Variation in Tocochromanols Level and Mycotoxins Content in Sweet Maize Cultivars after Inoculation with Fusarium verticillioides and F. proliferatum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Field Experiment and Phenotypic Ear Rot Resistance Assessment
2.3. Tocochromanols Content
2.3.1. Extraction of Tocochromanols
2.3.2. Determination of Tocochromanols by RP-HPLC/FLD
2.4. Mycotoxins Analysis
2.5. Statistical Analysis
3. Results
3.1. Phenotypic Evaluation
3.2. Mycotoxins Level
3.3. Tocopherols and Tocotrienols Content
3.4. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- García-Díaz, M.; Gil-Serna, J.; Vázquez, C.; Botia, M.N.; Patiño, B. A Comprehensive Study on the Occurrence of Mycotoxins and Their Producing Fungi during the Maize Production Cycle in Spain. Microorganisms 2020, 8, 141. [Google Scholar] [CrossRef] [PubMed]
- Erenstein, O.; Moti, J.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global Maize Production, Consumption and Trade: Trends and R&D Implications. Food Secur. 2022. [Google Scholar] [CrossRef]
- Edgerton, M.D. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol. 2009, 149, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Ferrigo, D.; Raiola, A.; Causin, R. Fusarium Toxins in Cereals: Occurrence, Legislation, Factors Promoting the Appearance and Their Management. Molecules 2016, 21, 627. [Google Scholar] [CrossRef]
- Pereira, P.; Nesci, A.; Castillo, C.; Etcheverry, M. Impact of bacterial biological control agents on fumonisin B1 content and Fusarium verticillioides infection of field-grown maize. Biol. Control. 2010, 53, 258–266. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Beszterda, M.; Goliński, P. Occurrence of Fumonisins in Food—An Interdisciplinary Approach to the Problem. Food Control. 2012, 26, 491–499. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Stępień, Ł. Mycotoxins Biosynthesized by Plant-Derived Fusarium Isolates. Arch. Ind. Hyg. Toxicol. 2012, 63, 437–446. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Stępień, Ł.; Wilman, K.; Kachlicki, P. Diversity of Pea-Associated F. proliferatum and F. verticillioides Populations Revealed by FUM1 Sequence Analysis and Fumonisin Biosynthesis. Toxins 2013, 5, 488–503. [Google Scholar] [CrossRef]
- Perincherry, L.; Lalak-Kańczugowska, J.; Stępień, Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins 2019, 11, 664. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; WHO: Geneva, Switzerland, 2002; Volume 82. [Google Scholar]
- European Commission Regulation (EC). Commission Regulation (EC) No. 1126/2007 of 28 September 2007. Off. J. Eur. Union 2007, L255, 14–17. [Google Scholar]
- Shahidi, F.; de Camargo, A.C. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef] [PubMed]
- Munné-Bosch, S.; Alegre, L. The Function of Tocopherols and Tocotrienols in Plants. Crit. Rev. Plant Sci. 2002, 21, 31–57. [Google Scholar] [CrossRef]
- Azzi, A. Tocopherols, Tocotrienols and Tocomonoenols: Many Similar Molecules but Only One vitamin E. Redox Biol. 2019, 26, 101259. [Google Scholar] [CrossRef] [PubMed]
- Rocheford, T.R.; Wong, J.C.; Egesel, C.O.; Lambert, R.J. Enhancement of Vitamin E Levels in Corn. J. Am. Coll. Nutr. 2002, 21 (Suppl. S3), 191S–198S. [Google Scholar] [CrossRef]
- Sheng, S.; Li, T.; Liu, R.H. Corn Phytochemicals and Their Health Benefits. Food Sci. Hum. Wellness 2018, 7, 185–195. [Google Scholar] [CrossRef]
- Iqbal, S.Z.; Mustafa, H.G.; Asi, M.R.; Jinap, S. Variation in Vitamin E Level and Aflatoxins Contamination in Different Rice Varieties. J. Cereal Sci. 2014, 60, 352–355. [Google Scholar] [CrossRef]
- Shah, T.R.; Prasad, K.; Kumar, P. Maize—A Potential Source of Human Nutrition and Health: A Review. Cogent Food Agric. 2016, 2, 1166995. [Google Scholar] [CrossRef]
- Kumar, D.; Jhariya, N.A. Nutritional, Medicinal and Economical Importance of Corn: A Mini Review. Res. J. Pharm. Sci. 2013, 2, 7–8. [Google Scholar]
- Morkunas, I.; Narożna, D.; Nowak, W.; Samardakiewicz, S.; Remlein-Starosta, D. Cross-Talk Interactions of Sucrose and Fusarium oxysporum in the Phenylpropanoid Pathway and the Accumulation and Localization of Flavonoids in Embryo Axes of Yellow Lupine. J. Plant Physiol. 2011, 168, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, V.; Lattanzio, V.M.T.; Cardinali, A. Role of Phenolics in the Resistance Mechanisms of Plants Against Fungal Pathogens and Insects. Phytochem. Adv. Res. 2006, 661, 23–67. [Google Scholar]
- Winkel-Shirley, B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 2002, 5, 218–223. [Google Scholar] [CrossRef]
- Hammerschmidt, R. Phytoalexin Accumulation: Response or Defense. Physiol. Mol. Plant Pathol. 2003, 62, 125–126. [Google Scholar] [CrossRef]
- Atanasova-Penichon, V.; Barreau, C.; Richard-Forget, F. Antioxidant Secondary Metabolites in Cereals: Potential Involvement in Resistance to Fusarium and Mycotoxin Accumulation. Front. Microbiol. 2016, 7, 566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, L.M.; Nicol, R.W.; Ouellet, T.; Savard, M.; Miller, J.D.; Young, J.C.; Stewart, D.W.; Schaafsma, A.W. Interaction of Fusarium graminearum and F. moniliforme in Maize Ears: Disease Progress, Fungal Biomass, and Mycotoxin Accumulation. Phytopathology 1999, 89, 1028–1037. [Google Scholar] [CrossRef]
- Górnaś, P.; Pugajeva, I.; Segliņa, D. Seeds Recovered from By-Products of Selected Fruit Processing as a Rich Source of Tocochromanols: RP-HPLC/FLD and RP-UPLC-ESI/MSn study. Eur. Food Res. Technol. 2014, 239, 519–524. [Google Scholar] [CrossRef]
- Górnaś, P.; Siger, A.; Czubinski, J.; Dwiecki, K.; Segliņa, D.; Nogala-Kalucka, M. An Alternative RP-HPLC Method for the Separation and Determination of Tocopherol and Tocotrienol Homologues as Butter Authenticity Markers: A Comparative Study Between two European Countries. Eur. J. Lipid Sci. Technol. 2014, 116, 895–903. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Irzykowska, L.; Drzewiecka, K.; Bocianowski, J.; Dobosz, B.; Weber, Z.; Karolewski, Z.; Krzyminiewski, R.; Goliński, P. Plant-Pathogen Interactions During Infection Process of Asparagus with Fusarium spp. Cent. Eur. J. Biol. 2013, 8, 1065–1076. [Google Scholar] [CrossRef]
- Martínez-Fraca, J.; de la Torre-Hernández, M.E.; Meshoulam-Alamilla, M.; Plasencia, J. In Search of Resistance Against Fusarium Ear Rot: Ferulic Acid Contents in Maize Pericarp Are Associated with Antifungal Activity and Inhibition of Fumonisin Production. Front. Plant Sci. 2022, 13, 852257. [Google Scholar] [CrossRef]
- Picot, A.; Atanasova-Pénichon, V.; Pons, S.; Marchegay, G.; Barreau, C.; Pinson-Gadais, L.; Roucolle, J.; Daveau, F.; Caron, D.; Richard-Forget, F. Maize Kernel Antioxidants and Their Potential Involvement in Fusarium Ear Rot Resistance. J. Agric. Food Chem. 2013, 61, 3389–3395. [Google Scholar] [CrossRef]
- Majeed, S.; Iqbal, M.; Asi, M.R.; Iqbal, S.Z.; Selamat, J. Analysis of Nutritional Traits and Aflatoxin Contamination in Selected Maize Varieties from Pakistan. J. Food Prot. 2017, 80, 1993–1998. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chen, D.; Yu, B. Protective Effects of Selenium and Vitamin E on Rats Consuming Maize Naturally Contaminated with Mycotoxins. Front. Agric. China 2009, 3, 95–99. [Google Scholar] [CrossRef]
- Hoehler, D.; Marquardt, R. Influence of Vitamins E and C on the Toxic Effects of Ochratoxin A and T-2 Toxin in Chicks. Poult. Sci. 1996, 75, 1508–1515. [Google Scholar] [CrossRef] [PubMed]
- Baldi, A.; Losio, M.N.; Cheli, F.; Rebucci, R.; Sangalli, L.; Fusi, E.; Bertasi, B.; Pavoni, E.; Carli, S.; Politis, I. Evaluation of the Protective Effects of α-Tocopherol and Retinol Against Ochratoxin A Cytotoxicity. Br. J. Nutr. 2004, 91, 507–512. [Google Scholar] [CrossRef] [PubMed]
Maize Cultivar | Fusarium Isolate | FB1 | FB2 | FB3 |
---|---|---|---|---|
control | 0.913 ± 0.033 f | 0.294 ± 0.033 gh | 0.031 ± 0.003 h | |
KF 3492 | 4.186 ± 0.340 d | 1.298 ± 0.151 de | 0.725 ± 0.071 b | |
GSS 8529 | KF 3707 | 16.061 ± 0.577 a | 4.553 ± 0.508 a | 0.969 ± 0.051 a |
KF 3654 | 16.160 ± 0.286 a | 3.170 ± 0.303 b | 0.523 ± 0.050 c | |
KF 925 | 5.333 ± 0.178 c | 0.973 ± 0.160 ef | 0.137 ± 0.036 fg | |
control | 0.000 ± 0.000 g | 0.000 ± 0.000 h | 0.000 ± 0.000 h | |
KF 3492 | 0.797 ± 0.084 f | 0.123 ± 0.021 gh | 0.057 ± 0.009 gh | |
Shinerock | KF 3707 | 0.870 ± 0.060 f | 0.391 ± 0.013 gh | 0.019 ± 0.003 h |
KF 3654 | 2.064 ± 0.174 e | 0.418 ± 0.028 gh | 0.033 ± 0.004 h | |
KF 925 | 0.996 ± 0.034 f | 0.217 ± 0.028 gh | 0.036 ± 0.008 h | |
control | 0.000 ± 0.000 g | 0.000 ± 0.000 h | 0.000 ± 0.000 h | |
KF 3492 | 1.716 ± 0.174 e | 0.308 ± 0.030 gh | 0.049 ± 0.008 h | |
Overland | KF 3707 | 9.562 ± 0.456 b | 2.171 ± 0.273 c | 0.417 ± 0.031 d |
KF 3654 | 5.338 ± 0.237 c | 1.307 ± 0.262 de | 0.198 ± 0.014 ef | |
KF 925 | 2.229 ± 0.210 e | 0.576 ± 0.066 fg | 0.077 ± 0.014 gh | |
control | 0.034 ± 0.006 g | 0.002 ± 0.000 h | 0.000 ± 0.000 h | |
KF 3492 | 0.863 ± 0.070 f | 0.152 ± 0.016 gh | 0.051 ± 0.010 h | |
Sweetstar | KF 3707 | 1.012 ± 0.096 f | 0.221 ± 0.004 gh | 0.007 ± 0.001 h |
KF 3654 | 5.960 ± 0.174 c | 1.493 ± 0.051 d | 0.229 ± 0.028 e | |
KF 925 | 0.917 ± 0.035 f | 0.128 ± 0.008 gh | 0.012 ± 0.004 h |
Maize Cultivar | Fusarium Isolate | α-T | β-T | γ-T | δ-T | α -T3 | γ-T3 | δ-T3 | Total T | Total T3 |
---|---|---|---|---|---|---|---|---|---|---|
control | 1.958 ± 0.202 fgh | 0.062 ± 0.018 cd | 9.269 ± 0.145 jk | 0.248 ± 0.044 cde | 2.011 ± 0.167 de | 4.209 ± 0.212 f | 0.377 ± 0.071 b | 18.133 ± 0.520 | 6.596 ± 0.437 | |
KF 3492 | 1.124 ± 0.045 jk | 0.048 ± 0.013 de | 8.097 ± 0.342 k | 0.297 ± 0.022 cde | 1.207 ± 0.068 hi | 2.611 ± 0.086 gh | 0.270 ± 0.042 b | 13.653 ± 0.589 | 4.087 ± 0.191 | |
GSS 8529 | KF 3707 | 1.668 ± 0.146 ghi | 0.007 ± 0.002 e | 4.592 ± 0.106 m | 0.200 ± 0.027 e | 0.920 ± 0.039 i | 1.496 ± 0.057 i | 0.263 ± 0.030 b | 9.144 ± 0.210 | 2.678 ± 0.125 |
KF 3654 | 0.898 ± 0.061 k | 0.006 ± 0.002 e | 5.845 ± 0.263 l | 0.210 ± 0.021 e | 1.137 ± 0.090 hi | 2.026 ± 0.091 hi | 0.224 ± 0.051 b | 10.345 ± 0.502 | 3.386 ± 0.206 | |
KF 925 | 1.479 ± 0.098 ij | 0.060 ± 0.011 cd | 11.336 ± 0.239 fghi | 0.300 ± 0.043 cde | 1.816 ± 0.091 ef | 3.239 ± 0.141 g | 0.229 ± 0.047 b | 18.458 ± 0.643 | 5.284 ± 0.271 | |
control | 1.954 ± 0.181 fgh | 0.062 ± 0.015 cd | 10.232 ± 0.396 ij | 0.204 ± 0.026 e | 1.801 ± 0.119 ef | 2.682 ± 0.198 gh | 0.261 ± 0.052 b | 17.196 ± 0.832 | 4.744 ± 0.365 | |
KF 3492 | 2.388 ± 0.128 cde | 0.050 ± 0.015 de | 12.246 ± 0.299 defg | 0.232 ± 0.033 de | 2.278 ± 0.173 bcd | 5.070 ± 0.144 e | 0.368 ± 0.065 b | 22.631 ± 0.822 | 7.716 ± 0.378 | |
Shinerock | KF 3707 | 2.138 ± 0.066 def | 0.053 ± 0.009 de | 10.662 ± 0.310 hj | 0.206 ± 0.037 e | 2.493 ± 0.107 ab | 5.345 ± 0.163 e | 0.375 ± 0.017 b | 21.273 ± 0.700 | 8.213 ± 0.279 |
KF 3654 | 2.518 ± 0.086 cd | 0.065 ± 0.015 cd | 12.349 ± 0.365 def | 0.215 ± 0.029 de | 2.507 ± 0.181 ab | 5.413 ± 0.221 e | 0.373 ± 0.047 b | 23.441 ± 0.884 | 8.294 ± 0.447 | |
KF 925 | 2.235 ± 0.069 def | 0.056 ± 0.012 cd | 11.767 ± 0.223 efgh | 0.214 ± 0.019 de | 2.704 ± 0.063 a | 5.217 ± 0.123 e | 0.375 ± 0.032 b | 22.569 ± 0.504 | 8.297 ± 0.204 | |
control | 3.076 ± 0.091 ab | 0.144 ± 0.019 ab | 11.612 ± 0.231 efgh | 0.247 ± 0.017 cde | 2.237 ± 0.041 bcd | 7.139 ± 0.213 b | 0.600 ± 0.043 a | 25.057 ± 0.528 | 9.977 ± 0.283 | |
KF 3492 | 2.450 ± 0.092 cd | 0.119 ± 0.017 ab | 11.145 ± 0.323 ghi | 0.293 ± 0.018 cde | 1.810 ± 0.066 ef | 6.518 ± 0.182 bcd | 0.632 ± 0.058 a | 22.967 ± 0.706 | 8.960 ± 0.280 | |
Overland | KF 3707 | 2.691 ± 0.171 bc | 0.132 ± 0.012 ab | 12.469 ± 0.319 def | 0.363 ± 0.034 bc | 2.138 ± 0.051 cd | 7.070 ± 0.164 b | 0.722 ± 0.043 a | 25.584 ± 0.785 | 9.929 ± 0.257 |
KF 3654 | 3.366 ± 0.290 a | 0.124 ± 0.011 ab | 16.583 ± 0.549 a | 0.426 ± 0.025 b | 2.334 ± 0.108 bc | 7.879 ± 0.317 a | 0.724 ± 0.062 a | 31.435 ± 1.336 | 10.937 ± 0.485 | |
KF 925 | 3.298 ± 0.160 a | 0.140 ± 0.012 ab | 13.893 ± 0.435 c | 0.330 ± 0.024 bcd | 2.154 ± 0.090 cd | 7.015 ± 0.302 bc | 0.697 ± 0.078 a | 27.526 ± 1.091 | 9.865 ± 0.466 | |
control | 2.031 ± 0.109 efg | 0.130 ± 0.017 ab | 16.748 ± 0.419 a | 0.655 ± 0.031 a | 1.733 ± 0.056 ef | 6.370 ± 0.259 cd | 0.621 ± 0.044 a | 28.288 ± 0.914 | 8.724 ± 0.359 | |
KF 3492 | 1.315 ± 0.138 ij | 0.102 ± 0.011 bc | 12.755 ± 0.700 cde | 0.685 ± 0.071 a | 1.400 ± 0.119 gh | 5.202 ± 0.422 e | 0.597 ± 0.097 a | 22.055 ± 1.534 | 7.198 ± 0.637 | |
Sweetstar | KF 3707 | 1.621 ± 0.129 ghi | 0.153 ± 0.041 a | 13.200 ± 0.559 cd | 0.768 ± 0.081 a | 1.420 ± 0.052 gh | 5.110 ± 0.171 e | 0.626 ± 0.050 a | 22.898 ± 1.082 | 7.156 ± 0.272 |
KF 3654 | 1.568 ± 0.049 hi | 0.128 ± 0.005 ab | 12.976 ± 0.408 cd | 0.759 ± 0.042 a | 1.590 ± 0.049 fg | 5.262 ± 0.177 e | 0.619 ± 0.038 a | 22.903 ± 0.764 | 7.472 ± 0.262 | |
KF 925 | 1.932 ± 0.107 fgh | 0.133 ± 0.004 ab | 15.219 ± 0.559 b | 0.656 ± 0.046 a | 1.696 ± 0.075 fg | 6.113 ± 0.296 d | 0.688 ± 0.064 a | 26.438 ± 1.151 | 8.498 ± 0.434 |
Root 1 | Root 2 | Root 3 | |
---|---|---|---|
δ-T3 | 0.19 | −0.38 | −0.04 |
γ-T3 | 2.09 | −0.6 | 0.23 |
α-T3 | −2.51 | 0.55 | −0.70 |
δ-T | 0.56 | 0.95 | −0.31 |
β-T | 0.45 | −0.64 | 0.37 |
γ-T | −0.13 | 0.10 | 0.07 |
α-T | −0.20 | −0.42 | −0.26 |
FB1 | −0.24 | −1.57 | 0.76 |
FB2 | 0.99 | 1.53 | −0.52 |
FB3 | −1.12 | −0.49 | 0.46 |
discrimination % | 78 | 20 | 2 |
cumulative % | 78 | 98 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waśkiewicz, A.; Muzolf-Panek, M.; Stępień, Ł.; Czembor, E.; Uwineza, P.A.; Górnaś, P.; Bryła, M. Variation in Tocochromanols Level and Mycotoxins Content in Sweet Maize Cultivars after Inoculation with Fusarium verticillioides and F. proliferatum. Foods 2022, 11, 2781. https://doi.org/10.3390/foods11182781
Waśkiewicz A, Muzolf-Panek M, Stępień Ł, Czembor E, Uwineza PA, Górnaś P, Bryła M. Variation in Tocochromanols Level and Mycotoxins Content in Sweet Maize Cultivars after Inoculation with Fusarium verticillioides and F. proliferatum. Foods. 2022; 11(18):2781. https://doi.org/10.3390/foods11182781
Chicago/Turabian StyleWaśkiewicz, Agnieszka, Małgorzata Muzolf-Panek, Łukasz Stępień, Elżbieta Czembor, Pascaline Aimee Uwineza, Paweł Górnaś, and Marcin Bryła. 2022. "Variation in Tocochromanols Level and Mycotoxins Content in Sweet Maize Cultivars after Inoculation with Fusarium verticillioides and F. proliferatum" Foods 11, no. 18: 2781. https://doi.org/10.3390/foods11182781
APA StyleWaśkiewicz, A., Muzolf-Panek, M., Stępień, Ł., Czembor, E., Uwineza, P. A., Górnaś, P., & Bryła, M. (2022). Variation in Tocochromanols Level and Mycotoxins Content in Sweet Maize Cultivars after Inoculation with Fusarium verticillioides and F. proliferatum. Foods, 11(18), 2781. https://doi.org/10.3390/foods11182781