Nutraceutical and Pharmaceutical Behavior of Bioactive Compounds of Miracle Oilseeds: An Overview
Abstract
:1. Introduction
2. Extraction Methods for Oilseeds
2.1. Pretreatment of Oilseeds
2.2. Traditional Extractive Techniques
2.2.1. Solvent Extraction
2.2.2. Mechanical Extraction
2.3. Innovative Extraction Techniques
2.3.1. Microwave-Assisted Extraction (MAE)
2.3.2. Ultrasonic-Assisted Extraction (UAE)
2.3.3. Supercritical Fluid Extraction (SFE)
2.4. Limitations of Oilseed Extractions
3. Types of Oilseeds
3.1. Peanuts (Arachis hypogae L.)
3.2. Flaxseed (Linum usitatissimum)
3.3. Rapeseed/Canola Oil (Brassica napus subsp. Napus)
3.4. Sunflower Seed (Helianthus annuus)
3.5. Sesame Seeds (Sesamum indicum)
3.6. Soybean (Glycine max)
3.7. Cottonseed (Gossypium)
3.8. Safflower (Carthamus tinctorius)
4. Nutraceutical and Pharmaceutical Aspects of Bioactive Compounds Present in Oilseeds
4.1. Glucosinolates
4.2. Phenolic Compounds
4.3. Phytic Acid
4.4. Tocopherols
4.5. Phytosterols
4.6. Dietary Fiber-Rich Foods
4.7. Fatty Acids
4.8. Phytoestrogens
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA (US Department of Agriculture), Agriculture Research Service, Vegetable Research. 2004. Available online: https://www.ars.usda.gov/southeast-area/charleston-sc/vegetable-research/docs/wrdg/2004-report/ (accessed on 3 March 2022).
- Hidalgo, F.J.; Zamora, R. Peptides and proteins in edible oils: Stability, allergenicity and new processing trends. Trends Food Sci. Technol. 2006, 17, 56–63. [Google Scholar] [CrossRef]
- Moure, A.; Sineiro, J.; Domínguez, H.; Parajó, J.C. Functionality of oilseed protein products: A review. Food Res. Int. 2006, 39, 945–963. [Google Scholar] [CrossRef]
- Ash, M.; Dohlman, E. Oil Crops Situation and Outlook Yearbook. In Electronic Outlook Report from the Economic Research Service; United States Department of Agriculture: Washington, DC, USA, 2007; pp. 1–83. [Google Scholar]
- Lucas, E.W. Oilseeds and Oil-Bearing Materials 337 when Experimentally Fortifying Breads with Vegetable Food. In Handbook of Cereal Science and Technology, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Menaa, F.; Menaa, A.; Menaa, B.; Tréton, J. Trans-fatty acids, dangerous bonds for health? A background review paper of their use, consumption, health implications and regulation in France. Eur. J. Nutr. 2013, 52, 1289–1302. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell-Megaro, A.M.; Barbano, D.M.; Bauman, D.E. Survey of the fatty acid composition of retail milk in the United States including regional and seasonal variations. J. Dairy Sci. 2011, 94, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Menaa, F.; Menaa, A.; Tréton, J.; Menaa, B. Technological approaches to minimize industrial trans fatty acids in foods. J. Food Sci. 2013, 78, R377–R386. [Google Scholar] [CrossRef] [PubMed]
- Bendsen, N.T.; Christensen, R.; Bartels, E.M.; Astrup, A. Consumption of industrial and ruminant trans fatty acids and risk of coronary heart disease: A systematic review and meta-analysis of cohort studies. Eur. J. Clin. Nutr. 2011, 65, 773–783. [Google Scholar] [CrossRef]
- Ali, M.F.; Ali, B.M.E.l.; Speight, J.G. Handbook of Industrial Chemistry: Organic Chemicals; McGraw-Hill Education: New York, NY, USA, 2005. [Google Scholar]
- Patel, V.R.; Dumancas, G.G.; Viswanath, L.C.K.; Maples, R.; Subong, B.J.J. Castor oil: Properties, uses, and optimization of processing parameters in commercial production. Lipid Insights 2016, 9, LPI-S40233. [Google Scholar] [CrossRef] [Green Version]
- Kyari, M.Z. Extraction and characterization of seed oils. Int. Agrophysics 2008, 22, 139–142. [Google Scholar]
- Aider, M.; Barbana, C. Canola proteins: Composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity—A practical and critical review. Trends Food Sci. Technol. 2011, 22, 21–39. [Google Scholar] [CrossRef]
- Ewing, W.N. The Feeds Directory: Commodity Products Guide; Context Products Ltd., Publications Division: Packington, UK, 1997. [Google Scholar]
- FAO/WHO. Standard for Named Vegetable Oils Codex Stan 210-1999; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Abdelaziz, A.I.M.; Elamin, I.H.M.; Gasmelseed, G.A.; Abdalla, B.K. Extraction, Refining and Characterization of Sudanese Castor Seed Oil. J. Chem. Engeneering 2014, 2, 1–4. [Google Scholar]
- Ogunniyi, D.S. Castor oil: A vital industrial raw material. Bioresour. Technol. 2006, 97, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.K.; Mamza, P.A.P.; Ahmed, A.S.; Agunwa, U. Extraction and characterization of castor seed oil from wild Ricinus communis Linn. Int. J. Sci. Environ. Technol. 2015, 4, 1392–1404. [Google Scholar]
- Chew, S.C. Cold-pressed rapeseed (Brassica napus) oil: Chemistry and functionality. Food Res. Int. 2020, 131, 108997. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Guo, X.; Wang, Q.; Zhao, L.; Sun, Q.; Duan, X.; Cao, Y.; Sun, H. Investigation on lipid profile of peanut oil and changes during roasting by lipidomic approach. LWT 2022, 154, 128624. [Google Scholar] [CrossRef]
- Jalili, F.; Jafari, S.M.; Emam-Djomeh, Z.; Malekjani, N.; Farzaneh, V. Optimization of Ultrasound-Assisted Extraction of Oil from Canola Seeds with the Use of Response Surface Methodology. Food Anal. Methods 2018, 11, 598–612. [Google Scholar] [CrossRef]
- Wongsirichot, P.; Gonzalez-Miquel, M.; Winterburn, J. Recent advances in rapeseed meal as alternative feedstock for industrial biotechnology. Biochem. Eng. J. 2022, 180, 108373. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.J.; Jiang, W.; Qian, J.Y. Effect of pulsed electric field on functional and structural properties of canola protein by pretreating seeds to elevate oil yield. LWT-Food Sci. Technol. 2017, 84, 73–81. [Google Scholar] [CrossRef]
- Wang, W.; Yang, B.; Li, W.; Zhou, Q.; Liu, C.; Zheng, C. Effects of steam explosion pretreatment on the bioactive components and characteristics of rapeseed and rapeseed products. LWT 2021, 143, 111172. [Google Scholar] [CrossRef]
- Olaniyan, A.; Yusuf, K. Mechanical Oil Expression from Groundnut (Arachid hypogaea L) Kernels using a Spring-Controlled Hydraulic Press. J. Agric. Res. Dev. 2012, 11, 235–248. [Google Scholar]
- Saurabh, T.; Patnaik, M.; Bhagst, S.L.; Renge, V. Epoxidation of Vegetable Oils: A Review. Int. J. Adv. Eng. Technol. E 2011, 2, 491–501. [Google Scholar]
- Dutta, R.; Sarkar, U.; Mukherjee, A. Soxhlet Extraction of Crotalaria juncea Oil Using Cylindrical and Annular Packed Beds. Int. J. Chem. Eng. Appl. 2015, 6, 130. [Google Scholar] [CrossRef] [Green Version]
- Muzenda, E.; Kabuba, J.; Mdletye, P.; Belaid, M. Optimization of Process Parameters for Castor Oil Production. In Proceedings of the World Congress on Engineering, WCE 2012, London, UK, 4–6 July 2012. [Google Scholar]
- Ikya, J.K.; Umenger, L.N.; Iorbee, A. Effects of Extraction Methods on the Yield and Quality Characteristics of Oils from Shea Nut. J. Food Resour. Sci. 2012, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Dawidowicz, A.L.; Rado, E.; Wianowska, D.; Mardarowicz, M.; Gawdzik, J. Application of PLE for the determination of essential oil components from Thymus vulgaris L. Talanta 2008, 76, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Gibbins, R.D.; Aksoy, H.A.; Ustun, G. Enzyme-assisted aqueous extraction of safflower oil: Optimisation by response surface methodology. Int. J. Food Sci. Technol. 2012, 47, 1055–1062. [Google Scholar] [CrossRef]
- Rassem, H.H.A.; Nour, A.H.; Yunus, R.M. Techniques for Extraction of Essential Oils from Plants: A Review. Aust. J. Basic Appl. Sci. 2016, 10, 117–127. [Google Scholar]
- Arișanu, A.O. Mechanical Continuous Oil Expression from Oilseeds: Oil Yield and Press Capacity. In Proceedings of the 5th International Conference of Computational Mechanics and Virtual Engineering, Brasov, Romania, 24–25 October 2013; pp. 347–352. [Google Scholar]
- Sinha, L.K.; Haldar, S.; Majumdar, G.C. Effect of operating parameters on mechanical expression of solvent-soaked soybean-grits. J. Food Sci. Technol. 2015, 52, 2942–2949. [Google Scholar] [CrossRef] [Green Version]
- Azadmard-Damirchi, S.; Alirezalu, K.; Achachlouei, B.F. Microwave pretreatment of seeds to extract high quality vegetable oil. World Acad. Sci. Eng. Technol. 2011, 81, 513–516. [Google Scholar]
- Kittiphoom, S.; Sutasinee, S. Effect of microwaves pretreatments on extraction yield and quality of mango seed kernel oil. Int. Food Res. J. 2015, 22, 960–964. [Google Scholar]
- Oyinlola, A.; Ojo, A.; Adekoya, L.O. Development of a laboratory model screw press for peanut oil expression. J. Food Eng. 2004, 64, 221–227. [Google Scholar] [CrossRef]
- Anderson, D. A Primer on Oils Processing Technology. In Bailey’s Industrial Oil and Fat Products; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, S.; Allen, J.D.; Kanitkar, A.; Boldor, D. Oil extraction from Scenedesmus obliquus using a continuous microwave system—Design, optimization and quality characterization. Bioresour. Technol. 2011, 102, 3396–3403. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Zaini, M.A.A. Microwave-assisted solvent extraction of castor oil from castor seeds. Chin. J. Chem. Eng. 2018, 26, 2516–2522. [Google Scholar] [CrossRef]
- Xie, Y.; Wei, F.; Xu, S.; Wu, B.; Zheng, C.; Lv, X.; Wu, Z.; Chen, H.; Huang, F. Profiling and quantification of lipids in cold-pressed rapeseed oils based on direct infusion electrospray ionization tandem mass spectrometry. Food Chem. 2019, 285, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Rękas, A.; Ścibisz, I.; Siger, A.; Wroniak, M. The effect of microwave pretreatment of seeds on the stability and degradation kinetics of phenolic compounds in rapeseed oil during long-term storage. Food Chem. 2017, 222, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Pordesimo, L.; Weiss, J. High intensity ultrasound-assisted extraction of oil from soybeans. Food Res. Int. 2004, 37, 731–738. [Google Scholar] [CrossRef]
- Abdullah, S.; Abdul Mudalip, S.K.; Shaarani, S.M.; Che Pi, N.A. Ultrasonic extraction of oil from Monopterus albus: Effects of different ultrasonic power, solvent volume and sonication time. J. Appl. Sci. 2010, 10, 2713–2716. [Google Scholar] [CrossRef] [Green Version]
- Farooq, R.; Ishtiaq, F.; Farooq, U.; Farooq, A.; Siddique, M. Application of Ultrasound in Pharmaceutics. World Appl. Sci. J. 2009, 6, 886–893. [Google Scholar]
- Ahuja, S.; Diehl, D. Sampling and sample preparation. Compr. Anal. Chem. 2006, 47, 15–40. [Google Scholar] [CrossRef]
- Handa, S.S.; Khanuja, S.P.S.; Longo, G.; Rakesh, D.D. Extraction Technologies for Medicinal and Aromatic Plants. (1stedn), no. 66 Italy; United Nations Industrial Development Organization and the International Centre for Science and High Technology: New York, NY, USA, 2008. [Google Scholar]
- Duba, K.S.; Fiori, L. Supercritical CO2 extraction of grape seed oil: Effect of process parameters on the extraction kinetics. J. Supercrit. Fluids 2015, 98, 33–43. [Google Scholar] [CrossRef]
- Jafarian Asl, P.; Niazmand, R.; Yahyavi, F. Extraction of phytosterols and tocopherols from rapeseed oil waste by supercritical CO2 plus co-solvent: A comparison with conventional solvent extraction. Heliyon 2020, 6, e03592. [Google Scholar] [CrossRef]
- Jing, B.; Guo, R.; Wang, M.; Zhang, L.; Yu, X. Influence of seed roasting on the quality of glucosinolate content and flavor in virgin rapeseed oil. LWT 2020, 126, 109301. [Google Scholar] [CrossRef]
- Degon, J.G.; Zheng, C.; Elkhedir, A.; Yang, B.; Zhou, Q.; Li, W. Effect of microwave pre-treatment on physical quality, bioactive compounds, safety risk factor and storage stability of peanut butter. Oil Crop Sci. 2021, 6, 137–144. [Google Scholar] [CrossRef]
- Dean, L.L.; Davis, J.P.; Sanders, T.H. Groundnut (Peanut) Oil. In Vegetable Oils in Food Technology: Composition, Properties and Uses, 2nd ed.; Blackwell Science: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Liu, X.; Malik, V.S.; Sun, Q.; Willett, W.C.; Manson, J.A.E.; Rexrode, K.M.; Li, Y.; Hu, F.B.; Bhupathiraju, S.N. Nut Consumption and Risk of Cardiovascular Disease. J. Am. Coll. Cardiol. 2017, 70, 2519–2532. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Hu, F.B.; Ros, E.; Sabatém, J. The role of tree nuts and peanuts in the prevention of coronary heart disease: Multiple potential mechanisms. J. Nutr. 2008, 138, 1746S–1751S. [Google Scholar] [CrossRef]
- Sabaté, J.; Oda, K.; Ros, E. Nut consumption and blood lipid levels: A pooled analysis of 25 intervention trials. Arch. Intern. Med. 2010, 170, 821–827. [Google Scholar] [CrossRef] [Green Version]
- Oomah, B.D. Flaxseed as a functional food source. J. Sci. Food Agric. 2001, 81, 889–894. [Google Scholar] [CrossRef]
- Vaisey-Genser, M.; Morris, D.H. Introduction: History of the cultivation and uses of flaxseed. In Flax: The Genus Linum; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Hall, C.; Tulbek, M.C.; Xu, Y. Flaxseed. Adv. Food Nutr. Res. 2006, 51, 1–97. [Google Scholar] [CrossRef]
- Turner, T.D.; Mapiye, C.; Aalhus, J.L.; Beaulieu, A.D.; Patience, J.F.; Zijlstra, R.T.; Dugan, M.E.R. Flaxseed fed pork: N-3 Fatty acid enrichment and contribution to dietary recommendations. Meat Sci. 2014, 96, 541–547. [Google Scholar] [CrossRef]
- Alshafe, M.M.; Kassem, S.S.; Abdelkader, M.M.; Hanafi, E.M. Flaxseed as functional food. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 1944–1951. [Google Scholar]
- Sarwar, M.; Ahmad, N.; Siddiqui, Q.H.; Rahput, A.A.; Toufiq, M. Efficiency of Different Chemicals on Canola Strain Rainbow (Brassica napus L.) for Aphids Control. Asian J. Plant Sci. 2003, 2, 831–833. [Google Scholar] [CrossRef] [Green Version]
- Leckband, G.; Frauen, M.; Friedt, W. NAPUS 2000. Rapeseed (Brassica napus) breeding for improved human nutrition. Food Res. Int. 2002, 35, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F. Nutraceuticals and functional foods: Whole versus processed foods. Trends Food Sci. Technol. 2009, 20, 376–387. [Google Scholar] [CrossRef]
- Yegorov, B.; Turpurova, T.; Sharabaeva, E.; Bondar, Y. Prospects of using by-products of sunflower oil production in compound feed industry. Food Sci. Technol. 2019, 13, 106–113. [Google Scholar] [CrossRef]
- Forleo, M.B.; Palmieri, N.; Suardi, A.; Coaloa, D.; Pari, L. The eco-efficiency of rapeseed and sunflower cultivation in Italy. Joining environmental and economic assessment. J. Clean. Prod. 2018, 172, 3138–3153. [Google Scholar] [CrossRef]
- Pal, U.S.; Patra, R.K.; Sahoo, N.R.; Bakhara, C.K.; Panda, M.K. Effect of refining on quality and composition of sunflower oil. J. Food Sci. Technol. 2015, 52, 4613–4618. [Google Scholar] [CrossRef] [Green Version]
- Wanjari, N.; Waghmare, J. Phenolic and antioxidant potential of sunflower meal. Pelagia Res. Libr. Adv. Appl. Sci. Res. 2015, 6, 221–229. [Google Scholar]
- Grasso, S.; Omoarukhe, E.; Wen, X.; Papoutsis, K.; Methven, L. The use of upcycled defatted sunflower seed flour as a functional ingredient in biscuits. Foods 2019, 8, 305. [Google Scholar] [CrossRef] [Green Version]
- Morrison, W.; Hamilton, R.; Kaln, C. Sunflowerseed Oil. In Developments in Oils and Fats; Hamilton, R.J., Ed.; Blackie Academic & Professional: Glasgow, Scotland, 1995; pp. 132–151. [Google Scholar]
- Ashri, A. Sesame (Sesamum indicum L.). In Genetic Resources, Chromosome Engineering and Crop Improvement: Oilseed Crops; Singh, R.J., Ed.; CRC Press: Boca Raton, FL, USA, 2006; Volume 4, pp. 231–289. [Google Scholar]
- Bedigian, D.; Harlan, J.R. Evidence for cultivation of sesame in the ancient world. Econ. Bot. 1986, 40, 137–154. [Google Scholar] [CrossRef]
- El-Adawy, T.A.; Mansour, E.H. Nutritional and physicochemical evaluations of tahina (sesame butter) prepared from heat-treated sesame seeds. J. Sci. Food Agric. 2000, 80, 2005–2011. [Google Scholar] [CrossRef]
- Suja, K.P.; Jayalekshmy, A.; Arumughan, C. Free Radical Scavenging Behavior of Antioxidant Compounds of Sesame (Sesamum indicum L.) in DPPH• System. J. Agric. Food Chem. 2004, 52, 912–915. [Google Scholar] [CrossRef] [PubMed]
- Pathak, N.; Rai, A.K.; Kumari, R.; Bhat, K.V. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn. Rev. 2014, 8, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Kristott, J. High-oleic oils: How good are they for frying? Lipid Technol. 2003, 15, 29–32. [Google Scholar]
- Mihaela, P.; Josef, R.; Monica, N.; Rudolf, Z. Perspectives of safflower oil as biodiesel source for South Eastern Europe (comparative study: Safflower, soybean and rapeseed). Fuel 2013, 111, 114–119. [Google Scholar] [CrossRef]
- Norris, L.E.; Collene, A.L.; Asp, M.L.; Hsu, J.C.; Liu, L.F.; Richardson, J.R.; Li, D.; Bell, D.; Osei, K.; Jackson, R.D.; et al. Comparison of dietary conjugated linoleic acid with safflower oil on body composition in obese postmenopausal women with type 2 diabetes mellitus. Am. J. Clin. Nutr. 2009, 90, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Neschen, S.; Moore, I.; Regittnig, W.; Yu, C.L.; Wang, Y.; Pypaert, M.; Petersen, K.F.; Shulman, G.I. Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content. Am. J. Physiol.-Endocrinol. Metab. 2002, 282, E395–E401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Tang, L.; Xu, Y.; Zhou, G.; Wang, Z. Towards a better understanding of medicinal uses of Carthamus tinctorius L. in traditional Chinese medicine: A phytochemical and pharmacological review. J. Ethnopharmacol. 2014, 151, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.-H.; Kim, H.-D.; Im, E.-B. Reviews of Research trends on Safflower seed (Carthamus tinctorius L.). J. Korean Med. Class. 2011, 24, 63–90. [Google Scholar]
- Kadam, D.M.; Kumar, M.; Kasara, A. Application of high energy electromagnetic radiations in elimination of anti-nutritional factors from oilseeds. LWT 2021, 151, 112085. [Google Scholar] [CrossRef]
- Morley, K.L.; Grosse, S.; Leisch, H.; Lau, P.C.K. Antioxidant canolol production from a renewable feedstock via an engineered decarboxylase. Green Chem. 2013, 15, 3312–3317. [Google Scholar] [CrossRef]
- Tayo, T.; Dutta, N.; Sharma, K. Effect of feeding canola quality rapeseed mustard meal on animal production—A review. Agric. Rev. 2012, 33, 114–121. [Google Scholar]
- Verkerk, R.; Schreiner, M.; Krumbein, A.; Ciska, E.; Holst, B.; Rowland, I.; de Schrijver, R.; Hansen, M.; Gerhäuser, C.; Mithen, R.; et al. Glucosinolates in Brassica vegetables: The influence of the food supply chain on intake, bioavailability and human health. Mol. Nutr. Food Res. 2009, 53, S219. [Google Scholar] [CrossRef] [PubMed]
- Fabre, N.; Poinsot, V.; Debrauwer, L.; Vigor, C.; Tulliez, J.; Fourasté, I.; Moulis, C. Characterisation of glucosinolates using electrospray ion trap and electrospray quadrupole time-of-flight mass spectrometry. Phytochem. Anal. 2007, 18, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.A.; López, C.J.; Simal-Gandara, J. Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. Adv. Food Nutr. Res. 2019, 90, 305–350. [Google Scholar] [CrossRef] [PubMed]
- Ishida, M.; Hara, M.; Fukino, N.; Kakizaki, T.; Morimitsu, Y. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed. Sci. 2014, 64, 48–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, E.A.S.; Heaney, R.K.; Fenwick, G.R.; Portas, C.A.M. Glucosinolates in Crop Plants. Hortic. Rev. 2010, 19, 99–215. [Google Scholar] [CrossRef]
- Vig, A.P.; Rampal, G.; Thind, T.S.; Arora, S. Bio-protective effects of glucosinolates—A review. LWT-Food Sci. Technol. 2009, 42, 1561–1572. [Google Scholar] [CrossRef]
- Grubb, C.D.; Abel, S. Glucosinolate metabolism and its control. Trends Plant Sci. 2006, 11, 89–100. [Google Scholar] [CrossRef]
- Halkier, B.A.; Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006, 57, 303–333. [Google Scholar] [CrossRef] [Green Version]
- Mithen, R.; Faulkner, K.; Magrath, R.; Rose, P.; Williamson, G.; Marquez, J. Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theor. Appl. Genet. 2003, 106, 727–734. [Google Scholar] [CrossRef]
- Chalas, J.; Claise, C.; Edeas, M.; Messaoudi, C.; Vergnes, L.; Abella, A.; Lindenbaum, A. Effect of ethyl esterification of phenolic acids on low-density lipoprotein oxidation. Biomed. Pharmacother. 2001, 55, 54–60. [Google Scholar] [CrossRef]
- Cheng, F.-C.; Jinn, T.-R.; Hou, R.C.W.; Tzen, J.T.C. Neuroprotective effects of sesamin and sesamolin on gerbil brain in cerebral ischemia. Int. J. Biomed. Sci. 2006, 2, 284. [Google Scholar] [PubMed]
- Dimitrios, B. Sources of natural phenolic antioxidants. Trends Food Sci. Technol. 2006, 17, 505–512. [Google Scholar] [CrossRef]
- Lu, C.; Yao, S.; Lin, N. Studies on reactions of oxidizing sulfur-sulfur three-electron-bond complexes and reducing alpha-amino radicals derived from OH reaction with methionine in aqueous solution. Biochim. Biophys. Acta 2001, 1525, 89–96. [Google Scholar] [CrossRef]
- Nakano, D.; Kurumazuka, D.; Nagai, Y.; Nishiyama, A.; Kiso, Y.; Matsumura, Y. Dietary sesamin suppresses aortic NADPH oxidase in DOCA salt hypertensive rats. Clin. Exp. Pharmacol. Physiol. 2008, 35, 324–326. [Google Scholar] [CrossRef]
- Robbins, R.J. Phenolic acids in foods: An overview of analytical methodology. J. Agric. Food Chem. 2003, 51, 2866–2887. [Google Scholar] [CrossRef]
- Midorikawa, K.; Murata, M.; Oikawa, S.; Hiraku, Y.; Kawanishi, S. Protective effect of phytic acid on oxidative DNA damage with reference to cancer chemoprevention. Biochem. Biophys. Res. Commun. 2001, 288, 552–557. [Google Scholar] [CrossRef]
- Singh, R.P.; Sharma, G.; Mailikarjuna, G.U.; Dhanalakshmi, S.; Agarwal, C.; Agarwal, R. In Vivo Suppression of Hormone-Refractory Prostate Cancer Growth by Inositol Hexaphosphate: Induction of Insulin-Like Growth Factor Binding Protein-3 and Inhibition of Vascular Endothelial Growth Factor. Clin. Cancer Res. 2004, 10, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Vucenik, I.; Shamsuddin, A.K.M. Cancer Inhibition by Inositol Hexaphosphate (IP6) and Inositol: From Laboratory to Clinic. J. Nutr. 2003, 133, 3778S–3784S. [Google Scholar] [CrossRef]
- Bouic, P.J.D. Sterols and sterolins: New drugs for the immune system? Drug Discov. Today 2002, 7, 775–778. [Google Scholar] [CrossRef]
- van Rensburg, S.J.; Daniels, W.M.U.; van Zyl, J.M.; Taljaard, J.J.F. A comparative study of the effects of cholesterol, beta-sitosterol, beta-sitosterol glucoside, dehydroepiandrosterone sulphate and melatonin on in vitro lipid peroxidation. Metab. Brain Dis. 2000, 15, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Miao, X.; Jia, S.; Pan, Y.; Huang, Y. Isolation and characterization of microsatellite loci from the mulberry, Morus L. Plant Sci. 2005, 168, 519–525. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Traber, M.G. Vitamin E: Function and metabolism. FASEB J. 1999, 13, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Niki, E.; Noguchi, N. Comparative study on the action of tocopherols and tocotrienols as antioxidant: Chemical and physical effects. Chem. Phys. Lipids 2003, 123, 63–75. [Google Scholar] [CrossRef]
- Edel, A.L.; Rodriguez-Leyva, D.; Maddaford, T.G.; Caligiuri, S.P.B.; Alejandro Austria, J.; Weighell, W.; Guzman, R.; Aliani, M.; Pierce, G.N. Dietary flaxseed independently lowers circulating cholesterol and lowers it beyond the effects of cholesterol-lowering medications alone in patients with peripheral artery disease. J. Nutr. 2015, 145, 749–757. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, M.; Jensen, M.G.; Aarestrup, J.; Petersen, K.E.N.; Søndergaard, L.; Mikkelsen, M.S.; Astrup, A. Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depend on food type. Nutr. Metab. 2012, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Kajla, P.; Sharma, A.; Sood, D.R. Flaxseed—A potential functional food source. J. Food Sci. Technol. 2015, 52, 1857–1871. [Google Scholar] [CrossRef]
- Ogawa, A.; Suzuki, Y.; Aoyama, T.; Takeuchi, H. Dietary alpha-linolenic acid inhibits angiotensin-converting enzyme activity and mRNA expression levels in the aorta of spontaneously hypertensive rats. J. Oleo Sci. 2009, 58, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Sekine, S.; Sasanuki, S.; Aoyama, T.; Takeuchi, H. Lowering systolic blood pressure and increases in vasodilator levels in SHR with oral alpha-linolenic acid administration. J. Oleo Sci. 2007, 56, 341–345. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, H.; Sakurai, C.; Noda, R.; Sekine, S.; Murano, Y.; Wanaka, K.; Kasai, M.; Watanabe, S.; Aoyama, T.; Kondo, K. Antihypertensive effect and safety of dietary alpha-linolenic acid in subjects with high-normal blood pressure and mild hypertension. J. Oleo Sci. 2007, 56, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Den Hartigh, L.J. Conjugated linoleic acid effects on cancer, obesity and atherosclerosis: A review of pre-clinical and human trials with current perspectives. Nutrients 2019, 11, 370. [Google Scholar] [CrossRef] [Green Version]
- Krebs, E.E.; Ensrud, K.E.; MacDonald, R.; Wilt, T.J. Phytoestrogens for treatment of menopausal symptoms: A systematic review. Obstet. Gynecol. 2004, 104, 824–836. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Liu, Y.; Liu, G.; Wei, L.; Wen, Y.; Huang, S.; Cheng, J. Associations between semen phytoestrogens concentrations and semen quality in Chinese men. Environ. Int. 2019, 129, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Desmawati, D.; Sulastri, D. Phytoestrogens and their health effect. Open Access Maced. J. Med. Sci. 2019, 7, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, I.M.; Park, B.; Dang, Y.M.; Kim, S.Y.; Seo, H.Y. Simultaneous direct determination of 15 glucosinolates in eight Brassica species by UHPLC-Q-Orbitrap-MS. Food Chem. 2019, 282, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Li, W.; Gao, R.; Yan, L.; Wang, P.; Gu, Z.; Yang, R. Determination of glucosinolates in rapeseed meal and their degradation by myrosinase from rapeseed sprouts. Food Chem. 2022, 382, 132316. [Google Scholar] [CrossRef] [PubMed]
- Gohain, B.; Kumar, P.; Malhotra, B.; Augustine, R.; Pradhan, A.K.; Bisht, N.C. A comprehensive Vis-NIRS equation for rapid quantification of seed glucosinolate content and composition across diverse Brassica oilseed chemotypes. Food Chem. 2021, 354, 129527. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Nohynek, L.; Meier, C. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Pereira, A.G.; Lourenço-Lopes, C.; Garcia-Oliveira, P.; Cassani, L.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Main bioactive phenolic compounds in marine algae and their mechanisms of action supporting potential health benefits. Food Chem. 2021, 341, 128262. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Morya, S.; Dendegh, T.A.; Okpala, C.O.R.; Korzeniowska, M. Nanoencapsulation of food bioactive constituents and its associated processes: A revisit. Bioresour. Technol. Rep. 2022, 101088, in press. [Google Scholar] [CrossRef]
- Xie, C.; Wang, P.; Sun, M.; Gu, Z.; Yang, R. Nitric oxide mediates γ-aminobutyric acid signaling to regulate phenolic compounds biosynthesis in soybean sprouts under NaCl stress. Food Biosci. 2021, 44, 101356. [Google Scholar] [CrossRef]
- Bodoira, R.; Cecilia Cittadini, M.; Velez, A.; Rossi, Y.; Montenegro, M.; Martínez, M.; Maestri, D. An overview on extraction, composition, bioactivity and food applications of peanut phenolics. Food Chem. 2022, 381, 132250. [Google Scholar] [CrossRef] [PubMed]
- Parilli-Moser, I.; Domínguez-López, I.; Trius-Soler, M.; Castellví, M.; Bosch, B.; Castro-Barquero, S.; Estruch, R.; Hurtado-Barroso, S.; Lamuela-Raventós, R.M. Consumption of peanut products improves memory and stress response in healthy adults from the ARISTOTLE study: A 6-month randomized controlled trial. Clin. Nutr. 2021, 40, 5556–5567. [Google Scholar] [CrossRef]
- Pham, L.B.; Wang, B.; Zisu, B.; Adhikari, B. Covalent modification of flaxseed protein isolate by phenolic compounds and the structure and functional properties of the adducts. Food Chem. 2019, 293, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, H.; Lin, M.; Zheng, Y.; Chen, J. Effect of roasting and in vitro digestion on phenolic profiles and antioxidant activity of water-soluble extracts from sesame. Food Chem. Toxicol. 2020, 139, 111239. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, A.A.A.; Yagi, S.; Abdallah, A.H.; Abdalla, M.; Sinan, K.I.; Zengin, G. Phenolic profile, antioxidant and enzyme inhibition properties of seed methanolic extract of seven new Sunflower lines: From fields to industrial applications. Process Biochem. 2021, 111, 53–61. [Google Scholar] [CrossRef]
- Zago, E.; Lecomte, J.; Barouh, N.; Aouf, C.; Carré, P.; Fine, F.; Villeneuve, P. Influence of rapeseed meal treatments on its total phenolic content and composition in sinapine, sinapic acid and canolol. Ind. Crops Prod. 2015, 76, 1061–1070. [Google Scholar] [CrossRef]
- Taghvaei, M.; Jafari, S.M.; Assadpoor, E.; Nowrouzieh, S.; Alishah, O. Optimization of microwave-assisted extraction of cottonseed oil and evaluation of its oxidative stability and physicochemical properties. Food Chem. 2014, 160, 90–97. [Google Scholar] [CrossRef]
- Alizadeh Yeloojeh, K.; Saeidi, G.; Sabzalian, M.R. Drought stress improves the composition of secondary metabolites in safflower flower at the expense of reduction in seed yield and oil content. Ind. Crops Prod. 2020, 154, 112496. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Fu, Y.-C.; Wu, M.-J. Does Resveratrol Play a Role in Decreasing the Inflammation Associated with Contrast Induced Nephropathy in Rat Model? J. Clin. Med. 2019, 8, 147. [Google Scholar] [CrossRef] [Green Version]
- Huhn, S.; Beyer, F.; Zhang, R.; Lampe, L.; Grothe, J.; Kratzsch, J.; Willenberg, A.; Breitfeld, J.; Kovacs, P.; Stumvoll, M.; et al. Effects of resveratrol on memory performance, hippocampus connectivity and microstructure in older adults—A randomized controlled trial. NeuroImage 2018, 174, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Rossi, Y.E.; Bohl, L.P.; Vanden Braber, N.L.; Ballatore, M.B.; Escobar, F.M.; Bodoira, R.; Maestri, D.M.; Porporatto, C.; Cavaglieri, L.R.; Montenegro, M.A. Polyphenols of peanut (Arachis hypogaea L.) skin as bioprotectors of normal cells. Studies of cytotoxicity, cytoprotection and interaction with ROS. J. Funct. Foods 2020, 67, 103862. [Google Scholar] [CrossRef]
- Xiang, L.; Wu, Q.; Osada, H.; Yoshida, M.; Pan, W.; Qi, J. Peanut skin extract ameliorates the symptoms of type 2 diabetes mellitus in mice by alleviating inflammation and maintaining gut microbiota homeostasis. Aging 2020, 12, 13991–14018. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol. 2014, 51, 1633–1653. [Google Scholar] [CrossRef] [Green Version]
- Prasad, K. Antihypertensive activity of secoisolariciresinol diglucoside (SDG) isolated from flaxseed: Role of guanylate cyclase. Int. J. Angiol. 2011, 13, 7–14. [Google Scholar] [CrossRef]
- Adolphe, J.L.; Whiting, S.J.; Juurlink, B.H.J.; Thorpe, L.U.; Alcorn, J. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. Br. J. Nutr. 2010, 103, 929–938. [Google Scholar] [CrossRef] [Green Version]
- Moazzami, A.A.; Andersson, R.E.; Kamal-Eldin, A. HPLC analysis of sesaminol glucosides in sesame seeds. J. Agric. Food Chem. 2006, 54, 633–638. [Google Scholar] [CrossRef]
- Langyan, S.; Yadava, P.; Sharma, S.; Gupta, N.C.; Bansal, R.; Yadav, R.; Kalia, S.; Kumar, A. Food and nutraceutical functions of Sesame oil: An underutilized crop for nutritional and health benefits. Food Chem. 2022, 389, 132990. [Google Scholar] [CrossRef]
- Majdalawieh, A.F.; Mansour, Z.R. Sesamol, a major lignan in sesame seeds (Sesamum indicum): Anti-cancer properties and mechanisms of action. Eur. J. Pharmacol. 2019, 855, 75–89. [Google Scholar] [CrossRef]
- Feizollahi, E.; Mirmahdi, R.S.; Zoghi, A.; Zijlstra, R.T.; Roopesh, M.S.; Vasanthan, T. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Res. Int. 2021, 143, 110284. [Google Scholar] [CrossRef]
- Higuchi, M. Antioxidant Properties of Wheat Bran against Oxidative Stress. In Wheat and Rice in Disease Prevention and Health; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Kelly, F.J.; Salonen, J.T.; Neuzil, J.; Zingg, J.M.; Azzi, A. The European perspective on vitamin E: Current knowledge and future research. Am. J. Clin. Nutr. 2002, 76, 703–716. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Li, K.; Lee, W.J.; Reaney, M.T.J.; Zhang, N.; Wang, Y. Recent progress in the thermal treatment of oilseeds and oil oxidative stability: A review. Fundam. Res. 2021, 1, 767–784. [Google Scholar] [CrossRef]
- Bartosińska, E.; Buszewska-Forajta, M.; Siluk, D. GC–MS and LC–MS approaches for determination of tocopherols and tocotrienols in biological and food matrices. J. Pharm. Biomed. Anal. 2016, 127, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, J.; Bi, Y.; Xu, Y.; Wang, Y.; Wang, J.; Peng, D. Simultaneous determination of α-tocopherol, β-tocopherol, γ-tocopherol, δ-tocopherol, sesamin, sesamolin, sesamol, and asarinin in sesame oil by normal-phase high performance liquid chromatography. J. Food Compos. Anal. 2021, 104, 104132. [Google Scholar] [CrossRef]
- Lee, H.W.; Zhang, H.; Liang, X.; Ong, C.N. Simultaneous determination of carotenoids, tocopherols and phylloquinone in 12 Brassicaceae vegetables. LWT 2020, 130, 109649. [Google Scholar] [CrossRef]
- Normén, L.; Dutta, P.; Lia, Å.; Andersson, H. Soy sterol esters and β-sitostanol ester as inhibitors of cholesterol absorption in human small bowel. Am. J. Clin. Nutr. 2000, 71, 908–913. [Google Scholar] [CrossRef] [Green Version]
- Miettinen, T.A.; Vuoristo, M.; Nissinen, M.; Järvinen, H.J.; Gylling, H. Serum, biliary and fecal cholesterol and plant sterols in colectomized patients before and during consumption of stanol ester margarine. Am. J. Clin. Nutr. 2000, 71, 1095–1102. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Xia, Z.; Wang, Y.; Wu, Y.; Gong, Z. Rapid determination of phytosterols by NIRS and chemometric methods. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2019, 211, 336–341. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, T.; Tao, G.; Liu, R.; Chang, M.; Jin, Q.; Wang, X. Characterization and determination of free phytosterols and phytosterol conjugates: The potential phytochemicals to classify different rice bran oil and rice bran. Food Chem. 2021, 344, 128624. [Google Scholar] [CrossRef]
- Shim, Y.Y.; Gui, B.; Wang, Y.; Reaney, M.J.T. Flaxseed (Linum usitatissimum L.) oil processing and selected products. Trends Food Sci. Technol. 2015, 43, 162–177. [Google Scholar] [CrossRef]
- Kurek, M.A.; Wyrwisz, J.; Karp, S.; Wierzbicka, A. Effect of fiber sources on fatty acids profile, glycemic index, and phenolic compound content of in vitro digested fortified wheat bread. J. Food Sci. Technol. 2018, 55, 1632–1640. [Google Scholar] [CrossRef]
- Kakkar, S.; Tandon, R.; Tandon, N. How Can Flaxseed be Utilized as Functional Food. In Vegetable Crops—Health Benefits and Cultivation; Yildirim, E., Ekinci, M., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Dong, D.; Qi, Z.; Hua, Y.; Chen, Y.; Kong, X.; Zhang, C. Microencapsulation of flaxseed oil by soya proteins-gum Arabic complex coacervation. Int. J. Food Sci. Technol. 2015, 50, 1785–1791. [Google Scholar] [CrossRef]
- De Moura, C.M.A.; Soares Júnior, M.S.; Fiorda, F.A.; Caliari, M.; Vera, R.; Grossmann, M.V.E. Cooking and texture properties of gluten-free fettuccine processed from defatted flaxseed flour and rice flour. Int. J. Food Sci. Technol. 2016, 51, 1495–1501. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Ichwan, S.J.A.; Soundharrajan, I.; Govindan, N. Nutraceuticals as potential therapeutic agents for colon cancer: A review. Acta Pharm. Sin. B 2014, 4, 173–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calviello, G.; Serini, S.; Piccioni, E. n-3 Polyunsaturated Fatty Acids and the Prevention of Colorectal Cancer: Molecular Mechanisms Involved. Curr. Med. Chem. 2007, 14, 3059–3069. [Google Scholar] [CrossRef] [PubMed]
- Lechner, D.; Kállay, E.; Cross, H.S. Phytoestrogens and Colorectal Cancer Prevention. Vitam. Horm. 2005, 70, 169–198. [Google Scholar] [CrossRef]
- Balta, I.; Stef, L.; Pet, I.; Iancu, T.; Stef, D.; Corcionivoschi, N. Essential Fatty Acids as Biomedicines in Cardiac Health. Biomedicines 2021, 9, 1466. [Google Scholar] [CrossRef]
- Nayeem, M.A. Role of oxylipins in cardiovascular diseases. Acta Pharmacol. Sin. 2018, 39, 1142–1154. [Google Scholar] [CrossRef]
- Dun, Q.; Yao, L.; Deng, Z.; Li, H.; Li, J.; Fan, Y.; Zhang, B. Effects of hot and cold-pressed processes on volatile compounds of peanut oil and corresponding analysis of characteristic flavor components. LWT 2019, 112, 107648. [Google Scholar] [CrossRef]
- Almendingen, K.; Høstmark, A.T.; Fausa, O.; Mosdøl, A.; Aabakken, L.; Vatn, M.H. Familial adenomatous polyposis patients have high levels of arachidonic acid and docosahexaenoic acid and low levels of linoleic acid and α-linolenic acid in serum phospholipids. Int. J. Cancer 2007, 120, 632–637. [Google Scholar] [CrossRef]
- Baró, L.; Hermoso, J.C.; Núñez, M.C.; Jiménez-Rios, J.A.; Gil, A. Abnormalities in plasma and red blood cell fatty acid profiles of patients with colorectal cancer. Br. J. Cancer 1998, 77, 1978–1983. [Google Scholar] [CrossRef] [PubMed]
- Kojima, M.; Wakai, K.; Tokudome, S.; Suzuki, K.; Tamakoshi, K.; Watanabe, Y.; Kawado, M.; Hashimoto, S.; Hayakawa, N.; Ozasa, K.; et al. Serum levels of polyunsaturated fatty acids and risk of colorectal cancer: A prospective study. Am. J. Epidemiol. 2005, 161, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Szachowicz-Petelska, B.; Sulkowski, S.; Figaszewski, Z.A. Altered membrane free unsaturated fatty acid composition in human colorectal cancer tissue. Mol. Cell. Biochem. 2007, 294, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Ibrahim, A.; Mbodji, K.; Coëffier, M.; Ziegler, F.; Bounoure, F.; Chardigny, J.M.; Skiba, M.; Savoye, G.; Déchelotte, P.; et al. An α-linolenic acid-rich formula reduces oxidative stress and inflammation by regulating NF-κB in rats with TNBS-induced colitis. J. Nutr. 2010, 140, 1714–1721. [Google Scholar] [CrossRef] [Green Version]
- Montezano, A.C.; Touyz, R.M. Molecular Mechanisms of Hypertension-Reactive Oxygen Species and Antioxidants: A Basic Science Update for the Clinician. Can. J. Cardiol. 2012, 28, 288–295. [Google Scholar] [CrossRef]
- Ueshima, H.; Stamler, J.; Elliott, P.; Chan, Q.; Brown, I.J.; Carnethon, M.R.; Daviglus, M.L.; He, K.; Moag-Stahlberg, A.; Rodriguez, B.L.; et al. Food omega-3 fatty acid intake of individuals (total, linolenic acid, long-chain) and their blood pressure: INTERMAP study. Hypertension 2007, 50, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Paschos, G.K.; Magkos, F.; Panagiotakos, D.B.; Votteas, V.; Zampelas, A. Dietary supplementation with flaxseed oil lowers blood pressure in dyslipidaemic patients. Eur. J. Clin. Nutr. 2007, 61, 1201–1206. [Google Scholar] [CrossRef] [Green Version]
- Caligiuri, S.P.B.; Aukema, H.M.; Ravandi, A.; Pierce, G.N. Elevated levels of pro-inflammatory oxylipins in older subjects are normalized by flaxseed consumption. Exp. Gerontol. 2014, 59, 51–57. [Google Scholar] [CrossRef]
- Sirotkin, A.V.; Harrath, A.H. Phytoestrogens and their effects. Eur. J. Pharmacol. 2014, 741, 230–236. [Google Scholar] [CrossRef]
- Mazzocchi, A.; De Cosmi, V.; Risé, P.; Milani, G.P.; Turolo, S.; Syrén, M.L.; Agostoni, C. Bioactive compounds in edible oils and their role in oxidative stress and inflammation. Front. Physiol. 2021, 12, 659551. [Google Scholar] [CrossRef]
- Zárate, R.; Jaber-Vazdekis, N.; Tejera, N.; Pérez, J.A.; Rodríguez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 2017, 6, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiñones, J.; Díaz, R.; Dantagnan, P.; Hernández, A.; Valdes, M.; Lorenzo, J.M.; Cancino, D.; Sepúlveda, N.; Farías, J.G. Dietary inclusion of Durvillaea antarctica meal and rapeseed (Brassica napus) oil on growth, feed utilization and fillet quality of rainbow trout (Oncorhynchus mykiss). Aquaculture 2021, 530, 735882. [Google Scholar] [CrossRef]
- Birthal, P.S.; Parthasarathy Rao, P.; Nigam, S.N.; Bantilan, M.C.S.; Bhagavatula, S. Groundnut and Soybean Economies in Asia: Facts, Trends and Outlook; International Crops Research Institute for the Semi-Arid Tropics: Patancheruvu, India, 2010; Available online: http://oar.icrisat.org/190/1/97_2010_BO50_Groundnut_and_Soyabean.pdf (accessed on 18 October 2020).
- Gowda, C.L.L.; Rao, P.P.; Bhagavatula, S. Global Trends in Production and Trade of Major Grain Legumes. In Proceedings of the International Conference on Grain Legumes: Quality Improvement, Value Addition and Trad, Kanpur, India, 14–16 February 2009. [Google Scholar]
- Sorita, G.D.; Leimann, F.V.; Ferreira, S.R.S. Biorefinery approach: Is it an upgrade opportunity for peanut by-products? Trends Food Sci. Technol. 2020, 105, 56–69. [Google Scholar] [CrossRef]
Oilseed | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 |
---|---|---|---|---|
Peanut | - | 5000/6650 | 4850/4720 | 4900/6300 |
Flaxseed | 325.2/184.4 | 326.2/173.9 | 172.7/99.1 | - |
Rapeseed | - | 6600/6450 | 7200/8000 | 7400/7700 |
Sunflower | - | 330/230 | 270/172 | 250/182 |
Sesame | 1666.9/746.8 | 1579.8/755.1 | 1420/650.4 | - |
Soybean | - | 10,550/8350 | 11,500/10,930 | 12,000/9300 |
Cottonseed | - | 12,450/12,312 | 12,600/10,953 | 13,300/12,949 |
Safflower | 144.3/93.9 | 82.2/55.3 | 45.9/24.7 | - |
Nutritional Composition | Flaxseed | Rapeseed/ Canola | Sunflower | Groundnut | Sesame/ Benne Seed | Safflower | Cotton Seed | Soybean |
---|---|---|---|---|---|---|---|---|
Energy (Kcals) ** | 534.0 | 884.0 | 163.0 | 570.0 | 573.0 | 517.0 | 367.0 | 173.0 |
Proteins (g) | 19.5 # | 22.0 * | 19.8 | 25.6 | 18.2 | 16.2 | 32.6 # | 14.0 |
Carbohydrates (g) | 34.3 # | 8.3 * | 18.6 | 12.5 | 0.9 | 34.3 | 21.9 # | 5.1 |
Fiber(g) | 27.9 # | 7.2 * | 6.0 | 6.2 | 7.9 | N | 5.5 # | 6.1 |
Fat(g) | 34.0 # | 9.6 ** | 47.5 | 46.0 | 58.0 | 38.5 | 36.3 # | 7.3 |
Macro/Micro Nutrients (mg) | Flaxseed * | Rapeseed ** | Sunflower | Peanut | Sesame | Safflower | Cotton * | Soybeans |
---|---|---|---|---|---|---|---|---|
Calcium | 199.0 | 400.0 | 110.0 | 60.0 | 670.0 | 78.0 | 100.0 | 83.0 |
Phosphorus | 498.0 | 800.0 | 640.0 | 430 | 720.0 | 644.0 | 800.0 | 250.0 |
Potassium | 681.0 | 800.0 | 710.0 | 670 | 570.0 | 687.0 | 1350.0 | 510.0 |
Sodium | 34.0 | 5.0 | 3.0 | 2.0 | 20.0 | 3.0.0 | 25.0 | 1.0 |
Zinc | 4.2 | N | 5.1 | 3.5 | 5.3 | 5.1 | 6.0 | 0.9 |
Magnesium | 362 | 250.0 | 390 | 210.0 | 370.0 | 353.0 | 440.0 | 63.0 |
Iron | 6.2 | N | 6.4 | 2.5 | 10.4 | 4.9 | 5.4 | 3.0 |
Bioactive Compounds | Beneficial Effects | References |
---|---|---|
Glucosinolates | Preventing carcinogenesis, decrease cancer incidence at stomach, rectum, colon, and lung. | [91] |
Phenolic compounds | Antioxidant, antimicrobial, antiviral, antihypertensive, anti-inflammatory, immunomodulatory and anticancer activities; neurodegenerative and cardiovascular diseases prevention; protection against UV radiation. | [95,96,97,98,99,100] |
Phytic acid | Hypocholesterolemic, anticancerous activities, inhibits the metastasis of tumor. | [101,102,103] |
Phytosterols | Anti-inflammatory, antioxidant, antibacterial properties | [104,105,106] |
Tocopherols | Preventing cancer and heart diseases, antioxidative activity and nutritional values. | [107,108] |
Dietary Fiber | Minimize heart disease risk, colorectal cancer, inflammation, diabetes and obesity, cholesterol lowering activity, increased the fecal excretion of fat. | [109,110] |
Alpha-linolenic acid | Decreased tumor growth, reduction in (SBP), lower growth rate of breast and colon cancers, reduction of (DBP, SBP). | [111,112,113,114] |
PUFA | Prevention of atherosclerosis | [115] |
Phytoestrogens | Osteoporosis, cancer, menopausal symptoms, cardiovascular disease, obesity and type 2 diabetes, male infertility | [116,117,118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morya, S.; Menaa, F.; Jiménez-López, C.; Lourenço-Lopes, C.; BinMowyna, M.N.; Alqahtani, A. Nutraceutical and Pharmaceutical Behavior of Bioactive Compounds of Miracle Oilseeds: An Overview. Foods 2022, 11, 1824. https://doi.org/10.3390/foods11131824
Morya S, Menaa F, Jiménez-López C, Lourenço-Lopes C, BinMowyna MN, Alqahtani A. Nutraceutical and Pharmaceutical Behavior of Bioactive Compounds of Miracle Oilseeds: An Overview. Foods. 2022; 11(13):1824. https://doi.org/10.3390/foods11131824
Chicago/Turabian StyleMorya, Sonia, Farid Menaa, Cecilia Jiménez-López, Catarina Lourenço-Lopes, Mona Nasser BinMowyna, and Ali Alqahtani. 2022. "Nutraceutical and Pharmaceutical Behavior of Bioactive Compounds of Miracle Oilseeds: An Overview" Foods 11, no. 13: 1824. https://doi.org/10.3390/foods11131824
APA StyleMorya, S., Menaa, F., Jiménez-López, C., Lourenço-Lopes, C., BinMowyna, M. N., & Alqahtani, A. (2022). Nutraceutical and Pharmaceutical Behavior of Bioactive Compounds of Miracle Oilseeds: An Overview. Foods, 11(13), 1824. https://doi.org/10.3390/foods11131824