A Narrative Review on Various Oil Extraction Methods, Encapsulation Processes, Fatty Acid Profiles, Oxidative Stability, and Medicinal Properties of Black Seed (Nigella sativa)
Abstract
:1. Introduction
2. Extraction of Oil from Nigella sativa Seeds by Using Different Novel Techniques
2.1. Cold Pressing
2.2. Supercritical Fluid Extraction
2.3. Soxhlet Extraction
2.4. Hydro Distillation (HD) Method
2.5. Microwave-Assisted Extraction (MAE)
2.6. Ultrasound-Assisted Extraction
2.7. Steam Distillation
2.8. Accelerated Solvent Extraction (ASE)
3. Fatty Acid Profile of Extracted Oil
4. Oxidative Stability of Extracted Oil
Technologies to Extend the Oxidative Stability of Black Seeds Oil
5. Functionality in Food Applications
6. Health Benefits of Nigella sativa
6.1. Medicinal Properties of Nigella sativa
6.2. Antiviral Activity of Nigella sativa against Other Medically Important Viruses
6.2.1. Antiviral Activity of Nigella sativa against Human Immunodeficiency Virus
6.2.2. Antiviral Activity of Nigella sativa against SARS-CoV-2
6.3. Role of Nigella sativa against Asthma
6.4. Antioxidant Activity and Bioactive Compounds of Nigella sativa
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huchchannanavar, S.; Yogesh, L.N.; Prashant, S.M. The black seed Nigella sativa: A wonder seed. Int. J. Chem. Stud. 2019, 7, 1320–1324. [Google Scholar]
- Sands, R.D.; Suttles, S.A. World agricultural baseline scenarios through 2050. Appl. Econ. Perspect. Policy 2022. [Google Scholar] [CrossRef]
- Goreja, W.G. Black seed. Nature’s Miracle Remedy; Karger Publishers: Basel, Switzerland, 2003. [Google Scholar]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A Review on Therapeutic Potential of Nigella sativa: A Miracle Herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. [Google Scholar] [CrossRef]
- Warrier, P.K.; Nambiar, V.P.K.; Ramankutty, C. Indian Medicinal Plants: A Compendium of 500 Species; Orient Blackswan: Hyderabad, India, 2004; p. 4. [Google Scholar]
- Al-Khalaf, M.I.; Ramadan, K.S. Antimicrobial and Anticancer Activity of Nigella sativa Oil—A Review. Aus. J. Basic Appl. Sci. 2013, 7, 505–514. [Google Scholar]
- El-Mahdy, M.A.; Zhu, Q.; Wang, Q.E.; Wani, G.; Wani, A.A. Thymoquinone Induces Apoptosis through Activation of Caspase-8 and Mitochondrial Events in P53-Null Myeloblastic Leukemia Hl-60 Cells. Int. J. Cancer 2005, 117, 409–417. [Google Scholar] [CrossRef]
- Salomi, M.J.; Satish, C.N.; Panikkar, K.R. Inhibitory Effects of Nigella sativa and Saffron (Crocus sativus) on Chemical Carcinogenesis in Mice. Nutr. Cancer 1991, 16, 67–72. [Google Scholar] [CrossRef]
- Effenberger, K.; Breyer, S.; Schobert, R. Terpene Conjugates of the Nigella sativa Seed-Oil Constituent Thymoquinone with Enhanced Efficacy in Cancer Cells. Chem. Biodivers. 2010, 7, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Chehl, N.; Chipitsyna, G.; Gong, Q.; Yeo, C.J.; Arafat, H.A. Anti-Inflammatory Effects of the Nigella sativa Seed Extract, Thymoquinone, in Pancreatic Cancer Cells. HPB 2009, 11, 373–381. [Google Scholar] [CrossRef]
- Thabrew, M.I.; Mitry, R.R.; Morsy, M.A.; Hughes, R.D. Cytotoxic Effects of a Decoction of Nigella sativa, Hemidesmus indicus and Smilax glabra on Human Hepatoma Hepg2 Cells. Life Sci. 2005, 77, 1319–1330. [Google Scholar] [CrossRef]
- Yi, T.; Cho, S.G.; Yi, Z.; Pang, X.; Rodriguez, M.; Wang, Y.; Sethi, G.; Aggarwal, B.B.; Liu, M. Thymoquinone Inhibits Tumor Angiogenesis and Tumor Growth Through Suppressing AKT and Extracellular Signal-Regulated Kinase Signaling Pathways. Mol. Cancer Ther. 2008, 7, 1789–1796. [Google Scholar] [CrossRef]
- Khan, N.; Sultana, S. Inhibition of Two Stage Renal Carcinogenesis, Oxidative Damage and Hyperproliferative Response by Nigella sativa. Eur. J. Cancer Prev. 2005, 14, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Leong, X.F.; Mustafa, M.; Jaarin, K. Nigella sativa and Its Protective Role in Oxidative Stress and Hypertension. Evid.-Based Complement. Altern. Med. 2013, 2013, 120732. [Google Scholar]
- El-Dakhakhny, M. Effects of Nigella sativa Oil on Gastric Secretion and Ethanol Induced Ulcer in Rats. J. Ethnopharmacol. 2000, 72, 299–304. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Parvardeh, S.; Nassiri-Asl, M.; Mansouri, M.T. Intracerebroventricular Administration of Thymoquinone, the Major Constituent of Nigella sativa Seeds, Suppresses Epileptic Seizures in Rats. Med. Sci. Monit. 2005, 11, 110. [Google Scholar]
- Khonche, A. Effectiveness of Nigella sativa Oil on Patients with Nonalcoholic Fatty Liver: A Randomized Double-Blind Placebo-Controlled Trial. Acad. J. Med. Plants 2018, 6, 307–312. [Google Scholar]
- Koshak, A. Nigella sativa Supplementation Improves Asthma Control and Biomarkers: A Randomized, Double-Blind, Placebo-Controlled Trial. Phytother. Res. 2017, 31, 403–409. [Google Scholar] [CrossRef]
- Azizi, F.; Ghorat, F.; Rakhshani, M.H.; Rad, M. Comparison of the Effect of Topical Use of Nigella sativa Oil and Diclofenac Gel on Osteoarthritis Pain in Older People: A Randomized, Double-Blind, Clinical Trial. J. Herb. Med. 2019, 16, 100259. [Google Scholar] [CrossRef]
- Tavakkoli, A. Review on Clinical Trials of Black Seed (Nigella sativa) and Its Active Constituent, Thymoquinone. J. Pharmacopunct. 2017, 20, 179–193. [Google Scholar]
- Majdalawieh, A.F.; Fayyad, M.W.; Nasrallah, G.K. Anti-Cancer Properties and Mechanisms of Action of Thymoquinone, the Major Active Ingredient of Nigella sativa. Crit. Rev. Food Sci. Nutr. 2017, 57, 3911–3928. [Google Scholar] [CrossRef]
- Abdulelah, H.A.A.; Zainal-Abidin, B.A.H. In Vivo Anti-Malarial Tests of Nigella sativa (Black Seed) Different Extracts. Am. J. Pharmacol. Toxicol. 2007, 2, 46–50. [Google Scholar]
- Okeola, V.O.; Adaramoye, O.A.; Nneji, C.M.; Falade, C.O.; Farombi, E.O.; Ademowo, O.G. Antimalarial and Antioxidant Activities of Methanolic Extract of Nigella sativa Seeds (Black Cumin) in Mice Infected with Plasmodium yoelli nigeriensis. Parasitol. Res. 2011, 108, 1507–1512. [Google Scholar] [CrossRef] [PubMed]
- Bashmail, H.A. Thymoquinone Synergizes Gemcitabine Anti-Breast Cancer Activity Via Modulating Its Apoptotic and Autophagic Activities. Sci. Rep. 2018, 8, 11674. [Google Scholar] [CrossRef]
- Salem, M.L. Immunomodulatory and therapeutic properties of the Nigella sativa seed. Int. Immunopharmacol. 2005, 5, 1749–1770. [Google Scholar] [CrossRef] [PubMed]
- Nautiyal, O.H. Black seed (Nigella sativa) oil. In Fruit Oils: Chemistry and Functionality; Springer: Cham, Switzerland, 2019; pp. 839–857. [Google Scholar]
- Ojueromi, O.O.; Oboh, G.; Ademosun, A.O. Effect of black seeds (Nigella sativa) on inflammatory and immunomodulatory markers in Plasmodium berghei-infected mice. J. Food Biochem. 2022, e14300. [Google Scholar] [CrossRef]
- Janfaza, S.; Janfaza, E. The Study of Pharmacologic and Medicinal Valuation of Thymoquinone of Oil of Nigella sativa in the Treatment of Diseases. Ann. Biol. Res. 2001, 23, 1953–1957. [Google Scholar]
- Ahmad, I.; Tripathi, J.; Sharma, M. Nigella sativa—A Medicinal Herb with Immense Therapeutic Potential (A Systematic Review). Int. J. Biol. Pharm. Res. 2014, 5, 755–762. [Google Scholar]
- Takruri, H.R.; Dameh, M.A. Study of the Nutritional Value of Black Cumin Seeds (Nigella sativa). J. Sci. Food. Agric. 1998, 76, 404–410. [Google Scholar] [CrossRef]
- Hosseini, M.; Zakeri, S.; Khoshdast, S. The Effects of Nigella sativa Hydro-Alcoholic Extract and Thymoquinone on Lipopolysaccharide-Induced Depression like Behavior in Rats. J. Pharm. Bioallied Sci. 2012, 4, 219–225. [Google Scholar] [CrossRef]
- Rajsekhar, S.; Kuldeep, B. Pharmacognosy and Pharmacology of Nigella sativa—A Review. Int. Res. J. Pharm. 2011, 2, 36–39. [Google Scholar]
- Paarakh, P.M. Nigella sativa Linn.—A comprehensive review. Indian J. Nat. Prod. Resour. 2010, 1, 409–429. [Google Scholar]
- Burdock, G.A. Assessment of black cumin (Nigella sativa) as a food ingredient and putative therapeutic agent. Regul. Toxicol. Pharmacol. 2022, 128, 105088. [Google Scholar] [CrossRef]
- Hajhashemi, V.; Ghannadi, A.; Jafarabadi, H. Black Cumin Seed Essential Oil, As A Potent Analgesic and Anti-inflammatory Drug. Phytother. Res. 2004, 18, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, R.P.; Mehrotra, B.N. Compendium of Indian Medicinal Plants, Reprinted ed.; Central Drug Research Institute: Lucknow, India, 1993; Volume 3, pp. 452–453. [Google Scholar]
- Nickavar, B.; Mojab, F.; Javidnia, K.; Amoli, M.A. Chemical Composition of the Fixed and Volatile Oils of Nigella sativa from Iran. Z. Naturforsch. C 2003, 58, 629–631. [Google Scholar] [CrossRef] [PubMed]
- Gali-Muhtasib, H.; El-Najjar, N.; Schneider-Stock, R. The Medicinal Potential of Black Seed (Nigella sativa) and Its Components. Adv. Phytomed. 2006, 2, 133–153. [Google Scholar]
- Mohsen, Z.A.; Gheni, S.W.; Hussein, J.M. Study of The Effect of Black Seed Extract in Some Bacteria That Cause Urinary Tract Infection. J. Kerbala Univ. 2009, 7, 156–160. [Google Scholar]
- Tulukcu, F. A Comparative Study on Fatty Acid Composition of Black Cumin Obtained from Different Regions of Turkey, Iran and Syria. Afr. J. Agric. Res. 2011, 6, 892–895. [Google Scholar]
- Hobbenaghi, R.; Javanbakht, J.; Sadeghzadeh, S.H.; Kheradmand, D.; Abdi, F.; Jaberi, M.; Mohammadiyan, M.; Khadivar, F.; Mollaei, Y. Neuroprotective Effects of Nigella sativa Extract on Cell Death in Hippocampal Neurons Following Experimental Global Cerebral Ischemia-Reperfusion Injury in Rats. J. Neuro Sci. 2014, 337, 74–79. [Google Scholar] [CrossRef]
- Develi, S.; Evran, B.; Kalaz, E.; Koçak-Toker, N.; Erata, G. Protective Effect of Nigella sativa Oil Against Binge Ethanol-Induced Oxidative Stress and Liver Injury in Rats. Chin. J. Nat. Med. 2014, 12, 495–499. [Google Scholar] [CrossRef]
- Sultan, M.; Butt, M.; Karim, R.; Ahmad, A.; Suleria, H.; Saddique, M. Toxicological and Safety Evaluation of Nigella sativa Lipid and Volatile Fractions in Streptozotocin Induced Diabetes Mellitus. Asian Pac. J. Trop. Dis. 2014, 4, S693–S697. [Google Scholar] [CrossRef]
- Kamil, Z.H. Spectacular Black Seeds (Nigella sativa) Medical Importance Review. Med. J. Babylon 2013, 10, 1–9. [Google Scholar]
- Al-Zendi, S.K.J.; Jasim, A.N.; AL-Mousawi, A.H. The Effect of Hot Water and Ethanol Extract of Nigella sativa in Immune System of Albino Mice. Um Salamah J. Sci. 2009, 6, 235–243. [Google Scholar]
- Sharma, N.; Ahirwar, D.; Jhade, D. Medicinal and pharmacological potential of Nigella sativa: A review. Ethnobot. Rev. 2009, 13, 946–955. [Google Scholar]
- Khan, M.A.; Afzal, M. Chemical Composition of Nigella sativa Linn: Part 2 Recent Advances. Inflammopharmacology 2016, 24, 67–79. [Google Scholar] [CrossRef]
- Agbaria, R.; Gabarin, A.; Dahan, A.; Ben-Shabat, S. Anti-Cancer Activity of Nigella sativa (Black Seed) and Its Relationship with the Thermal Processing and Quinine Composition of the Seeds. Drug Des. Dev. Ther. 2015, 9, 3119–3124. [Google Scholar]
- Miguel, G.A.; Jacobsen, C.; Prieto, C.; Kempen, P.J.; Lagaron, J.M.; Chronakis, I.S.; García-Moreno, P.J. Oxidative Stability and Physical Properties of Mayonnaise Fortified with Zein Electrosprayed Capsules Loaded with Fish Oil. J. Food Eng. 2019, 263, 348–358. [Google Scholar] [CrossRef]
- Abdel-Razek, A.G.; Badr, A.N.; El-Messery, T.M.; El-Said, M.M.; Hussein, A.M.S. Micro-Nano Encapsulation of Black Seed Oil Ameliorate Its Characteristics and Its Mycotoxin Inhibition. Biosci. Res. 2018, 3, 2591–2601. [Google Scholar]
- Edris, A.E.; Kalemba, D.; Adamiec, J.; Piatkowski, M. Microencapsulation of Nigella sativa Oleoresin by Spray Drying for Food and Nutraceutical Applications. Food Chem. 2016, 204, 326–333. [Google Scholar] [CrossRef]
- Kiralan, M.; Özkan, G.; Bayrak, A.; Ramadan, M.F. Physicochemical properties and stability of black cumin (Nigella sativa) seed oil as affected by different extraction methods. Indus. Crops Prod. 2014, 57, 52–58. [Google Scholar] [CrossRef]
- Mohammed, N.K.; Manap, A.; Yazid, M.; Tan, C.P.; Muhialdin, B.J.; Alhelli, A.M.; Meor Hussin, A.S. The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa) Oil. Evid.-Based Comp. Altern. Med. 2016, 2016, 6273817. [Google Scholar]
- Rao, M.V.; Al-Marzouqi, A.H.; Kaneez, F.S.; Ashraf, S.S.; Adem, A. Comparative evaluation of SFE and solvent extraction methods on the yield and composition of black seeds (Nigella sativa). J. Liq. Chromatogr. Relat. Technol. 2007, 30, 2545–2555. [Google Scholar] [CrossRef]
- Dinagaran, S.; Sridhar, S.; Eganathan, P. Chemical Composition and Antioxidant Activities of Black Seed Oil (Nigella sativa). Int. J. Pharm. Sci. Res. 2016, 7, 44–73. [Google Scholar]
- Kokoska, L.; Havlik, J.; Valterova, I.; Sovova, H.; Sajfrtova, M.; Jankovska, I. Comparison of Chemical Composition and Antibacterial Activity of Nigella sativa Seed Essential Oils Obtained by Different Extraction Methods. J. Food Prot. 2008, 71, 2475–2480. [Google Scholar] [CrossRef] [PubMed]
- Burits, M.; Bucar, F. Antioxidant Activity of Nigella sativa Essential Oil. Phytother. Res. 2000, 14, 323–328. [Google Scholar] [CrossRef]
- Abedi, A.S.; Rismanchi, M.; Shahdoostkhany, M.; Mohammadi, A.; Mortazavian, A.M. Microwave-Assisted Extraction of Nigella sativa Essential Oil and Evaluation of Its Antioxidant Activity. J. Food Sci. Technol. 2017, 54, 3779–3790. [Google Scholar] [CrossRef]
- Moghimi, M.; Farzaneh, V.; Bakhshabadi, H. The Effect of Ultrasound Pretreatment on Some Selected Physicochemical Properties of Black Cumin (Nigella sativa). Nutrire 2018, 43, 18. [Google Scholar] [CrossRef]
- Sabriu-Haxhijaha, A.; Popovska, O.; Mustafa, Z. Thin-Layer Chromatography Analysis of Nigella sativa Essential Oil. J. Hyg. Eng. Des. 2020, 31, 152–156. [Google Scholar]
- Ahmad, R.; Ahmad, N.; Shehzad, A. Solvent and Temperature Effects of Accelerated Solvent Extraction (ASE) Coupled with Ultra-High Pressure Liquid Chromatography (UHPLC-DAD) Technique for Determination of Thymoquinone in Commercial Food Samples of Black Seeds (Nigella sativa). Food Chem. 2020, 309, 125740. [Google Scholar] [CrossRef]
- Gharby, S.; Harhar, H.; Guillaume, D.; Roudani, A.; Boulbaroud, S.; Ibrahimi, M.; Charrouf, Z. Chemical Investigation of Nigella sativa Seed Oil Produced in Morocco. J. Saudi Soc. Agric. Sci. 2015, 14, 172–177. [Google Scholar] [CrossRef]
- Amin, S.; Mir, S.R.; Kohli, K.; Ali, B.; Ali, M. A Study of the Chemical Composition of Black Cumin Oil and Its Effect on Penetration Enhancement from Transdermal Formulations. Nat. Prod. Res. 2010, 24, 1151–1157. [Google Scholar] [CrossRef]
- Kaskoos, R.A. Fatty Acid Composition of Black Cumin Oil from Iraq. Res. J. Med. Plant 2011, 5, 85–89. [Google Scholar] [CrossRef]
- Soleimanifar, M.; Niazmand, R.; Jafari, S.M. Evaluation of Oxidative Stability, Fatty Acid Profile, and Antioxidant Properties of Black Cumin Seed Oil and Extract. J Food Meas. Charact. 2019, 13, 383–389. [Google Scholar] [CrossRef]
- Farhan, N.; Salih, N.; Salimon, J. Physiochemical Properties of Saudi Nigella sativa (‘Black Cumin’) Seed Oil. OCL 2021, 28, 11. [Google Scholar] [CrossRef]
- Khan, A.; Rehman, M.U. (Eds.) Black Seeds (Nigella sativa): Pharmacological and Therapeutic Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 29–62. [Google Scholar]
- Fonseca, W.F.; Ahluwalia, P.; Bhatt, D.N.; Ansari, S.; Tabassum, R.; Vaibhav, K.; Ahluwalia, M. Black seed (Nigella sativa): Pharmacological and therapeutic applications in endocrine dysfunction. In Black Seeds (Nigella sativa); Elsevier: Amsterdam, The Netherlands, 2022; pp. 405–422. [Google Scholar]
- Babayan, V.K.; Koottungal, D.; Halaby, G.A. Proximate Analysis, Fatty Acid and Amino Acid Composition of Nigella sativa Seeds. J. Food Sci. 1978, 43, 1314–1315. [Google Scholar] [CrossRef]
- Nergiz, C.; Ötleş, S. Chemical Composition of Nigella sativa Seeds. Food Chem. 1993, 48, 259–261. [Google Scholar] [CrossRef]
- Cheikh-Rouhou, S. Nigella sativa: Chemical Composition and Physicochemical Characteristics of Lipid Fraction. Food Chem. 2007, 101, 673–681. [Google Scholar] [CrossRef]
- Saleh, F.A.; El-Darra, N.; Raafat, K.; El Ghazzawi, I. Phytochemical analysis of Nigella sativa Utilizing GC-MS exploring its antimicrobial effects against multidrug-resistant bacteria. Pharmacogn. J. 2018, 10, 99–105. [Google Scholar] [CrossRef]
- Matthaus, B.; Özcan, M.M. Fatty Acids, Tocopherol, and Sterol Contents of Some Nigella Species Seed Oil. Czech J. Food Sci. 2011, 29, 145–150. [Google Scholar] [CrossRef]
- Khoddami, A. Physicochemical Characteristics of Nigella Seed (Nigella sativa) Oil as Affected by Different Extraction Methods. J. Am. Oil Chem. Soc. 2011, 88, 533–540. [Google Scholar] [CrossRef]
- Alehosseini, A. Electrospun Curcumin-Loaded Protein Nanofiber Mats as Active/Bioactive Coatings for Food Packaging Applications. Food Hydrocoll. 2019, 87, 758–771. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Zhou, J.; Miskelly, G.; Wibisono, R.; Wadhwa, S. Stability of Encapsulated Olive Oil in The Presence of Caffeic Acid. Food Chem. 2001, 126, 1049–1056. [Google Scholar] [CrossRef]
- Moomand, K.; Lim, L. Oxidative Stability of Encapsulated Fish Oil in Electrospun Zein Fibres. Food Res. Int. 2014, 62, 523–532. [Google Scholar] [CrossRef]
- Lutterodt, H.; Luther, M.; Slavin, M.; Yin, J.; Parry, J.; Gao, J.; Yu, L. Fatty Acid Profile, Thymoquinone Content, Oxidative Stability and Antioxidant Properties of Cold-Pressed Black Cumin Seed Oils. LWT Food Sci. Technol. 2010, 43, 1409–1413. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, T.; Das, A.; Chakraborty, R. Micro and nanoencapsulation of natural colors: A holistic view. Appl. Biochem. Biotechnol. 2021, 193, 3787–3811. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, J.; Nair, H.B.; Sung, B.; Prasad, S.; Tekmal, R.R.; Aggarwal, B.B. RETRACTED: Thymoquinone Poly (Lactide-Co-Glycolide) Nanoparticles Exhibit Enhanced Anti-Proliferative, Anti-Inflammatory, and Chemosensitization Potential. Biochem. Pharmacol. 2010, 79, 1640–1647. [Google Scholar] [CrossRef] [PubMed]
- Badri, W.; Asbahani, A.E.; Miladi, K.; Baraket, A.; Agustia, G.; Nazari, Q.A.; Errachid, A.; Fessi, H.; Elaissari, A. Poly (Ε-Caprolactone) Nanoparticles Loaded with Indomethacin and Nigella sativa Essential Oil for the Topical Treatment of Inflammation. J. Drug Deliv. Sci. Technol. 2018, 46, 234–242. [Google Scholar] [CrossRef]
- Dordevic, V.; Balanc, B.; Belscak-Cvitanovic, A.; Levic, S.; Trifkovic, K.; Kalusevic, A.; Kostic, I.; Komes, D.; Bugarski, B.; Nedovic, V. Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Eng. Rev. 2015, 7, 452–490. [Google Scholar] [CrossRef]
- Jacobsen, C.; García-Moreno, P.J.; Mendes, A.C.; Mateiu, R.V.; Chronakis, I.S. Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food. Ann. Rev. Food Sci. Technol. 2018, 9, 525–549. [Google Scholar] [CrossRef]
- García-Moreno, P.J.; Mendes, A.C.; Jacobsen, C.; Chronakis, I.S. Biopolymers for the Nano-Microencapsulation of Bioactive Ingredients by Electrohydrodynamic Processing. In Polymers for Food Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 447–479. [Google Scholar]
- Altan, A.; Aytac, Z.; Uyar, T. Carvacrol Loaded Electrospun Fibrous Films from Zein and Poly (Lactic Acid) for Active Food Packaging. Food Hydrocoll. 2018, 81, 48–59. [Google Scholar] [CrossRef]
- Lagaron, J.M.; Castro, S.; Galan, D.; Valle, J.M. Instalación y Procedimiento de Encapsulado Industrial de Sustancias Termolábiles. Spain Patent ES-2674808_A1, 11 April 2019. [Google Scholar]
- Busolo, M.A.; Torres-Giner, S.; Prieto, C.; Lagaron, J.M. Electrospraying Assisted by Pressurized Gas as an Innovative High-Throughput Process for the Microencapsulation and Stabilization of Docosahexaenoic Acid-Enriched Fish Oil in Zein Prolamine. Innov. Food Sci. Emerg. Technol. 2018, 51, 12–19. [Google Scholar] [CrossRef]
- Chan, E.S. Preparation of Ca-Alginate Beads Containing High Oil Content: Influence of Process Variables on Encapsulation Efficiency and Bead Properties. Carbohydr. Polym. 2011, 84, 1267–1275. [Google Scholar] [CrossRef]
- Jafari, S.M.; Assadpoor, E.; He, Y.; Bhandari, B. Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Dry Technol. 2008, 26, 816–835. [Google Scholar] [CrossRef]
- Martins, I.M.; Barreiro, M.F.; Coelho, M.; Rodrigues, A.E. Microencapsulation of Essential Oils with Biodegradable Polymeric Carriers for Cosmetic Applications. Chem. Eng. J. 2014, 245, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.N.; Hemant, K.S.Y.; Ram, M.; Shivakumar, H.G. Microencapsulation: A Promising Technique for Controlled Drug Delivery. Res. Pharm. Sci. 2010, 2, 65. [Google Scholar]
- Wan, L.Q.; Jiang, J.; Arnold, D.E.; Guo, X.E.; Lu, H.H.; Mow, V.C. Calcium Concentration Effects on the Mechanical and Biochemical Properties of Chondrocyte-Alginate Constructs. Cell. Mol. Bioeng. 2008, 1, 93–102. [Google Scholar] [CrossRef]
- Husain, O.; Lau, W.; Edirisinghe, M.; Parhizkar, M. Investigating the Particle to Fibre Transition Threshold during Electrohydrodynamic Atomization of a Polymer Solution. Mater. Sci. Eng. C 2016, 65, 240–250. [Google Scholar] [CrossRef]
- Xie, J.; Jiang, J.; Davoodi, P.; Srinivasan, M.P.; Wang, C.H. Electrohydrodynamic Atomization: A Two-Decade Effort to Produce and Process Micro-/Nanoparticulate Materials. Chem. Eng. Sci. 2015, 125, 32–57. [Google Scholar] [CrossRef]
- Baimark, Y.; Srisuwan, Y. Preparation of Alginate Microspheres by Waterin-Oil Emulsion Method for Drug Delivery: Effect of Ca2+ Post-Cross-Linking. Adv. Powder Technol. 2014, 25, 1541–1546. [Google Scholar] [CrossRef]
- Alkhatib, H.; Mohamed, F.; Akkawi, M.E.; Alfatama, M.; Chatterjee, B. Microencapsulation of Black Seed Oil in Alginate Beads for Stability and Taste Masking. J. Drug Deliv. Sci. Technol. 2020, 60, 102030. [Google Scholar] [CrossRef]
- Li, X.Y.; Zheng, Z.B.; Yu, D.G.; Liu, X.K.; Qu, Y.L.; Li, H.L. Electrosprayed Sperical Ethylcellulose Nanoparticles for an Improved Sustained-Release Profile of Anticancer Drug. Cellulose 2017, 24, 5551–5564. [Google Scholar] [CrossRef]
- Wu, Y.; MacKay, J.A.; McDaniel, J.R.; Chilkoti, A.; Clark, R.L. Fabrication of Elastin-Like Polypeptide Nanoparticles for Drug Delivery by Electrospraying. Biomacromolecules 2008, 10, 19–24. [Google Scholar] [CrossRef]
- Liu, Z.P.; Zhang, Y.Y.; Yu, D.G.; Wu, D.; Li, H.L. Fabrication of Sustained-Release Zein Nanoparticles via Modified Coaxial Electrospraying. Chem. Eng. J. 2018, 334, 807–816. [Google Scholar] [CrossRef]
- Fernandes, B.; Borges, V.; Botrel, A. Gum Arabic/Starch/Maltodextrin/Inulin as Wall Materials on the Microencapsulation of Rosemary Essential Oil. Carbohydr. Polym. 2014, 101, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, H.; Tonon, R.; Grosso, C.; Hubinger, M. Encapsulation Efficiency and Oxidative Stability of Flaxseed Oil Microencapsulated by Spray drying Using Different Combinations of Wall Materials. J. Food Eng. 2013, 115, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Koç, M.; Güngör, O.; Zungur, A.; Yalçın, B.; Selek, İ.; Ertekin, F.; Ötles, S. Microencapsulation of Extra Virgin Olive Oil by Spray Drying: Effect of Wall Materials Composition, Process Conditions, and Emulsification Method. Food Bioprocess Technol. 2015, 8, 301–318. [Google Scholar] [CrossRef]
- Botrel, A.; Fernandes, B.; Borges, V.; Yoshida, I. Influence of Wall Matrix Systems on the Properties of Spray-Dried Microparticles Containing Fish Oil. Food Res. Int. 2014, 62, 344–352. [Google Scholar] [CrossRef]
- Gallardo, G.; Guida, L.; Martinez, V.; López, M.; Bernhardt, D.; Blasco, R.; Pedroza-Islas, R.; Hermida, L. Microencapsulation of Linseed Oil by Spray Drying for Functional Food Application. Food Res. Int. 2013, 52, 473–482. [Google Scholar] [CrossRef]
- Sedaghat, D.A.; Nikbakht, N.M.; Kassozi, V.; Nakisozi, H.; Van, D.; Meeren, P. Recent Advances in Food Colloidal Delivery Systems for Essential Oils and their Main Components. Trends Food Sci. Technol. 2020, 99, 474–486. [Google Scholar] [CrossRef]
- Bajpai, P. Colloid and Surface Chemistry. Biermann’s Handbook of Pulp and Paper; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 381–400. [Google Scholar]
- Gibbs, B.F.; Kermasha, S.; Alli, I.; Mulligan, C.N. Encapsulation in the Food Industry: A Review. Int. J. Food Sci. Nutr. 1999, 50, 213–224. [Google Scholar]
- Sajid, M.; Cameotra, S.S.; Ahmad Khan, M.S.; Ahmad, I. Nanoparticle-Based Delivery of Phytomedicines: Challenges and Opportunities. In New Look to Phytomedicine: Advancements in Herbal Products as Novel Drug Leads; Elsevier: Amsterdam, The Netherlands, 2018; pp. 597–623. [Google Scholar]
- Mellema, M.; Van Benthum, W.A.J.; Boer, B.; Von Harras, J.; Visser, A. Wax Encapsulation of Water-Soluble Compounds for Application in Foods. J. Microencapsul. 2006, 23, 729–740. [Google Scholar] [CrossRef]
- Alliod, O.; Valour, J.P.; Urbaniak, S.; Fessi, H.; Dupin, D.; Charcosset, C. Preparation of Oil-In-Water Nanoemulsions at Large-Scale Using Premix Membrane Emulsification and Shirasu Porous Glass (SPG) Membranes. Colloids Surf. A 2018, 557, 76–84. [Google Scholar] [CrossRef]
- Rahim, M.A.; Imran, M.; Khan, M.K.; Ahmad, M.H.; Ahmad, R.S. Impact of spray drying operating conditions on encapsulation efficiency, oxidative quality, and sensorial evaluation of chia and fish oil blends. J. Food Process. Preserv. 2022, 46, e16248. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, S.; Bei, W.; Zahi, M.R.; Yuan, Q.; Liang, H. Preparation and Antimicrobial Activity of Oregano Essential Oil Pickering Emulsion Stabilized by Cellulose Nanocrystals. Int. J. Biol. Macromol. 2018, 112, 7–13. [Google Scholar] [CrossRef]
- Sharma, M.; Mann, B.; Sharma, R.; Bajaj, R.; Athira, S.; Sarkar, P.; Pothuraju, R. Sodium Caseinate Stabilized Clove Oil Nanoemulsion: Physicochemical Properties. J. Food Eng. 2017, 212, 38–46. [Google Scholar] [CrossRef]
- Reis, D.R.; Ambrosi, A.D.; Luccio, M. Encapsulated Essential Oils: A Perspective in Food Preservation. Future Foods 2022, 5, 100126. [Google Scholar] [CrossRef]
- Veiga, R.D.S.D.; Aparecida, D.; Silva-Buzanello, R.; Corso, M.P.; Canan, C. Essential Oils Microencapsulated Obtained by Spray Drying: A Review. J. Essent. Oil Res. 2019, 31, 457–473. [Google Scholar] [CrossRef]
- Pellicer, J.A.; Fortea, M.I.; Trabal, J.; Rodríguez-López, M.I.; Gabaldón, J.A.; Núñez-Delicado, E. Stability of Microencapsulated Strawberry Flavour by Spray Drying, Freeze Drying and Fluid Bed. Powder Technol. 2019, 347, 179–185. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Encapsulation of polyphenols—A review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- Drusch, S.; Berg, S. Extractable Oil in Microcapsules Prepared by Spray-Drying: Localisation, Determination and Impact on Oxidative Stability. Food Chem. 2008, 109, 17–24. [Google Scholar] [CrossRef]
- Woo, M.W.; Bhandari, B. Spray Drying for Food Powder Production. In Handbook of Food Powders: Processes and Properties; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 29–56. [Google Scholar]
- Barrow, C.J.; Wang, B.; Adhikari, B.; Liu, H. Spray Drying and Encapsulation of Omega-3 Oils. In Food Enrichment with Mega-3 Fatty Acids; Jacobsen, C., Nielsen, N.S., Horn, A.F., Sørensen, A.D.M., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2013; pp. 194–225. [Google Scholar]
- Costa, S.S.; Machado, B.A.S.; Martin, A.R.; Bagnara, F.; Ragadalli, S.A.; Alves, A.R.C. Drying by Spray Drying in the Food Industry: Micro-Encapsulation, Process Parameters and Main Carriers Used. Afr. J. Food Sci. 2015, 9, 462–470. [Google Scholar]
- Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Compr. Rev. Food Sci. Food Saf. 2016, 15, 143–182. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of Spray-Drying in Microencapsulation of Food Ingredients: An Overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Mohammed, N.K.; Tan, C.P.; Manap, Y.A.; Muhialdin, B.J.; Hussin, A.S.M. Spray Drying for the Encapsulation of Oils—A Review. Molecules 2020, 25, 3873. [Google Scholar] [CrossRef] [PubMed]
- Azad, A.K.; Al-Mahmood, S.M.A.; Chatterjee, B.; Sulaiman, W.M.A.; Elsayed, T.M.; Doolaanea, A.A. Encapsulation of Black Seed Oil in Alginate Beads as A Ph-Sensitive Carrier for Intestine-Targeted Drug Delivery: In Vitro, In Vivo And Ex Vivo Study. Pharmaceutics 2020, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Rushmi, Z.T.; Akter, N.; Mow, R.J.; Afroz, M.; Kazi, M.; Matas, M.; Shariare, M.H. The Impact of Formulation Attributes and Process Parameters on Black Seed Oil Loaded Liposomes and their Performance in Animal Models of Analgesia. Saudi Pharm. J. 2017, 25, 404–412. [Google Scholar] [CrossRef]
- Atay, E.; Altan, A. Nanoencapsulation of Black Seed Oil by Coaxial Electrospraying: Characterisation, Oxidative Stability and In Vitro Gastrointestinal Digestion. Int. J. Food Sci. Technol. 2021, 56, 4526–4539. [Google Scholar] [CrossRef]
- Karaman, K. Characterization of Saccharomyces Cerevisiae Based Microcarriers for Encapsulation of Black Cumin Seed Oil: Stability of Thymoquinone and Bioactive Properties. Food Chem. 2020, 313, 126129. [Google Scholar] [CrossRef]
- Mukhtar, H.; Qureshi, A.S.; Anwar, F.; Mumtaz, M.W.; Marcu, M. Nigella sativa seed and seed oil: Potential sources of high-value components for development of functional foods and nutraceuticals/pharmaceuticals. J. Essent. Oil Res. 2019, 31, 171–183. [Google Scholar] [CrossRef]
- Ghaznavi, K. Tibb-I-Nabvi (Peace Be Upon Him) Aur Jadeed Science; Faisal Publishers: Lahore, Pakistan, 1988; Volume 1, pp. 231–232. [Google Scholar]
- Randhawa, M.A.; Alghamdi, M.S. Anticancer Activity of Nigella sativa (Black Seed)—A Review. Am. J. Chin. Med. 2011, 39, 1075–1091. [Google Scholar] [CrossRef]
- Bngels, G.; Brinckmann, J. Nigella sativa Herbalgram; American Botanical Council: Austin, TX, USA, 2017. [Google Scholar]
- Miriam, B. Is the World Ready for This Palestinian Dish? BBC News—Travel. Available online: scientificlib.com (accessed on 28 March 2019).
- Bramen, L. Nigella Seeds: What the Heck Do I Do with Those? The Smithsonian Online. 2011. Available online: smithsonian.com (accessed on 4 January 2015).
- Hassanien, M.F.R.; Mahgoub, S.A.; El-Zahar, K.M. Soft Cheese Supplemented with Black Cumin Oil: Impact on Food Borne Pathogens and Quality During Storage. Saudi J. Biol. Sci. 2014, 21, 280–288. [Google Scholar] [CrossRef]
- Anton, N. Nano-emulsions and Nanocapsules by the PIT Method: An investigation on the Role of the Temperature Cycling on the Emulsion Phase Inversion. Int. J. Pharm. 2007, 344, 44–52. [Google Scholar] [CrossRef]
- Mahdi, J.; Yinghe, S.; Bhandari, B. Nano-Emulsion Production by Sonication and Microfluidization—A Comparison. Int. J. Food Prop. 2006, 9, 475–485. [Google Scholar] [CrossRef]
- Mohammed, N.K.; Muhialdin, B.J.; Meor Hussin, A.S. Characterization of nanoemulsion of Nigella sativa oil and its application in ice cream. Food Sci. Nutr. 2020, 8, 2608–2618. [Google Scholar] [CrossRef] [PubMed]
- Depree, J.A.; Savage, G.P. Physical and Flavour Stability of Mayonnaise. Trends Food Sci. Technol. 2001, 12, 157–163. [Google Scholar] [CrossRef]
- Raghavan, S. Handbook of Spices, Seasonings, and Flavorings; CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
- El-Abhar, H.S.; Abdallah, D.M.; Saleh, S. Gastroprotective Activity of Nigella sativa Oil and Its Constituent, Thymoquinone, Against Gastric Mucosal Injury Induced by Ischaemia/Reperfusion in Rats. J. Ethnopharmacol. 2003, 84, 251–258. [Google Scholar] [CrossRef]
- Ozdemir, N.; Kantekin-Erdogan, M.N.; Tat, T.; Tekin, A. Effect of Black Cumin Oil on the Oxidative Stability and Sensory Characteristics of Mayonnaise. J. Food Sci. Technol. 2018, 55, 1562–1568. [Google Scholar] [CrossRef]
- Ahmad, R.S.; Imran, M.; Khan, M.K.; Ahmad, M.H.; Arshad, M.S.; Ateeq, H.; Rahim, M.A. Introductory Chapter: Herbs and Spices-An Overview. In Herbs and Spices-New Processing Technologies; IntechOpen: London, UK, 2021. [Google Scholar]
- Muzolf-Panek, M.; Kaczmarek, A.; Tomaszewska-Gras, J.; Cegielska-Radziejewska, R.; Szablewski, T.; Majcher, M.; Stuper-Szablewska, K. A Chemometric Approach to Oxidative Stability and Physicochemical Quality of Raw Ground Chicken Meat Affected by Black Seed and Other Spice Extracts. Antioxidants 2020, 9, 903. [Google Scholar] [CrossRef]
- Makouie, S.; Alizadeh, M.; Khosrowshahi, A.; Maleki, O. Physicochemical, Textural, and Sensory Characteristics of Ice Cream Incorporated with Nigella sativa Seed Oil Microcapsules. J. Food Process. Preserv. 2021, 45, e15804. [Google Scholar] [CrossRef]
- Mahros, M.M.; Abd-Elghany, S.M.; Sayed-Ahmed, M.Z.; Alqahtani, S.S.; Sallam, K.I. Improving the Microbiological Quality, Health Benefits, and Storage Time of Cold-Stored Ground Mutton Supplemented with Black Seed. LWT 2021, 138, 110673. [Google Scholar] [CrossRef]
- Wojtasik-Kalinowska, I.; Guzek, D.; Brodowska, M.; Godziszewska, J.; Górska-Horczyczak, E.; Pogorzelska, E.; Wierzbicka, A. The Effect of Addition of Nigella sativa Oil on the Quality and Shelf Life of Pork Patties. J. Food Process. Preserv. 2017, 41, e13294. [Google Scholar] [CrossRef]
- Anandan, S.; Keerthiga, M.; Vijaya, S.; Asiri, A.M.; Bogush, V.; Krasulyaa, O. Physicochemical Characterization of Black Seed Oil-Milk Emulsions through Ultrasonication. Ultrason. Sonochem. 2017, 38, 766–771. [Google Scholar] [CrossRef]
- Debonne, E.; De Leyn, I.; Verwaeren, J.; Moens, S.; Devlieghere, F.; Eeckhout, M.; van Bockstaele, F. The Influence of Natural Oils of Blackcurrant, Black Cumin Seed, Thyme and Wheat Germ on Dough and Bread Technological and Microbiological Quality. LWT 2018, 93, 212–219. [Google Scholar] [CrossRef]
- Pawase, P.A.; Veer, S.J. Utilization of Black Cumin Seed (Nigella sativa) Fractions on Quality Characteristics of Cookies. Int. J. Pharm. Life Sci. 2020, 1, 16–22. [Google Scholar]
- Sultan, M.T.; Butt, M.S.; Saeed, F.; Batool, R. Nigella sativa Fixed Oil Supplementation Improves Nutritive Quality, Tocopherols and Thymoquinone Contents of Cookies. Br. Food J. 2012, 114, 966–977. [Google Scholar] [CrossRef]
- Oz, E. Inhibitory Effects of Black Cumin on the Formation of Heterocyclic Aromatic Amines in Meatball. PLoS ONE 2019, 14, e0221680. [Google Scholar] [CrossRef] [PubMed]
- Okur, Ö.D. Determination of Antioxidant Activity and Total Phenolic Contents in Yogurt Added with Black Cumin (Nigella sativa) Honey. Ovidius Univ. Ann. Chem. 2021, 32, 1–5. [Google Scholar] [CrossRef]
- Abdallah, E.M. Black Seed (Nigella sativa) as antimicrobial drug: A mini-review. Nov. Approch. Drug Des. Dev. 2017, 3, 1–5. [Google Scholar]
- Yimer, E.M. Nigella sativa (Black Cumin): A Promising Natural Remedy for Wide Range of Illnesses. Evid.-Based Complement. Altern. Med. 2019, 2019, 1528635. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Ahmad, F.A.; Ashraf, S.A.; Saad, H.H.; Wahab, S.; Khan, M.I.; Ali, M.; Mohan, S.; Hakeem, K.R.; Athar, T. An updated knowledge of Black seed (Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. J. Herb. Med. 2020, 25, 100404. [Google Scholar] [CrossRef]
- Bordoni, L.; Fedeli, D.; Nasuti, C.; Maggi, F.; Papa, F.; Wabitsch, M.; de Caterina, R.; Gabbianelli, R. Antioxidant and Anti-Inflammatory Properties of Nigella sativa Oil in Human Pre-Adipocytes. Antioxidants 2019, 8, 51. [Google Scholar] [CrossRef]
- Sayeed, M.S.B.; Asaduzzaman, M.; Morshed, H.; Hossain, M.; Kadir, M.F.; Rahman, M. The effect of Nigella sativa Linn. seed on memory, attention and cognition in healthy human volunteers. J. Ethnopharmacol. 2013, 148, 780–786. [Google Scholar] [CrossRef]
- Sedaghat, R.; Roghani, M.; Khalili, M. Neuroprotective effect of thymoquinone, the Nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model. IJPR 2014, 13, 227. [Google Scholar] [PubMed]
- Kooti, W.; Hasanzadeh-Noohi, Z.; Sharafi-Ahvazi, N.; Asadi-Samani, M.; Ashtary-Larky, D. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chin. J. Nat. Med. 2016, 14, 732–745. [Google Scholar] [CrossRef]
- Shamim Molla, M.; Azad, A.K.; Al Hasib, M.A.A.; Hossain, M.M.; Ahammed, M.S.; Rana, S.; Islam, M.T. A review on antiviral effects of Nigella sativa Pharmacol. Online Newsl. 2019, 2, 47–53. [Google Scholar]
- Barakat, E.M.F.; El Wakeel, L.M.; Hagag, R.S. Effects of Nigella sativa on outcome of hepatitis C in Egypt. World J. Gastroenterol. WJG 2013, 19, 2529. [Google Scholar] [CrossRef]
- Maideen, P.; Mohamed, N. Miracle Herb to Cure HIV-Black Seeds (Nigella sativa): A Review. Int. J. Med. Rev. 2021, 8, 116–121. [Google Scholar]
- Onifade, A.A.; Jewell, A.P.; Adedeji, W.A. Nigella sativa concoction induced sustained seroreversion in HIV patient. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 332–335. [Google Scholar] [CrossRef]
- Esharkawy, E.R.; Almalki, F.; Hadda, T.B. In vitro potential antiviral SARS-CoV-19-activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorg. Chem. 2022, 120, 105587. [Google Scholar] [CrossRef]
- Jassey, A.; Imtiyaz, Z.; Jassey, S.; Imtiyaz, M.; Rasool, S. Antiviral effects of black seeds: Effect on COVID-19. In Black Seeds (Nigella sativa); Elsevier: Amsterdam, The Netherlands, 2022; pp. 387–404. [Google Scholar]
- Badary, O.A.; Hamza, M.S.; Tikamdas, R. Thymoquinone: A Promising Natural Compound with Potential Benefits for COVID-19 Prevention and Cure. Drug. Des. Dev. Ther. 2021, 3, 1819–1833. [Google Scholar] [CrossRef]
- Ikhsan, M.; Hiedayati, N.; Maeyama, K.; Nurwidya, F. Nigella sativa as an anti-inflammatory agent in asthma. BMC Res. Notes 2018, 11, 744. [Google Scholar] [CrossRef]
- Alzohairy, M.A.; Khan, A.A.; Alsahli, M.A.; Almatroodi, S.A.; Rahmani, A.H. Protective Effects of Thymoquinone, an Active Compound of Nigella sativa, on Rats with Benzo(a)pyrene-Induced Lung Injury through Regulation of Oxidative Stress and Inflammation. Molecules 2021, 26, 3218. [Google Scholar] [CrossRef]
- Dajani, E.Z.; Shahwan, T.G.; Dajani, N.E. Overview of the human investigations of Nigella sativa (Black Seeds): A complementary drug with historical and clinical significance. Gen. Intern. Med. Clin. Innov. 2018, 4, 2397–5237. [Google Scholar] [CrossRef]
- Dalli, M.; Azizi, S.E.; Kandsi, F.; Gseyra, N. Evaluation of the in vitro antioxidant activity of different extracts of Nigella sativa seeds, and the quantification of their bioactive compounds. Mater. Today Proc. 2021, 45, 7259–7263. [Google Scholar] [CrossRef]
- Block, G.; Jensen, C.D.; Norkus, E.P.; Dalvi, T.B.; Wong, L.G.; McManus, J.F.; Hudes, M.L. Usage patterns, health, and nutritional status of long-term multiple dietary supplement users: A cross-sectional study. Nutr. J. 2007, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Umar, Z.; Qureshi, A.S.; Rehan, S.; Ijaz, M.; Faisal, T.; Umar, S. Effects of oral administration of black seed (Nigella sativa) oil on histomorphometric dynamics of testes and testosterone profile in rabbits. Pak. J. Pharm. Sci. 2017, 30, 531–536. [Google Scholar]
- Ansary, J.; Giampieri, F.; Forbes-Hernandez, T.Y.; Regolo, L.; Quinzi, D.; Gracia Villar, S.; Garcia Villena, E.; Tutusaus Pifarre, K.; Alvarez-Suarez, J.M.; Battino, M.; et al. Nutritional Value and Preventive Role of Nigella sativa and Its Main Component Thymoquinone in Cancer: An Evidenced-Based Review of Preclinical and Clinical Studies. Molecules 2021, 26, 2108. [Google Scholar] [CrossRef]
Extraction Method | Solvent Used | Advantage | Disadvantage | Yield/Efficiency | Source |
---|---|---|---|---|---|
Cold pressing | Hexane | Involves no heat or chemical treatments during oil extraction | Provides low yield | 27% | [62] |
Supercritical fluid extraction | SC CO2 | Rich in antioxidants | High cost | 31.7% | [54] |
Soxhlet extraction | Methanol | Low in cost | Residues of solvent has been left behind in the extracted oil | 29.9% | [55] |
Hydro distillation (HD) method | Water | Very simple method and instrument, shorter extraction time, free from organic components, less labor consumption, good in quality, lower cost with good efficiency | High energy is required for extraction | 0.29% | [56] |
Microwave-assisted extraction (MAE) | n-hexane | Free from organic solvent, less time with maximum yield | Additional filtration or centrifugation required to remove the solid residue | 0.33% | [58] |
Ultrasound-assisted extraction | Hexane | Less energy and solvent consumption, reduced time of extraction | 39.93 | [59] | |
Steam distillation | Sodium sulphate | Performed at a low temperature to prevent from degradation | More time consuming, due to the low pressure of rising steam | 0.40% | [60] |
Accelerated solvent extraction | MeOH, DCM, and n-hexane | A latest and efficient method for extraction | 2.5 g, 2.2 g, and 2.04 g | [61] |
Carbon Chain | Chemical Name | Procurement | Oil Extraction Method | Percentage (%) | Chemical Formula | Chemical Structure | References |
---|---|---|---|---|---|---|---|
Saturated fatty acids | |||||||
C12:0 | Lauric acid | Iran | Hydrodistillation | 0.6 | C12H24O2 | [37] | |
C14:0 | Myristic acid | Middle East | Soxhlet extraction | 0.16 | CH3(CH2)12COOH | [69] | |
C16:0 | Palmitic acid | Izmir | Steam distillation | 11.4 | C16H32O2 | [70] | |
C17:0 | Margaric acid | Konya, Turkey | Microwave-assisted extraction | 0.07 | C17H34O2 | [52] | |
C18:0 | Stearic acid | Moroco | Solvent extraction | 3.2 | C18H36O2 | [62] | |
Monounsaturated fatty acids | |||||||
C16:1 | Palmitoleic acid | Tunisia | Cold solvent method | 1.15 | C16H30O2 | [71] | |
C17:1 | Margaroleic acid | Turkey | Soxhlet extraction | 0.04 | C18H30O2 | [52] | |
C18:1 | Oleic acid | India | Solvent extraction | 8.1 | C18H34O2 | [72] | |
C20:1 | Eicosenoic acid | Germany | Method ISO 659:1998 | 0.4 | C20H38O2 | [73] | |
Polyunsaturated fatty acids (PUFAs) | |||||||
C18:2 | Linoleic acid | India | Soxhlet extraction | 55.6 | C18H32O2 | [55] | |
C18:3 | Linolenic acid | Isfahan, Iran | Modified Bligh–Dyer method | 2.45 | C18H30O2 | [74] | |
Long chain polyunsaturated fatty acids | |||||||
C20:3 | Eicosatrienoic acid | Saudi Arabia | Soxhlet extraction method | 0.74 | C20H34O2 | [66] | |
C20:5 | Eicosapentaenoic acid | Iraq | Soxhlet extraction method | 5.98 | C20H30O2 | [64] | |
C22:6 | Docosahexaenoic acid | 2.97 | C22H32O2 |
Source/Component | Method | Capsulation | Efficiency/Yield | Peroxide Value | Size Detection | Particle Size | Conclusion | References |
---|---|---|---|---|---|---|---|---|
Thymoquinone | Nanoprecipitation | Nanoparticles | 97.5% | - | Transmission electron Microscopy | 150 and 200 nm | Thymoquinone nanoparticles showed that the higher bioavailability; therefore, it can be used as anti-proliferative, anti-inflammatory, and chemo sensitizing agents against many disorders in humans and animals. | [80] |
Black seed oil | Ultra-sonication and spray-drying | Micro- and nano-encapsulation | - | 100 μg Fe3+ | Electron microscope | Microencapsulation = 250 nm to 400 nm; nanoencapsulation = 50 to 188 nm | The oxidative stability of encapsulated materials was improved during storage, and its stability was close to fresh oil. | [50] |
Oleoresin | Spray-drying | Encapsulation | 84.2 to 96.2% | - | Static light scattering instrument | 3.08 to 11.84 μm | Microcapsules can be used as a functional ingredient in various processed food and meat products, as well as in nutraceutical and other pharmaceutical applications with maximum stability. | [51] |
Nigella sativa seeds oil | Nanoprecipitation | Nanoparticles | 70% to 84%. | - | Malvern particle size analyzer | 230 to 260 nm | The stability of nanoparticles was significantly improved after 30 days of storage. These nanoparticles can be used to improve skin penetration and reduce systemic concentration. | [81] |
Black seed oil | Electrohydrodynamic atomization | Encapsulation | 67.201% to 104.50% | - | Olympus light microscope | Oil emulsion = 282.93 to 463.23 nm | The results revealed that the emulsion with lecithin exhibited the higher emulsion stability (3% and 1%). | [125] |
Black seed oil | Freeze-drying | Encapsulation | 63% to 87% | - | Inverse phase microscopy | 173 to 382 nm | The stability of encapsulation showed that the liposomal preparation was stable at ambient conditions for one month. | [96] |
Black seed oil | Electrospray technique | Microencapsulation | 100% | - | Digital microscope | Less than 3 mm | This study indicated the palatability was significantly improved in encapsulation, without reducing thymoquinone stability. | [126] |
Black seed oil | Coaxial electrospraying | Encapsulation | 65.3% to 97.2% | 19.50 to 30.57 meq O2/kg | Field emission scanning electron microscope | 116 to 257 nm | Nanoencapsulation of black seed oil significantly improved the oxidative stability, due to form the coaxial structures. | [127] |
Black cumin seed oil | Freeze-drying | Encapsulation | Plasmolyzed loaded yeast encapsule = 59.97%; non-plasmolyzed loaded yeast encapsule—39.18% | Scanning electron microscopy | - | The stability of encapsulated black cumin seed oil with yeast cell of S. cerevisiae was successfully increased in suitable condition, compared to black seed cumin oil and nonplasmolysed yeast cell. | [128] |
Procurement | Type | Preparation Method | Product Name | Quantity and Ratios | Analysis | Results | References |
---|---|---|---|---|---|---|---|
Malaysia | Nigella sativa oil | Supercritical fluid extraction | Ice cream | 3%, 5%, 10% 5%, 10%, and 15% | Physiochemical stability | Nigella sativa oil was significantly improved the stability of ice cream under optimize storage conditions. | [138] |
Iran | Oil microcapsules | Goff and Hartel’s method | Ice cream | 3 and 5% | Antioxidants and phenolic content | The results indicated that, in fortified ice cream, the resistance of melting, minerals, and activity of antioxidant significantly improved. | [145] |
Mansoura | Black seed oil and powder | Dried hot-air oven | Ground mutton | Black seed oil (1%, 2%, and 3%): powder (2%, 4%, and 6%) | Antibacterial and antioxidant effect | The results obtained by using 3% black seed oil and 4% powder in meat showed a decrease in the bacterial contamination, due to their anti-microbial properties. | [146] |
Poland | Nigella sativa oil | Convection–steam oven | Pork patties | 1.88% and 3.76% | Sensory evaluation and antioxidant | Nigella sativa oil significantly improved the antioxidant activity of fortified patties. | [147] |
India | Black seed oil | Ultrasound | Skim milk | 7% | Physiochemical stability and size of emulsion | Stable emulsions of 7% black seed oil and milk were produced at lower time. | [148] |
Polska | Black seeds | Freeze dried | Chicken meat | 15 g | Antioxidant, phenolic contents, lipid oxidative stability, and microbial and sensory properties | The addition of prepared extract was significantly decreased the oxidation, while the stability of chicken meat was significantly improved during stored at 4 °C, due to good antimicrobial properties of black seed. | [144] |
Turkey | Black cumin oil | - | Mayonnaise | 5, 10, and 20% | Color, sensory, phenolic compounds, and oxidation | Mayonnaise formulated with black cumin oil was showed that the reduction in oxidation rate and improve the shelf life and flavor, as compared to other treatments. | [142] |
Belgium | Black cumin seed oil | - | Bread | 1 and 3 mL/100 g | Dough characteristics and bread analysis | Bread prepared with black cumin oil has been revealed to have good antifungal activity. | [149] |
India | Black cumin seeds | - | Cookies | 2%, 4%, 6%, and 8% | Chemical composition and sensory analysis | The results indicated that the good quality of product was prepared at 4% and rich in nutritional properties, as compared to other treatments. | [150] |
Pakistan | Black cumin seed oil | Solvent extraction method | Cookies | 1, 2, 3, 4, and 5% | Physicochemical, phenolic contents, peroxide value, and sensory analysis | Black cumin seed oil had a positive impact on the physicochemical, peroxide value, and sensory analysis of cookies, due to the good nutritional properties. | [151] |
Egypt | Black cumin seed oil | Cold pressed | Soft cheese | 0.1% and 0.2% | Microbial, physicochemical, sensory analysis | Black cumin seed oil was improved the nutritional profile of cheese and antimicrobial activity against pathogens. | [135] |
Erzurum | Black cumin | - | Meat balls | 0.50 and 1% | Physicochemical and antioxidant properties | The concentration of heterocyclic aromatic amines in fortified meatballs was significantly reduced, while the antioxidant properties and phenolic compounds was increased, as compared to control. | [152] |
Turkey | Black cumin honey | - | Yogurt | 0, 2.5%, 5%, 10%, and 15% | Phytochemical and antioxidants analysis | Results showed that, generally, the addition of black cumin honey in yogurt resulted in a significant increase of total phenolic contents and antioxidants activities. | [153] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahim, M.A.; Shoukat, A.; Khalid, W.; Ejaz, A.; Itrat, N.; Majeed, I.; Koraqi, H.; Imran, M.; Nisa, M.U.; Nazir, A.; et al. A Narrative Review on Various Oil Extraction Methods, Encapsulation Processes, Fatty Acid Profiles, Oxidative Stability, and Medicinal Properties of Black Seed (Nigella sativa). Foods 2022, 11, 2826. https://doi.org/10.3390/foods11182826
Rahim MA, Shoukat A, Khalid W, Ejaz A, Itrat N, Majeed I, Koraqi H, Imran M, Nisa MU, Nazir A, et al. A Narrative Review on Various Oil Extraction Methods, Encapsulation Processes, Fatty Acid Profiles, Oxidative Stability, and Medicinal Properties of Black Seed (Nigella sativa). Foods. 2022; 11(18):2826. https://doi.org/10.3390/foods11182826
Chicago/Turabian StyleRahim, Muhammad Abdul, Aurbab Shoukat, Waseem Khalid, Afaf Ejaz, Nizwa Itrat, Iqra Majeed, Hyrije Koraqi, Muhammad Imran, Mahr Un Nisa, Anum Nazir, and et al. 2022. "A Narrative Review on Various Oil Extraction Methods, Encapsulation Processes, Fatty Acid Profiles, Oxidative Stability, and Medicinal Properties of Black Seed (Nigella sativa)" Foods 11, no. 18: 2826. https://doi.org/10.3390/foods11182826
APA StyleRahim, M. A., Shoukat, A., Khalid, W., Ejaz, A., Itrat, N., Majeed, I., Koraqi, H., Imran, M., Nisa, M. U., Nazir, A., Alansari, W. S., Eskandrani, A. A., Shamlan, G., & AL-Farga, A. (2022). A Narrative Review on Various Oil Extraction Methods, Encapsulation Processes, Fatty Acid Profiles, Oxidative Stability, and Medicinal Properties of Black Seed (Nigella sativa). Foods, 11(18), 2826. https://doi.org/10.3390/foods11182826