; Halagarda, M.; Rohn, S.; Keska, P.; Latoch, A.; Stadnik, J. Selected nutrients determining the quality of different cuts of organic and conventional pork. Eur. Food Res. Technol. 2021, 247, 1389–1400. [Google Scholar] [CrossRef]
- Huang, C.; Zheng, M.; Huang, Y.Z.; Liu, X.X.; Zhong, L.P.; Ji, J.X.; Zhou, L.S.; Zeng, Q.J.; Ma, J.W.; Huang, L.S. The effect of purine content on sensory quality of pork. Meat Sci. 2021, 172, 6. [Google Scholar] [CrossRef]
- Li, C.; Bao, P.Q.; Wang, Y.; Hu, Y.; Fang, H.M.; Yang, H.M.; Zhang, B.; He, B.B.; Zhou, C.L. Improving quality attributes of refrigerated prepared pork chops by injecting L-arginine and L-lysine solution. LWT-Food Sci. Technol. 2022, 153, 9. [Google Scholar] [CrossRef]
- GB 5009.3-2016; Determination of Moisture in Foods. National Health Commission of the People’s Republic of China: Beijing, China, 2016.
- GB 5009.5-2016; Determination of Protein in Foods. National Health Commission of the People’s Republic of China: Beijing, China, 2016.
- GB 5009.6-2016; Determination of Fat in Food. National Health Commission of the People’s Republic of China: Beijing, China, 2016.
- GB 5009.168-2016; Determination of fatty acids in food. National Health Commission of the People’s Republic of China: Beijing, China, 2016.
- GB 5009.4-2016; Determination of Ash in Food. National Health Commission of the People’s Republic of China: Beijing, China, 2016.
- Fernández, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; Hoz, L.d.l. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Domaradzki, P.; Florek, M.; Skalecki, P.; Litwhiczuk, A.; Kedzierska-Matysek, M.; Wolanciuk, A.; Tajchman, K. Fatty acid composition, cholesterol content and lipid oxidation indices of intramuscular fat from skeletal muscles of beaver (Castor fiber L.). Meat Sci. 2019, 150, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Zhang, Y.; Ke, H.; Bai, T.; Chen, C.; Guo, T.R.; Mu, Y.L.; Li, H.; Liao, W.L.; Pan, Z.L.; Zhao, L.M. Characterization of umami compounds in bone meal hydrolysate. J. Food Sci. 2021, 86, 2264–2275. [Google Scholar] [CrossRef]
- Sun, T.; Yue, X.; Zhang, P.; Li, J.; Zhang, P. Effect of Super Chilling Combined with Modified Atmosphere Package on Beef Quality. Mod. Food Sci. Technol. 2014, 30, 239–244. [Google Scholar]
- WHO. Energy and Protein Requirements; WHO: Geneva, Switzerland, 1985. [Google Scholar]
- Alsmeyer, R.H.; Cunningham, A.E.; Happich, M.L. Equation to predict PER from amino acid analysis. Food Technol. 1974, 28, 34–38. [Google Scholar]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of Meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Marcos, B.; Gou, P.; Arnau, J.; Guardia, M.D.; Comaposada, J. Co-extruded alginate as an alternative to collagen casings in the production of dry-fermented sausages: Impact of coating composition. Meat Sci. 2020, 169, 7. [Google Scholar] [CrossRef]
- ISO 8586-1:1993; Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors—Part 1: Selected Assessors. ISO: Geneva, Switzerland, 1993.
- ISO 8586-2:1994; Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors—Part 2: Experts. ISO: Geneva, Switzerland, 1994.
- Zhang, Y.; Zeng, Q.X.; Zhu, Z.W.; Zhou, R. Effect of ultrasonic treatment on the gel strength of tilapia (sarotherodon nilotica) surimi. J. Food Process Eng. 2011, 34, 533–548. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, S.-M.; Xiong, S.-B.; Xie, B.-J.; Qin, L.-H. Role of secondary structures in the gelation of porcine myosin at different pH values. Meat Sci. 2008, 80, 632–639. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, W.; Lu, X.; Hu, J. Electrophoretic Separation of Proteins and Peptides in Bone Extract and Bone Extract Hydrolysates. Mod. Food Sci. Technol. 2015, 6, 5. [Google Scholar] [CrossRef]
- Poojary, M.M.; Orlien, V.; Passamonti, P.; Olsen, K. Improved extraction methods for simultaneous recovery of umami compounds from six different mushrooms. J. Food Compos. Anal. 2017, 63, 171–183. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Yoshikawa, T.; Ikeda, S.; Ninomiya, T. Measurement of the relative taste intensity of some l-α-amino acids and 5′-nucleotides. J. Food Sci. 1971, 36. [Google Scholar] [CrossRef]
- Chen, L.; Wang, W.; Zhang, J.; Bai, T.; Ji, L.; Zhao, Z.; Hou, B. Study on Dissipation of Volatile Flavor Components in Stewed Pork During Frozen Storage. J. Chengdu Univ. (Nat. Sci.) 2021, 40, 7. [Google Scholar] [CrossRef]
- Choi, Y.S.; Lee, J.K.; Jung, J.T.; Jung, Y.C.; Jung, J.H.; Jung, M.O.; Choi, Y.I.; Jin, S.K.; Choi, J.S. Comparison of Meat Quality and Fatty Acid Composition of Longissimus Muscles from Purebred Pigs and Three- way Crossbred LYD Pigs. Korean J. Food Sci. Anim. Resour. 2016, 36, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Cameron, N.D.; Enser, M.; Nute, G.R.; Whittington, F.M.; Penman, J.C.; Fisken, A.C.; Perry, A.M.; Wood, J.D. Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat. Meat Sci. 2000, 55, 187–195. [Google Scholar] [CrossRef]
- Xu, Z.; Han, J. Progress on Several Genes of Affecting Pork Qualities. J. Shanxi Agric. Univ. (Nat. Sci. Ed. ) 2006, 26, 113–118. [Google Scholar] [CrossRef]
- Boskovic, M.; Baltic, M.; Ivanovic, J.; Djuric, J.; Baltic, T. The impact of pork meat and lard on human health. Tehnol. Mesa. 2015, 56, 8–15. [Google Scholar] [CrossRef]
- Rathore, P.S.S.; Fernandes, N.; Patel, B.C.; Dahiya, M.S.; Kumar, S. Investigation of meat quality using protein profiling. J. Food Saf. Food Qual. 2018, 69, 99–103. [Google Scholar] [CrossRef]
- Hsieh, Y.; Chen, F.C.; Nur, M. Rapid Species Identification of Cooked Red Snapper Using Isoelectric Focusing. J. Food Sci. 2010, 62, 15–19. [Google Scholar] [CrossRef]
- Zilhadia. Protein Profilesof Beef (Bos indicus), Pork (Sus domesticus),and Sausages By Using SDS-PAGE (Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis) Method. Calif. Hist. Q. 2013, 50, 46–51. [Google Scholar] [CrossRef]
- Yin, M.; Huang, Y.; Wang, Z.; Jiang, Y.; Guo, K.; Wang, J.; Zhang, Y.; He, H. Research Progress on Application of Transcriptome Sequencing Techniques in Pork Quality. Chin. J. Anim. Sci. 2018, 54, 8–14. [Google Scholar] [CrossRef]
- Shimokomaki, M.; Ida, E.I.; Kato, T.; Pedrão, M.; And, F.; Hernández-Blazquez, F. Meat and Meat Products Microstructure and Their Eating Quality; Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo: Badajoz, Spain, 2012; pp. 486–495. [Google Scholar]
- Cardenas, F.C.; Olivera, D.F. Texture Changes in Meat During Storage. Ref. Modul. Food Sci. 2016, 1–5. [Google Scholar] [CrossRef]
- Migdal, W.; Rozycki, M.; Mucha, A.; Tyra, M.; Natonek-Wisniewska, M.; Walczycka, M.; Kulawik, P.; Wesierska, E.; Zajac, M.; Tkaczewska, J.; et al. Meat texture profile and cutting strength analyses of pork depending on breed and age. Ann. Anim. Sci. 2020, 20, 677–692. [Google Scholar] [CrossRef]
- Shin, H.-G.; Choi, Y.M.; Nam, Y.-J.; Lee, S.; Hwan, C.J.; Jeong, D.-W.; Kim, B.-C. Relationships among Instrumental Tenderness Parameters, Meat Quality Traits, and Histochemical Characteristics in Porcine Longissimus dorsi Muscle. Food Sci. Biotechnol. 2008, 17, 965–970. [Google Scholar]
- Zhang, Y.; Wang, W.; Zhang, J. Evaluation Method for Texture of Surimi and Surimi Products. J. Chengdu Univ. (Nat. Sci. ) 2010, 29, 4. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Zhang, H.; Zhang, J.M. Meat sensory color grade: Mathematical simulation and its application in quality analysis of chilled pork. J. Food Process Preserv. 2014, 38, 1957–1964. [Google Scholar] [CrossRef]
- Lindahl, G.; Lundstrom, K.; Tornberg, E. Contribution of pigment content, myoglobin forms and internal reflectance to the colour of pork loin and ham from pure breed pigs. Meat Sci. 2001, 59, 141–151. [Google Scholar] [CrossRef]
- Lee, J.G.; Joo, S.T. Effects of slaughter weight on backfat thickness, intramuscular fat and physical properties of pork loin from barrow. Hangug Chugsan Sigpum Haghoeji = Korean J. Food Sci. Anim. Resour. 1999, 41, 207–214. [Google Scholar]
- Lee, S.H.; Choe, J.H.; Choi, Y.M.; Jung, K.C.; Rhee, M.S.; Hong, K.C.; Lee, S.K.; Ryu, Y.C.; Kim, B.C. The influence of pork quality traits and muscle fiber characteristics on the eating quality of pork from various breeds. Meat Sci. 2012, 90, 284–291. [Google Scholar] [CrossRef]
- Kondjoyan, A.; Oillic, S.; Portanguen, S.; Gros, J.B. Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat. Meat Sci. 2013, 95, 336–344. [Google Scholar] [CrossRef]
- Ji, J.X.; Zhou, L.S.; Huang, Y.Z.; Zheng, M.; Liu, X.X.; Zhang, Y.F.; Huang, C.; Peng, S.; Zeng, Q.J.; Zhong, L.P.; et al. A whole-genome sequence based association study on pork eating quality traits and cooking loss in a specially designed heterogeneous F6 pig population. Meat Sci. 2018, 146, 160–167. [Google Scholar] [CrossRef]
- Hambrecht, E.; Eissen, J.J.; Nooijent, R.I.J.; Ducro, B.J.; Smits, C.H.M.; den Hartog, L.A.; Verstegen, M.W.A. Preslaughter stress and muscle energy largely determine pork quality at two commercial processing plants. J. Anim. Sci. 2004, 82, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z. Study on the Effect of Germanium-Rich Fermented Traditional Chinese Medicine Preparation on the Production of Growing-Finishing Pigs. Master’s Thesis, Yanbian University, Yanji, China, 2020. [Google Scholar]
- Huang, M.; Li, X. A Preliminary Study on the Causes of Flavor Differences in Meat. China Condiment 2018, 43, 53–59. [Google Scholar] [CrossRef]
- Guan, W.; Liu, Q. Present situation and suggestion of Tibetan pig breeding in Nyingchi region. Guangdong J. Anim. Vet. Sci. 2017, 42, 7–8. [Google Scholar]
- Zhang, Y.; Venkitasamy, C.; Pan, Z.L.; Wang, W. Recent developments on umami ingredients of edible mushrooms - A review. Trends Food Sci. Technol. 2013, 33, 78–92. [Google Scholar] [CrossRef]
- Cornet, M.; Bousset, J. Free amino acids and dipeptides in porcine muscles: Differences between `red’ and `white’ muscles. Meat Sci. 1999, 51, 215–219. [Google Scholar] [CrossRef]
- Skelley, G.C.; Handlin, D.L. Pork Acceptability as Influenced by Breed, Sex, Carcass Measurements and Cutability. J. Anim. Sci. 1971, 32, 239–244. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.Y.; Venkitasamy, C.; Pan, Z.L.; Ke, H.; Guo, S.Y.; Wu, D.; Wu, W.X.; Zhao, L.M. Potential effects of umami ingredients on human health: Pros and cons. Crit. Rev. Food Sci. Nutr. 2020, 60, 2294–2302. [Google Scholar] [CrossRef]
- Du, K.; Zhang, Y.; Fang, D. Flavor nucleotides and their application in food. China Brew. 2005, 10, 50–52. [Google Scholar]
- Wang, D.Y.; Dong, H.; Zhang, M.H.; Liu, F.; Bian, H.; Zhu, Y.Z.; Xu, W.M. Changes in actomyosin dissociation and endogenous enzyme activities during heating and their relationship with duck meat tenderness. Food Chem. 2013, 141, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Barido, F.H.; Lee, S.K. Changes in proteolytic enzyme activities, tenderness-related traits, and quality properties of spent hen meat affected by adenosine 5 ‘-monophosphate during cold storage. Poult. Sci. 2021, 100, 101056. [Google Scholar] [CrossRef]
- Nan, Q. Meat Industry Handbook; China Architecture & Building Press: Beijing, China, 2003; p. 73. [Google Scholar]
- Xu, X.; Li, J.; Fan, Y.; Deng, Z. Effects of Different Cooking Methods on Lipid Oxidation and Volatile Flavor Compounds in Pork. Food Ind. 2019, 40, 151–155. [Google Scholar]
- Yu, H.; Li, X.; Ge, Q.; Jiang, Y.; Wang, Z. Effect of Fermentation Strains on Volatile Flavor Components in Dry-cured Pork. Food Sci. 2010, 31, 266–270. [Google Scholar]
- Li, T.; Wang, M.; Lei, J. Volatile flavor compounds of semi-wild-blood Aba Tibetan pork. Food Sci. Technol. 2015, 40, 124–130. [Google Scholar] [CrossRef]
- Wang, B.; Yang, L.; Zheng, L.; Wang, Z. Detection of Pork Flavor Compounds Based on Statistical Space Mapping and Electronic Nose. Food Sci. 2016, 37, 102–107. [Google Scholar] [CrossRef]
- SHAFFER, E. Focusing on ‘fake meat’. Meat Poult. 2018, 64, 14. [Google Scholar]
- Liu, D.; Ai, Y.; Lv, C.; Liu, L. Advancement on detection methods of water-injected meat. Meat Ind. 2012, 1, 54–56. [Google Scholar] [CrossRef]
- Lonergan, S.M.; Goodwin, R.; Stalder, K.J.; Prusa, K.J.; Beitz, D.C. Relationship of Pork Longissimus Muscle Fatty Acid Profile with Pork Loin Texture and Sensory Traits. J. Anim. 2006, 3, 1. [Google Scholar] [CrossRef]
- Zhang, S.; Knight, T.J.; Stalder, K.J.; Goodwin, R.N.; Lonergan, S.M.; Beitz, D.C. Effects of breed, sex and halothane genotype on fatty acid composition of triacylglycerols and phospholipids in pork longissimus muscle. J. Anim. Breed. Genet. 2009, 126, 259–268. [Google Scholar] [CrossRef]
- Gotow, N.; Skrandies, W.; Kobayashi, T.; Kobayakawa, T. Traditional Japanese confection overseas: Cultural difference and retronasal aroma affect flavor preference and umami perception. Food. Qual. Prefer. 2021, 92, 11. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Jia, X.; Zhang, S.; Wang, L.; Yang, K.; Chen, W.; Qu, C.; Xu, D.; Cheng, X. Effect of Sterilization Temperature on Color and Flavor Properties of Pickled Sauced Meat. Meat Res. 2017, 31, 34–40. [Google Scholar] [CrossRef]
Items | Definition |
---|---|
Flavor | Overall meat aroma intensity of boiled pork |
Meaty (Umami) | Meaty taste intensity |
Sensory springiness | Restitution ability after pressing |
Appearance | Red color intensity |
Content Parameter | MBP | TBP | PPP | YNP | WP |
---|---|---|---|---|---|
Water | 70.63 ± 0.19 c | 71.07 ± 0.07 c | 76.08 ± 0.01 a | 70.98 ± 0.12 c | 73.33 ± 0.05 b |
Fat | 3.1 ± 0.04 c | 1.82 ± 0.03 e | 2.58 ± 0.01 d | 7.43 ± 0.1 a | 4.15 ± 0.03 b |
Protein | 23.91 ± 0.29 b | 25.12 ± 0.04 a | 23.74 ± 0.31 b | 21.93 ± 0.13 c | 21.93 ± 0.57 c |
Ash | 1.16 ± 0.04 a | 1.21 ± 0.07 a | 1.12 ± 0.02 a | 1.11 ± 0.08 a | 1.24 ± 0.07 a |
Fatty Acids | MBP | TBP | PPP | YNP | WP |
---|---|---|---|---|---|
C10:0 (Decanoic acid) | 1.1 ± 0.01 d | 1.46 ± 0.04 c | 3.31 ± 0.08 a | 2.23 ± 0.07 b | 1.24 ± 0.06 d |
C12:0 (Lauric acid) | 1.07 ± 0.01 cd | 1.24 ± 0.02 c | 2.25 ± 0.06 a | 1.68 ± 0.07 b | 1.05 ± 0.05 d |
C14:0 (Myristic acid) | 14.93 ± 0.43 c | 16.43 ± 0.31 c | 35.09 ± 1.05 a | 23.56 ± 0.99 b | 15.87 ± 0.71 c |
C15:0 (Pentadecanoic acid) | / | / | / | 1.07 ± 0.02 | / |
C16:0 (Palmitic acid) | 262.11 ± 7.05 cd | 296.53 ± 0.89 c | 567.97 ± 20.39 a | 373.04 ± 9.11 b | 238.58 ± 10.18 d |
C16:1n7 (palmitoleic acid) | 24.55 ± 0.52 d | 29.35 ± 0.26 d | 79.66 ± 2.42 a | 47.09 ± 1.93 b | 34.96 ± 1.4 c |
C17:0 (heptadecanoic acid) | 2.09 ± 0.08 a | / | / | 2.31 ± 0.06 a | / |
C18:0 (stearic acid) | 138.03 ± 5.58 c | 149.79 ± 4.73 c | 267.92 ± 11.20 a | 179.1 ± 2.71 b | 113.6 ± 4.22 d |
C18:1 n9c (Oleic acid) | 380.01 ± 8.93 d | 486.66 ± 2.71 c | 970.07 ± 37.47 a | 574.7 ± 15.04 b | 320.98 ± 12.17 d |
C18:2 n6c (linoleic acid) | 187.96 ± 3.25 a | 190.65 ± 0.72 a | 154.27 ± 3.55 b | 185.74 ± 6.02 a | 95.42 ± 3.45 c |
C18:3 n3 (α-Linolenic acid) | 8.98 ± 0.12 b | 9.98 ± 0.11 a | 4.51 ± 0.09 d | 7.39 ± 0.34 c | / |
C20:0 (arachidic acid) | / | / | 4.59 ± 0.21 a | 2.72 ± 0.01 b | / |
C20:1 (cis-11-Eicosenoic acid) | 5.56 ± 0.18 c | 9.74 ± 0.31 b | 13.72 ± 0.62 a | 10.29 ± 0.24 b | 3.56 ± 0.09 d |
C20:2 (cis-11,14-Eicosadienoic Acid) | 6.75 ± 0.19 b | 8.52 ± 0.22 a | 5.8 ± 0.17 c | 7.21 ± 0.25 b | / |
C20:3 n6 (8,11,14-Eicosatrienoicacid) | 3.69 ± 0.08 ab | 3.44 ± 0.06 b | 3.56 ± 0.17 ab | 3.88 ± 0.11 a | 2.79 ± 0.07 c |
C20:4 n6 (Arachidonic acid) | 32.43 ± 0.66 a | 25.07 ± 0.48 c | 28.89 ± 1.05 b | 30.66 ± 0.54 ab | 21.96 ± 0.78 d |
SFA | 419.32 ± 13.14 cd | 465.44 ± 5.26 c | 881.13 ± 32.98 a | 585.71 ± 13.01 b | 370.34 ± 15.23 d |
MUFA | 410.12 ± 9.62 d | 525.74 ± 3.28 c | 1063.45 ± 40.51 a | 632.07 ± 17.21 b | 359.5 ± 13.66 d |
PUFA | 239.8 ± 4.31 a | 237.65 ± 1.37 a | 197.02 ± 5.03 b | 234.87 ± 7.26 a | 120.16 ± 4.29 c |
IA | 0.5 ± 0.003 d | 0.48 ± 0.003 e | 0.57 ± 0.001 b | 0.55 ± 0.000 c | 0.63 ± 0.004 a |
IT | 1.21 ± 0.013 d | 1.15 ± 0.008 e | 1.36 ± 0.002 b | 1.28 ± 0.009 c | 1.53 ± 0.006 a |
NV | 0.49 ± 0.003 d | 0.46 ± 0.002 e | 0.54 ± 0.001 b | 0.52 ± 0.001 c | 0.61 ± 0.003 a |
h/H | 2.21 ± 0.013 b | 2.29 ± 0.008 a | 1.93 ± 0.002 d | 2.02 ± 0.004 c | 1.73 ± 0.010 e |
Amino Acids | MBP | TBP | PPP | YNP | WP |
---|---|---|---|---|---|
Aspartic acid (Asp) | 2.24 ± 0.01 b | 2.33 ± 0.00 a | 2.18 ± 0.01 c | 2.00 ± 0.00 e | 2.10 ± 0.00 d |
Glutamate (Glu) | 3.53 ± 0.01 b | 3.74 ± 0.01 a | 3.53 ± 0.02 b | 3.25 ± 0.01 d | 3.39 ± 0.00 c |
Serine (Ser) | 0.92 ± 0.00 ab | 0.94 ± 0.00 a | 0.90 ± 0.01 b | 0.8 ± 0.02 d | 0.86 ± 0.00 c |
Glycine (Gly) | 1.00 ± 0.00 b | 1.04 ± 0.01 b | 1.12 ± 0.01 a | 0.91 ± 0.03 c | 0.92 ± 0.01 c |
Histidine (His) | 1.22 ± 0.00 a | 1.16 ± 0.00 b | 1.08 ± 0.00 c | 0.98 ± 0.01 d | 0.98 ± 0.00 d |
Arginine (Arg) | 1.49 ± 0.01 b | 1.57 ± 0.01 a | 1.48 ± 0.01 b | 1.35 ± 0.01 d | 1.40 ± 0.01 c |
Alanine (Met) | 1.27 ± 0.00 b | 1.32 ± 0.01 a | 1.30 ± 0.01 ab | 1.16 ± 0.01 d | 1.20 ± 0.00 c |
Proline (Pro) | 0.73 ± 0.01 b | 0.74 ± 0.01 b | 0.79 ± 0.01 a | 0.67 ± 0.01 c | 0.68 ± 0.00 c |
Threonine (Thr) | 1.06 ± 0.01 b | 1.10 ± 0.00 a | 1.03 ± 0.00 c | 0.95 ± 0.01 e | 1.00 ± 0.00 d |
Tyrosine (Tyr) | 0.90 ± 0.01 b | 0.94 ± 0.00 a | 0.86 ± 0.01 c | 0.83 ± 0.01 d | 0.85 ± 0.00 cd |
Valine (Val) | 1.11 ± 0.01 ab | 1.15 ± 0.01 a | 1.06 ± 0.01 bc | 1.01 ± 0.03 c | 1.03 ± 0.00 c |
Methionine (Met) | 0.65 ± 0.01 ab | 0.68 ± 0.02 a | 0.65 ± 0.01 ab | 0.59 ± 0 c | 0.62 ± 0.00 b |
Isoleucine (Ile) | 1.07 ± 0.01 b | 1.13 ± 0.01 a | 1.04 ± 0.01 bc | 0.99 ± 0.02 d | 1.01 ± 0.00 cd |
Leucine (Leu) | 1.90 ± 0.01 b | 1.98 ± 0.01 a | 1.85 ± 0.01 c | 1.73 ± 0.01 e | 1.79 ± 0.00 d |
Phenylalanine (Phe) | 0.96 ± 0.00 b | 1.00 ± 0.01 a | 0.93 ± 0.01 c | 0.88 ± 0 e | 0.90 ± 0.01 d |
Lysine (Lys) | 2.05 ± 0.01 b | 2.16 ± 0.03 a | 1.99 ± 0.01 c | 1.87 ± 0.02 e | 1.93 ± 0.00 d |
Total | 22.1 ± 0.07 b | 22.97 ± 0.12 a | 21.8 ± 0.10 c | 19.97 ± 0.02 e | 20.65 ± 0.02 d |
Content of EAA | 39.820 | 40.050 | 39.270 | 40.160 | 40.100 |
AAS (Child) | 1.583 | 1.564 | 1.550 | 1.547 | 1.6290 |
AAS (Adult) | 3.189 | 2.886 | 2.843 | 2.793 | 2.793 |
EAAI (Child) | 1.932 | 1.899 | 1.869 | 1.175 | 1.21 |
EAAI (Adult) | 3.602 | 3.541 | 3.486 | 2.191 | 2.255 |
PER | 31.657 | 31.388 | 31.107 | 31.373 | 32.519 |
Pork | Hardness (g) | Adhesiveness | Springiness | Cohesiveness (g.mm) | Gumminess | Chewiness | Resilience |
---|---|---|---|---|---|---|---|
MBP | 11,111.23 ± 760.43 a | −2.96 ± 1.56 ab | 0.59 ± 0.04 bc | 0.58 ± 0.04 ab | 6457.07 ± 341.60 a | 3822.63 ± 339.81 a | 0.22 ± 0.03 ab |
TBP | 8513.72 ± 264.68 c | −4.82 ± 0.00 b | 0.65 ± 0.03 b | 0.57 ± 0.01 b | 4772.56 ± 272.22 c | 2788.32 ± 156.21 b | 0.19 ± 0.01 b |
PPP | 5757.24 ± 141.86 d | −49.25 ± 2.57 a | 0.78 ± 0.04 a | 0.63 ± 0.02 a | 3608.13 ± 201.18 d | 2836.21 ± 321.34 b | 0.23 ± 0.02 a |
YNP | 9616.89 ± 430.94 b | −1.50 ± 0.36 c | 0.62 ± 0.03 b | 0.58 ± 0.04 ab | 5747.42 ± 84.78 b | 3470.91 ± 312.26 a | 0.20 ± 0.02 ab |
WP | 9135.96 ± 183.80 bc | −1.11 ± 0.19 c | 0.54 ± 0.03 c | 0.56 ± 0.02 b | 5109.63 ± 242.36 c | 2769.87 ± 111.65 b | 0.18 ± 0.01 b |
Parameter | MBP | TBP | PPP | YNP | WP |
---|---|---|---|---|---|
Flavor | 14.66 ± 1.88 a | 14.66 ± 0.67 a | 15.33 ± 1.68 a | 14.33 ± 2.17 a | 14.33 ± 0.66 a |
Meaty taste | 14.43 ± 1.00 a | 14.69 ± 0.85 a | 14.00 ± 2.57 a | 15.00 ± 0.57 a | 14.88 ± 1.33 a |
Springiness | 14.33 ± 1.20 a | 14.33 ± 0.88 a | 16.00 ± 1.37 a | 14.66 ± 1.33 a | 14.33 ± 2.19 a |
Appearance | 15.60 ± 1.33 a | 15.66 ± 2.16 a | 16.72 ± 1.73 a | 14.66 ± 2.51 a | 15.11 ± 2.57 a |
RT/min | CAS | Name | Formula | Concentration (μg/kg) | Threshold (μg/kg) | OAV | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MBP | TBP | PPP | YNP | WP | MBP | TBP | PPP | YNP | WP | |||||
4.564 | 66-25-1 | Hexanal | C6H12O | 3.22 ± 0.02 | / | 13.00 ± 0.01 | 13.57 ± 0.05 | 6.41 ± 0.01 | 5.00 | 0.64 | / | 2.60 | 2.71 | 1.28 |
14.575 | 124-19-6 | Nonanal | C9H18O | / | 3.36 ± 0.01 | 9.70 ± 0.00 | 4.42 ± 0.02 | / | 1.10 | / | 3.05 | 8.82 | 4.02 | / |
18.492 | 75-07-0 | Acetaldehyde | C2H4O | / | / | / | / | 0.42 ± 0.00 | 25.10 | / | / | / | / | 0.02 |
9.866 | 372-66-7 | 6-amino-2-methyl-2-Heptanol | C8H19NO | / | / | 0.55 ± 0.00 | 0.19 ± 0.00 | / | / | / | / | / | / | / |
10.104 | 3391-86-4 | 1-Octen-3-ol | C8H16O | / | 2.40 ± 0.01 | 5.04 ± 0.00 | / | 19.75 ± 0.04 | 1.50 | / | 1.60 | 3.36 | / | 13.17 |
14.435 | 78-70-6 | Linalool | C10H18O | / | 5.06 ± 0.01 | / | / | / | 0.22 | / | 23.00 | / | / | / |
6.007 | 503-74-2 | 3-Methyl-butanoic acid | C5H10O2 | / | 15.08 ± 0.04 | / | / | / | 70.00 | / | 0.22 | / | / | / |
28.961 | 166273-38-7 | Pentanoic acid, 5-hydroxy-, 2,4-di-t-butylphenyl esters | C19H30O3 | / | / | 3.02 ± 0.00 | 2.91 ± 0.01 | / | / | / | / | / | / | / |
6.835 | 2439-54-5 | N-Methyl-1-octanamine | C9H21N | / | / | 1.04 ± 0.00 | / | / | / | / | / | / | / | / |
8.041 | 4025-37-0 | 2-(aziridin-1-yl) ethanamine | C4H10N2 | / | / | 1.16 ± 0.00 | / | / | / | / | / | / | / | / |
18.498 | 60-35-5 | Acetamide | C2H5NO | 0.23 ± 0.00 | / | / | / | 0.45 ± 0.00 | / | / | / | / | / | / |
3.256 | 513-86-0 | 3-Hydroxy-2-Butanone; Acetoin | C4H8O2 | / | 22.41 ± 0.06 | / | / | / | 14.00 | / | 1.60 | / | / | / |
10.309 | 13475-82-6 | 2,2,4,6,6-Pentamethyl-heptane | C12H26 | 3.57 ± 0.02 | 17.63 ± 0.04 | 20.56 ± 0.01 | 16.59 ± 0.07 | / | / | / | / | / | / | / |
17.927 | 563-16-6 | 3,3-Dimethyl-hexane | C8H18 | / | / | 2.52 ± 0.00 | / | / | / | / | / | / | / | / |
17.921 | 4418-61-5 | 5-Aminotetrazole | CH3N5 | / | / | / | / | 3.59 ± 0.01 | / | / | / | / | / | / |
19.824 | 1014-60-4 | 1,3-Ditert-butyl-benzene | C14H22 | / | / | 1.77 ± 0.00 | / | / | / | / | / | / | / | / |
33.11 | 1111-78-0 | Ammonium carbamate | CH6N2O2 | 0.13 ± 0.00 | 0.15 ± 0.00 | 1.77 ± 0.00 | / | 0.52 ± 0.00 | / | / | / | / | / | / |
Amino Acids | MBP | TBP | PPP | YNP | WP |
---|---|---|---|---|---|
Asp | 11.93 ± 0.12 a | 12.66 ± 0.55 a | 6.81 ± 0.12 b | 12.71 ± 0.56 a | 7.42 ± 0.295 b |
Thr | 25.95 ± 0.97 a | 18.48 ± 0.32 b | 15.57 ± 0.46 c | 14.95 ± 0.61 c | 13.47 ± 0.40 c |
Ser | 23.67 ± 0.57 a | 16.73 ± 0.36 b | 15.15 ± 0.20 cd | 16.42 ± 0.39 bc | 13.98 ± 0.06 d |
Glu | 12.53 ± 0.11 d | 17.43 ± 0.09 b | 9.04 ± 0.035 e | 15.79 ± 0.66 c | 20.87 ± 0.23 a |
Gly | 11.10 ± 0.39 a | 9.68 ± 0.26 c | 10.16 ± 0.19 cb | 8.24 ± 0.11 d | 10.72 ± 0.02 ab |
Ala | 37.77 ± 0.29 a | 26.15 ± 1.05 c | 18.75 ± 0.29 d | 30.92 ± 0.59 b | 16.29 ± 0.34 e |
Val | 16.34 ± 0.46 a | 15.93 ± 0.23 a | 10.11 ± 0.18 c | 13.08 ± 0.3 b | 3.08 ± 0.11 d |
Met | 5.98 ± 0.03 c | 4.41 ± 0.10 d | 6.46 ± 0.05 b | 6.13 ± 0.18 bc | 7.12 ± 0.01 a |
Ile | 10.41 ± 0.35 a | 5.63 ± 0.14 d | 7.77 ± 0.24 b | 4.95 ± 0.03 d | 6.80 ± 0.14 c |
Leu | 11.46 ± 0.22 a | 9.72 ± 0.15 b | 5.88 ± 0.31 c | 3.86 ± 0.16 d | 6.51 ± 0.11 c |
Tyr | 7.99 ± 0.01 c | 10.11 ± 0.37 a | 6.85 ± 0.10 d | 7.21 ± 0.03 d | 9.21 ± 0.17 b |
Phe | 10.9 ± 0.23 b | 10.12 ± 0.33 c | 12.14 ± 0.16 a | 6.78 ± 0.14 d | 4.73 ± 0.13 e |
Lys | 15.47 ± 0.18 a | 8.70 ± 0.05 c | 5.41 ± 0.15 e | 9.35 ± 0.02 b | 6.63 ± 0.23 d |
His | 505.18 ± 6.70 a | 446.59 ± 1.08 b | 403.64 ± 6.35c | 344.81 ± 4.08d | 344.94 ± 3.57 d |
Arg | 10.17 ± 0.45 a | 7.76 ± 0.34 b | 7.59 ± 0.04 b | 3.96 ± 0.01 c | 7.97 ± 0.23 b |
Pro | 10.90 ± 0.15 c | 13.65 ± 0.32 b | 8.77 ± 0.25 d | 14.83 ± 0.69 b | 19.73 ± 0.40 a |
Umami amino acids | 24.45 ± 0.22 c | 30.09 ± 0.46 a | 15.84 ± 0.08 d | 28.50 ± 0.10 b | 28.28 ± 0.52 b |
Sweet amino acids | 109.38 ± 1.21 a | 84.67 ± 0.43 b | 68.39 ± 0.32 d | 85.35 ± 1.39 b | 74.18 ± 1.21 c |
Bitter amino acids | 570.43 ± 8.43 a | 500.13 ± 1.90 b | 453.58 ± 6.47 c | 383.55 ± 3.32 d | 381.13 ± 4.29 d |
Total amount of AA | 727.68 ± 10.03 a | 633.70 ± 1.45 b | 550.07 ± 6.91 c | 513.94 ± 1.81 d | 499.39 ± 3.49 d |
Nucleotides | MBP | TBP | PPP | YNP | WP |
---|---|---|---|---|---|
5′-IMP | 293.9 ± 0.28 d | 298.66 ± 0.05 c | 263.54 ± 0.02 e | 367.85 ± 0.43 a | 313.97 ± 0.58 b |
5′-GMP | 2.57 ± 0.00 d | 3.17 ± 0.00 b | 2.15 ± 0.00 e | 3.45 ± 0.01 a | 3.05 ± 0.02 c |
5′-UMP | 4.03 ± 0.09 d | 8.76 ± 0.04 b | 4.37 ± 0.00 c | 3.29 ± 0.00 e | 9.55 ± 0.04 a |
5′-CMP | 1.81 ± 0.05 a | 1.83 ± 0.00 a | 1.09 ± 0.00 c | 1.2 ± 0.04 b | 1.85 ± 0.00 a |
5′-XMP | 6.56 ± 0.01 b | 6.28 ± 0.01 c | 2.45 ± 0.00 e | 14.59 ± 0 a | 2.68 ± 0.01 d |
5′-AMP | 6.09 ± 0.00 c | 4.31 ± 0.00 d | 2.59 ± 0.00 e | 11.78 ± 0.01 a | 6.62 ± 0.00 b |
Glu | 12.53 ± 0.11 d | 17.43 ± 0.09 b | 9.04 ± 0.035 e | 15.79 ± 0.66 c | 20.87 ± 0.23 a |
ASP | 11.93 ± 0.12 a | 12.66 ± 0.55 a | 6.81 ± 0.12 b | 12.71 ± 0.56 a | 7.42 ± 0.295 b |
EUC | 4.99 ± 0.05 d | 6.96 ± 0.02 c | 3.15 ± 0.01 e | 7.9 ± 0.28 b | 8.45 ± 0.11 a |
Indices | Water Content | Protein Content | Fat Content | EAAI | PER | SFA | MUFA | PUFA | a * | b * | L * | EUC | Umami Amino Acids | Sweet Amino Acids | Bitter Amino Acids | Flavor | Meaty Taste | Sensory Springiness | Appearance |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water content | 1 | −0.088 | −0.28 | 0.086 | −0.09 | 0.711 | 0.719 | −0.537 | 0.74 | 0.961 ** | 0.597 | −0.535 | −0.797 | −0.768 | −0.295 | 0.708 | −0.653 | 0.845 | 0.705 |
Protein content | −0.088 | 1 | −0.828 | 0.923 * | −0.504 | 0.097 | 0.154 | 0.54 | 0.014 | 0.102 | 0.055 | −0.505 | −0.14 | 0.247 | 0.789 | 0.532 | −0.516 | 0.058 | 0.604 |
Fat content | −0.28 | −0.828 | 1 | −0.832 | 0.1 | −0.043 | −0.103 | −0.001 | −0.173 | −0.445 | −0.519 | 0.52 | 0.304 | 0.01 | −0.644 | −0.596 | 0.636 | −0.137 | −0.751 |
EAAI | 0.086 | 0.923 * | −0.832 | 1 | −0.52 | 0.239 | 0.275 | 0.498 | 0.35 | 0.327 | −0.017 | −0.764 | −0.44 | 0.313 | 0.883 * | 0.708 | −0.76 | 0.245 | 0.765 |
PER | −0.09 | −0.504 | 0.1 | −0.52 | 1 | −0.731 | −0.739 | −0.771 | −0.394 | −0.181 | 0.468 | 0.618 | 0.448 | −0.01 | −0.309 | −0.628 | 0.499 | −0.58 | −0.477 |
SFA | 0.711 | 0.097 | −0.043 | 0.239 | −0.731 | 1 | 0.997 ** | 0.153 | 0.772 | 0.713 | −0.024 | −0.701 | −0.817 | −0.523 | −0.13 | 0.807 | −0.675 | 0.972 ** | 0.665 |
MUFA | 0.719 | 0.154 | −0.103 | 0.275 | −0.739 | 0.997 ** | 1 | 0.151 | 0.744 | 0.722 | 0.026 | −0.701 | −0.804 | −0.55 | −0.115 | 0.827 | −0.686 | 0.969 ** | 0.696 |
PUFA | −0.537 | 0.54 | −0.001 | 0.498 | −0.771 | 0.153 | 0.151 | 1 | −0.04 | −0.392 | −0.785 | −0.298 | 0.038 | 0.593 | 0.586 | 0.153 | −0.123 | −0.036 | 0.043 |
a * | 0.74 | 0.014 | −0.173 | 0.35 | −0.394 | 0.772 | 0.744 | −0.04 | 1 | 0.842 | −0.017 | −0.866 | −0.984 ** | −0.203 | 0.147 | 0.805 | −0.853 | 0.856 | 0.73 |
b * | 0.961 ** | 0.102 | −0.445 | 0.327 | −0.181 | 0.713 | 0.722 | −0.392 | 0.842 | 1 | 0.512 | −0.727 | −0.900 * | −0.58 | −0.026 | 0.837 | −0.828 | 0.853 | 0.848 |
L * | 0.597 | 0.055 | −0.519 | −0.017 | 0.468 | −0.024 | 0.026 | −0.785 | −0.017 | 0.512 | 1 | 0.073 | −0.09 | −0.685 | −0.283 | 0.187 | −0.145 | 0.138 | 0.346 |
EUC | −0.535 | −0.505 | 0.52 | −0.764 | 0.618 | −0.701 | −0.701 | −0.298 | −0.866 | −0.727 | 0.073 | 1 | 0.904 * | −0.018 | −0.552 | −0.934 * | 0.976 ** | −0.742 | −0.895 * |
Umami amino acids | −0.797 | −0.14 | 0.304 | −0.44 | 0.448 | −0.817 | −0.804 | 0.038 | −0.984 ** | −0.900 * | −0.09 | 0.904 * | 1 | 0.288 | −0.173 | −0.893 * | 0.913 * | −0.901 * | −0.833 |
Sweet amino acids | −0.768 | 0.247 | 0.01 | 0.313 | −0.01 | −0.523 | −0.55 | 0.593 | −0.203 | −0.58 | −0.685 | −0.018 | 0.288 | 1 | 0.714 | −0.299 | 0.116 | −0.581 | −0.286 |
Bitter amino acids | −0.295 | 0.789 | −0.644 | 0.883 * | −0.309 | −0.13 | −0.115 | 0.586 | 0.147 | −0.026 | −0.283 | −0.552 | −0.173 | 0.714 | 1 | 0.358 | −0.499 | −0.135 | 0.425 |
Flavor | 0.708 | 0.532 | −0.596 | 0.708 | −0.628 | 0.807 | 0.827 | 0.153 | 0.805 | 0.837 | 0.187 | −0.934 * | −0.893 * | −0.299 | 0.358 | 1 | −0.962 ** | 0.851 | 0.973 ** |
Meaty taste | −0.653 | −0.516 | 0.636 | −0.76 | 0.499 | −0.675 | −0.686 | −0.123 | −0.853 | −0.828 | −0.145 | 0.976 ** | 0.913 * | 0.116 | −0.499 | −0.962 ** | 1 | −0.754 | −0.962 ** |
Springiness | 0.845 | 0.058 | −0.137 | 0.245 | −0.58 | 0.972 * * | 0.969 ** | −0.036 | 0.856 | 0.853 | 0.138 | −0.742 | −0.901 * | −0.581 | −0.135 | 0.851 | −0.754 | 1 | 0.745 |
Appearance | 0.705 | 0.604 | −0.751 | 0.765 | −0.477 | 0.665 | 0.696 | 0.043 | 0.73 | 0.848 | 0.346 | −0.895 * | −0.833 | −0.286 | 0.425 | 0.973 ** | −0.962 ** | 0.745 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, Y.; Li, H.; Guo, T.; Jia, J.; Zhang, P.; Wang, L.; Xia, N.; Qian, Q.; Peng, H.; et al. Comparison of Nutrition and Flavor Characteristics of Five Breeds of Pork in China. Foods 2022, 11, 2704. https://doi.org/10.3390/foods11172704
Zhang Y, Zhang Y, Li H, Guo T, Jia J, Zhang P, Wang L, Xia N, Qian Q, Peng H, et al. Comparison of Nutrition and Flavor Characteristics of Five Breeds of Pork in China. Foods. 2022; 11(17):2704. https://doi.org/10.3390/foods11172704
Chicago/Turabian StyleZhang, Yin, Yingjie Zhang, Hui Li, Tianrong Guo, Jianlin Jia, Pengcheng Zhang, Linguo Wang, Ning Xia, Qin Qian, Haichuan Peng, and et al. 2022. "Comparison of Nutrition and Flavor Characteristics of Five Breeds of Pork in China" Foods 11, no. 17: 2704. https://doi.org/10.3390/foods11172704
APA StyleZhang, Y., Zhang, Y., Li, H., Guo, T., Jia, J., Zhang, P., Wang, L., Xia, N., Qian, Q., Peng, H., Pan, Z., Liu, D., & Zhao, L. (2022). Comparison of Nutrition and Flavor Characteristics of Five Breeds of Pork in China. Foods, 11(17), 2704. https://doi.org/10.3390/foods11172704