Use of Ultrasonic Cleaning Technology in the Whole Process of Fruit and Vegetable Processing
Abstract
:1. Introduction
2. Ultrasonic Cleaning Technology and Application
2.1. Ultrasonication
2.2. Principles of Ultrasonic Cleaning Technology
2.3. Ultrasound Fields and Cavitation Effects
2.4. The Model of Ultrasonic Cleaning Technology
2.4.1. The Cavitations Model
2.4.2. The Ultrasonic Output Model
2.4.3. The Efficiency Model
2.5. The Main Equipment for Ultrasonic Cleaning
3. Effect of Ultrasonic Cleaning on Microorganisms on the Surface of Fruits and Vegetables
4. Analysis of Fruits and Vegetables Cleaning Process
4.1. The Influence of Various Factors on Ultrasonic Cleaning
4.2. Ultrasonic-Assisted Cleaning Technology
4.2.1. In Combination with ClO2
4.2.2. In Combination with Ozone
4.2.3. In Combination with Electrolysis of Water
4.2.4. In Combination with Non-Thermal Plasma
5. The Effect of Ultrasonic Cleaning on Sensory and Storage
5.1. Sensory Aspects
5.2. Storage
6. Consumer Acceptance
7. Shortcomings and Perspectives of Ultrasound Technology
7.1. Cavitation Erosion
7.2. Tissue Damage
7.3. Cavitation Noise
7.4. Commercial Prospects
7.5. Development Trends
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leong, T.; Juliano, P.; Knoerzer, K. Advances in Ultrasonic and Megasonic Processing of Foods. Food Eng. Rev. 2017, 9, 237–256. [Google Scholar] [CrossRef]
- Wang, L.; Xu, B.; Wei, B.; Zeng, R. Low frequency ultrasound pretreatment of carrot slices: Effect on the moisture migration and quality attributes by intermediate-wave infrared radiation drying. Ultrason. Sonochem. 2018, 40, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Aragón-García, F.; Ruíz-Rodríguez, A.; Palma, M. Changes in the Aromatic Compounds Content in the Muscat Wines as a Result of the Application of Ultrasound during Pre-Fermentative Maceration. Foods 2021, 10, 1462. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Men, K.; Li, D.; Wen, T.; Gong, Z.; Sunden, B.; Wu, Z. Application of ultrasound technology in the drying of food products. Ultrason. Sonochem. 2020, 63, 104950. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, Y.; Liu, S. Power ultrasound and its applications: A state-of-the-art review. Ultrason. Sonochem. 2020, 62, 104722. [Google Scholar] [CrossRef]
- Fan, K.; Wu, J.; Chen, L. Ultrasound and its combined application in the improvement of microbial and physicochemical quality of fruits and vegetables: A review. Ultrason. Sonochem. 2021, 80, 105838. [Google Scholar] [CrossRef]
- Plaza, L.; Crespo, I.; de Pascual-Teresa, S.; de Ancos, B.; Sanchez-Moreno, C.; Muñoz, M.; Cano, M.P. Impact of minimal processing on orange bioactive compounds during refrigerated storage. Food Chem. 2011, 124, 646–651. [Google Scholar] [CrossRef]
- Azam, S.M.R.; Ma, H.; Xu, B.; Devi, S.; Siddique, A.B.; Stanley, S.L.; Bhandari, B.; Zhu, J. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends Food Sci. Technol. 2020, 97, 417–432. [Google Scholar] [CrossRef]
- Arefi-Oskoui, S.; Khataee, A.; Safarpour, M.; Orooji, Y.; Vatanpour, V. A review on the applications of ultrasonic technology in membrane bioreactors. Ultrason. Sonochem. 2019, 58, 104633. [Google Scholar] [CrossRef]
- Morrison, D.S.; Abeyratne, U.R. Ultrasonic technique for non-destructive quality evaluation of oranges. J. Food Eng. 2014, 141, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhu, C. Combined effects of aqueous chlorine dioxide and ultrasonic treatments on postharvest storage quality of plum fruit (Prunus salicina L.). Postharvest Biol. Technol. 2011, 61, 117–123. [Google Scholar] [CrossRef]
- Gao, S.; Lewis, G.D.; Ashokkumar, M.; Hemar, Y. Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria. Ultrason. Sonochem. 2014, 21, 446–453. [Google Scholar] [CrossRef]
- Kentish, S.; Ashokkumar, M. The Physical and Chemical Effects of Ultrasound. In Ultrasound Technologies for Food and Bioprocessing; Springer: New York, NY, USA, 2011; pp. 1–12. [Google Scholar] [CrossRef]
- Feng, H.; Barbosa-Canovas, G.; Weiss, J. Ultrasound Applications in Food Processing; Springer: New York, NY, USA, 2011; Chapter 3; pp. 65–105. [Google Scholar] [CrossRef]
- Dion, J.-L. Contamination-free high capacity converging waves sonoreactors for the chemical industry. Ultrason. Sonochem. 2009, 16, 212–220. [Google Scholar] [CrossRef]
- Cintas, P.; Mantegna, S.; Gaudino, E.C.; Cravotto, G. A new pilot flow reactor for high-intensity ultrasound irradiation. Application to the synthesis of biodiesel. Ultrason. Sonochem. 2010, 17, 985–989. [Google Scholar] [CrossRef]
- Asakura, Y.; Yasuda, K.; Kato, D.; Kojima, Y.; Koda, S. Development of a large sonochemical reactor at a high frequency. Chem. Eng. J. 2008, 139, 339–343. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, T.; Liu, X.; Li, D.; Zhao, J.; Lei, Y.; Wang, Y. Influence of sound directions on acoustic field characteristics within a rectangle-shaped sonoreactor: Numerical simulation and experimental study. Ultrason. Sonochem. 2018, 42, 787–794. [Google Scholar] [CrossRef]
- Mhetre, A.S.; Gogate, P.R. New design and mapping of sonochemical reactor operating at capacity of 72L. Chem. Eng. J. 2014, 258, 69–76. [Google Scholar] [CrossRef]
- Hallez, L.; Touyeras, F.; Hihn, J.-Y.; Bailly, Y. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming. Ultrason. Sonochem. 2016, 29, 420–427. [Google Scholar] [CrossRef]
- Fang, Y.; Yamamoto, T.; Komarov, S. Cavitation and acoustic streaming generated by different sonotrode tips. Ultrason. Sonochem. 2018, 48, 79–87. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, M.; Cao, Y.; Zhu, J. Application of optical interferometry in focused acoustic field measurement. J. Sound Vib. 2018, 426, 234–243. [Google Scholar] [CrossRef]
- Koch, C.; Jenderka, K.-V. Measurement of sound field in cavitating media by an optical fibre-tip hydrophone. Ultrason. Sonochem. 2008, 15, 502–509. [Google Scholar] [CrossRef]
- Fan, D.; Huang, L.; Li, B.; Huang, J.; Zhao, J.; Yan, B.; Zhou, W.; Zhang, W.; Zhang, H. Acoustic intensity in ultrasound field and ultrasound-assisted gelling of surimi. LWT 2017, 75, 497–504. [Google Scholar] [CrossRef]
- Zhai, W.; Liu, H.; Hong, Z.; Xie, W.; Wei, B. A numerical simulation of acoustic field within liquids subject to three orthogonal ultrasounds. Ultrason. Sonochem. 2017, 34, 130–135. [Google Scholar] [CrossRef]
- Lais, H.; Lowe, P.S.; Gan, T.-H.; Wrobel, L.C. Numerical modelling of acoustic pressure fields to optimize the ultrasonic cleaning technique for cylinders. Ultrason. Sonochem. 2018, 45, 7–16. [Google Scholar] [CrossRef]
- Servant, G.; Caltagirone, J.; Gérard, A.; Laborde, J.; Hita, A. Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor. Ultrason. Sonochem. 2000, 7, 217–227. [Google Scholar] [CrossRef]
- Lebon, G.B.; Tzanakis, I.; Pericleous, K.; Eskin, D. Experimental and numerical investigation of acoustic pressures in different liquids. J. Chin. Inst. Eng. 2018, 42, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Louisnard, O.; Gonzalez-Garcia, J.; Tudela, I.; Klima, J.; Saez, V.; Vargas-Hernandez, Y. FEM simulation of a sono-reactor accounting for vibrations of the boundaries. Ultrason. Sonochem. 2009, 16, 250–259. [Google Scholar] [CrossRef]
- Klíma, J.; Frias-Ferrer, A.; González-García, J.; Ludvík, J.; Sáez, V.; Iniesta, J. Optimisation of 20kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results. Ultrason. Sonochem. 2007, 14, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Vanhille, C.; Campos-Pozuelo, C. Numerical simulations of the primary Bjerknes force experienced by bubbles in a standing ultrasonic field: Nonlinear vs. linear. Wave Motion 2014, 51, 1127–1137. [Google Scholar] [CrossRef]
- Wei, Z.; Weavers, L.K. Combining COMSOL modeling with acoustic pressure maps to design sono-reactors. Ultrason. Sonochem. 2016, 31, 490–498. [Google Scholar] [CrossRef]
- Sajjadi, B.; Raman, A.A.A.; Ibrahim, S. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: Mathematical and 3D computational simulation. Ultrason. Sonochem. 2015, 24, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.W.; Chiu, Y.J.; Yang, C.H. Design and Experiment of Ultrasonic Cleaning for Crops. Appl. Mech. Mater. 2012, 201–202, 697–700. [Google Scholar] [CrossRef]
- Tangsopa, W.; Keawklan, T.; Kesngam, K.; Ngaochai, S.; Thongsri, J. Improved Design of Ultrasonic Cleaning Tank Using Harmonic Response Analysis in ANSYS. IOP Conf. Ser. Earth Environ. Sci. 2018, 159, 012042. [Google Scholar] [CrossRef]
- Silva, F.G.S.; De Lima, R.N.; Freire, R.; Plett, C. A Switchless Multiband Impedance Matching Technique Based on Multiresonant Circuits. IEEE Trans. Circuits Syst. II Express Briefs 2013, 60, 417–421. [Google Scholar] [CrossRef]
- Abadias, M.; Usall, J.; Anguera, M.; Solsona, C.; Viñas, I. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. Int. J. Food Microbiol. 2008, 123, 121–129. [Google Scholar] [CrossRef]
- Lapidot, A.; Romling, U.; Yaron, S. Biofilm formation and the survival of Salmonella Typhimurium on parsley. Int. J. Food Microbiol. 2006, 109, 229–233. [Google Scholar] [CrossRef]
- Joyce, E.; Phull, S.; Lorimer, J.; Mason, T. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrason. Sonochem. 2003, 10, 315–318. [Google Scholar] [CrossRef]
- Alenyorege, E.A.; Ma, H.; Aheto, J.H.; Ayim, I.; Chikari, F.; Osae, R.; Zhou, C. Response surface methodology centred optimization of mono-frequency ultrasound reduction of bacteria in fresh-cut Chinese cabbage and its effect on quality. LWT 2020, 122, 108991. [Google Scholar] [CrossRef]
- Sams, A.R.; Feria, R. Microbial Effects of Ultrasonication of Broiler Drumstick Skin. J. Food Sci. 2010, 56, 247–248. [Google Scholar] [CrossRef]
- Butz, P.; Tauscher, B. Emerging technologies: Chemical aspects. Food Res. Int. 2002, 35, 279–284. [Google Scholar] [CrossRef]
- Tiwari, B.; Mason, T. Ultrasound Processing of Fluid Foods. In Novel Thermal and Non-Thermal Technologies for Fluid Foods; Academic Press: Cambridge, MA, USA, 2012; pp. 135–165. [Google Scholar] [CrossRef]
- Kentish, S.; Ashokkumar, M. Ultrasonic Membrane Processing. In Ultrasound Technologies for Food and Bioprocessing; Springer: New York, NY, USA, 2011; pp. 583–598. [Google Scholar] [CrossRef]
- Kadkhodaee, R.; Povey, M.J. Ultrasonic inactivation of Bacillus α-amylase. I. effect of gas content and emitting face of probe. Ultrason. Sonochem. 2008, 15, 133–142. [Google Scholar] [CrossRef]
- Lee, H.; Feng, H. Effect of Power Ultrasound on Food Quality. In Ultrasound Technologies for Food and Bioprocessing; Springer: New York, NY, USA, 2011; pp. 559–582. [Google Scholar] [CrossRef]
- Manas, P.; Pagán, R. Microbial inactivation by new technologies of food preservation. J. Food Sci. 2005, 98, 1387–1399. [Google Scholar] [CrossRef]
- Seymour, I.J.; Burfoot, D.; Smith, R.L.; Cox, L.A.; Lockwood, A. Ultrasound decontamination of minimally processed fruits and vegetables. Int. J. Food Sci. Technol. 2002, 37, 547–557. [Google Scholar] [CrossRef]
- Alexandre, E.; Santos-Pedro, D.M.; Brandão, T.; Silva, C.L.M. Study on Thermosonication and Ultraviolet Radiation Processes as an Alternative to Blanching for Some Fruits and Vegetables. Food Bioprocess Technol. 2011, 4, 1012–1019. [Google Scholar] [CrossRef]
- Alexandre, E.M.; Brandão, T.R.; Silva, C.L. Efficacy of non-thermal technologies and sanitizer solutions on microbial load reduction and quality retention of strawberries. J. Food Eng. 2012, 108, 417–426. [Google Scholar] [CrossRef]
- Cao, S.; Hu, Z.; Pang, B.; Wang, H.; Xie, H.; Wu, F. Effect of ultrasound treatment on fruit decay and quality maintenance in strawberry after harvest. Food Control 2010, 21, 529–532. [Google Scholar] [CrossRef]
- Birmpa, A.; Bellou, M.; Kokkinos, P.; Vantarakis, A. Effect of Nonthermal, Conventional, and Combined Disinfection Technologies on the Stability of Human Adenoviruses as Fecal Contaminants on Surfaces of Fresh Ready-to-Eat Products. J. Food Prot. 2016, 79, 454–462. [Google Scholar] [CrossRef]
- Birmpa, A.; Sfika, V.; Vantarakis, A. Ultraviolet light and Ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. Int. J. Food Microbiol. 2013, 167, 96–102. [Google Scholar] [CrossRef]
- Gani, A.; Baba, W.N.; Ahmad, M.; Shah, U.; Khan, A.A.; Wani, I.A.; Masoodi, F.; Gani, A. Effect of ultrasound treatment on physico-chemical, nutraceutical and microbial quality of strawberry. LWT 2016, 66, 496–502. [Google Scholar] [CrossRef]
- Alenyorege, E.A.; Ma, H.; Ayim, I.; Zhou, C.; Wu, P.; Hong, C.; Osae, R. Effect of multi-frequency ultrasound surface washing treatments on Escherichia coli inactivation and some quality characteristics of non-heading Chinese cabbage. J. Food Process. Preserv. 2018, 42, e13747. [Google Scholar] [CrossRef]
- Huang, T.-S.; Xu, C.; Walker, K.; West, P.; Zhang, S.; Weese, J. Decontamination Efficacy of Combined Chlorine Dioxide with Ultrasonication on Apples and Lettuce. J. Food Sci. 2006, 71, M134–M139. [Google Scholar] [CrossRef]
- Mansur, A.R.; Oh, D.-H. Combined Effect of Thermosonication and Slightly Acidic Electrolyzed Water to Reduce Foodborne Pathogens and Spoilage Microorganisms on Fresh-cut Kale. J. Food Sci. 2015, 80, M1277–M1284. [Google Scholar] [CrossRef]
- Alenyorege, E.A.; Ma, H.; Aheto, J.H.; Agyekum, A.A.; Zhou, C. Effect of sequential multi-frequency ultrasound washing processes on quality attributes and volatile compounds profiling of fresh-cut Chinese cabbage. LWT 2020, 117, 108666. [Google Scholar] [CrossRef]
- Millan-Sango, D.; Garroni, E.; Farrugia, C.; Van Impe, J.; Valdramidis, V. Determination of the efficacy of ultrasound combined with essential oils on the decontamination of Salmonella inoculated lettuce leaves. LWT 2016, 73, 80–87. [Google Scholar] [CrossRef]
- Elizaquível, P.; Sánchez, G.; Selma, M.; Aznar, R. Application of propidium monoazide-qPCR to evaluate the ultrasonic inactivation of Escherichia coli O157:H7 in fresh-cut vegetable wash water. Food Microbiol. 2012, 30, 316–320. [Google Scholar] [CrossRef]
- Forghani, F.; Oh, D.-H. Hurdle enhancement of slightly acidic electrolyzed water antimicrobial efficacy on Chinese cabbage, lettuce, sesame leaf and spinach using ultrasonication and water wash. Food Microbiol. 2013, 36, 40–45. [Google Scholar] [CrossRef]
- Sagong, H.-G.; Lee, S.-Y.; Chang, P.-S.; Heu, S.; Ryu, S.; Choi, Y.-J.; Kang, D.-H. Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Int. J. Food Microbiol. 2011, 145, 287–292. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Collins, J.K.; Howard, L. Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biol. Technol. 2008, 47, 280–285. [Google Scholar] [CrossRef]
- Millan-Sango, D.; McElhatton, A.; Valdramidis, V.P. Determination of the efficacy of ultrasound in combination with essential oil of oregano for the decontamination of Escherichia coli on inoculated lettuce leaves. Food Res. Int. 2015, 67, 145–154. [Google Scholar] [CrossRef]
- Afari, G.K.; Hung, Y.-C.; King, C.H.; Hu, A. Reduction of Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 on fresh produce using an automated washer with near neutral electrolyzed (NEO) water and ultrasound. Food Control 2016, 63, 246–254. [Google Scholar] [CrossRef]
- Zhou, B.; Feng, H.; Luo, Y. Ultrasound Enhanced Sanitizer Efficacy in Reduction of Escherichia coli O157: H7 Population on Spinach Leaves. J. Food Sci. 2009, 74, M308–M313. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Feng, H.; Pearlstein, A. Continuous-flow ultrasonic washing system for fresh produce surface decontamination. Innov. Food Sci. Emerg. Technol. 2012, 16, 427–435. [Google Scholar] [CrossRef]
- Sagong, H.-G.; Cheon, H.-L.; Kim, S.-O.; Lee, S.-Y.; Park, K.-H.; Chung, M.-S.; Choi, Y.-J.; Kang, D.-H. Combined effects of ultrasound and surfactants to reduce Bacillus cereus spores on lettuce and carrots. Int. J. Food Microbiol. 2013, 160, 367–372. [Google Scholar] [CrossRef] [PubMed]
- José, J.S.; Vanetti, M.C.D. Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes. Food Control 2012, 24, 95–99. [Google Scholar] [CrossRef]
- Mustapha, A.T.; Zhou, C.; Amanor-Atiemoh, R.; Ali, T.A.; Wahia, H.; Ma, H.; Sun, Y. Efficacy of dual-frequency ultrasound and sanitizers washing treatments on quality retention of cherry tomato. Innov. Food Sci. Emerg. Technol. 2020, 62, 102348. [Google Scholar] [CrossRef]
- Mustapha, A.T.; Zhou, C.; Amanor-Atiemoh, R.; Owusu-Fordjour, M.; Wahia, H.; Fakayode, O.A.; Ma, H. Kinetic modeling of inactivation of natural microbiota and Escherichia coli on cherry tomato treated with fixed multi-frequency sonication. Ultrason. Sonochem. 2020, 64, 105035. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Zou, M.; Jiang, P.; Hu, W.; Li, J.; Zhi, Z.; Chen, J.; Li, S.; Ding, T.; et al. Effects of Ultrasound on Spoilage Microorganisms, Quality, and Antioxidant Capacity of Postharvest Cherry Tomatoes. J. Food Sci. 2015, 80, C2117–C2126. [Google Scholar] [CrossRef]
- Yang, Z.; Cao, S.; Cai, Y.; Zheng, Y. Combination of salicylic acid and ultrasound to control postharvest blue mold caused by Penicillium expansum in peach fruit. Innov. Food Sci. Emerg. Technol. 2011, 12, 310–314. [Google Scholar] [CrossRef]
- Yılmaz, F.M.; Bilek, S.E. Ultrasound-assisted vacuum impregnation on the fortification of fresh-cut apple with calcium and black carrot phenolics. Ultrason. Sonochem. 2018, 48, 509–516. [Google Scholar] [CrossRef]
- Kim, H.J.; Feng, H.; Kushad, M.M.; Fan, X. Effects of Ultrasound, Irradiation, and Acidic Electrolyzed Water on Germination of Alfalfa and Broccoli Seeds and Escherichia coli O157:H7. J. Food Sci. 2010, 71, M168–M173. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, X.; Yagoub, A.E.A.; Owusu-Ansah, P.; Wahia, H.; Ma, H.; Zhou, C. Effects of low frequency multi-mode ultrasound and it’s washing solution’s interface properties on freshly cut cauliflower. Food Chem. 2022, 366, 130683. [Google Scholar] [CrossRef]
- Millan-Sango, D.; Sammut, E.; Van Impe, J.F.; Valdramidis, V.P. Decontamination of alfalfa and mung bean sprouts by ultrasound and aqueous chlorine dioxide. LWT 2017, 78, 90–96. [Google Scholar] [CrossRef]
- Bang, H.-J.; Park, S.Y.; Kim, S.E.; Rahaman, M.M.F.; Ha, S.-D. Synergistic effects of combined ultrasound and peroxyacetic acid treatments against Cronobacter sakazakii biofilms on fresh cucumber. LWT 2017, 84, 91–98. [Google Scholar] [CrossRef]
- José, J.F.B.D.S.; de Medeiros, H.S.; Bernardes, P.C.; de Andrade, N.J. Removal of Salmonella enterica Enteritidis and Escherichia coli from green peppers and melons by ultrasound and organic acids. Int. J. Food Microbiol. 2014, 190, 9–13. [Google Scholar] [CrossRef]
- Alexandre, E.M.; Brandão, T.R.; Silva, C.L. Impact of non-thermal technologies and sanitizer solutions on microbial load reduction and quality factor retention of frozen red bell peppers. Innov. Food Sci. Emerg. Technol. 2013, 17, 99–105. [Google Scholar] [CrossRef]
- Tangsopa, W.; Thongsri, J. Development of an industrial ultrasonic cleaning tank based on harmonic response analysis. Ultrasonics 2018, 91, 68–76. [Google Scholar] [CrossRef]
- Niemczewski, B. Influence of acid concentration on cavitation intensity in ultrasonic cleaning in aqueous solutions of acids. Trans. IMF 2012, 90, 52–56. [Google Scholar] [CrossRef]
- Niemczewski, B.; Kołodziejczyk, Z. Chemical support of cavitation intensity in ultrasonic cleaning. Trans. IMF 2015, 93, 205–208. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, H.-Y. Disruptive bubble behaviour leading to microstructure damage in an ultrasonic field. J. Fluid Mech. 2014, 750, 355–371. [Google Scholar] [CrossRef]
- Takundwa, B.A.; Bhagwat, P.; Pillai, S.; Ijabadeniyi, O.A. Antimicrobial efficacy of nisin, oregano and ultrasound against Escherichia coli O157:H7 and Listeria monocytogenes on lettuce. LWT 2021, 139, 110522. [Google Scholar] [CrossRef]
- Zhang, H.; Tsai, S.; Tikekar, R.V. Inactivation of Listeria innocua on blueberries by novel ultrasound washing processes and their impact on quality during storage. Food Control 2021, 121, 107580. [Google Scholar] [CrossRef]
- Meireles, A.; Giaouris, E.; Simões, M. Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Res. Int. 2016, 82, 71–85. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, L.-S.; Pei, X.-F.; Xu, X. Preparation and Evaluation of Novel Solid Chlorine Dioxide-based Disinfectant Powder in Single-pack. Biomed. Environ. Sci. 2008, 21, 157–162. [Google Scholar] [CrossRef]
- Cai, R.; Yuan, Y.; Wang, Z.; Guo, C.; Liu, B.; Yue, T. Reduction of Alicyclobacillus acidoterrestris Spores on Apples by Chlorine Dioxide in Combination with Ultrasound or Shaker. Food Bioprocess Technol. 2015, 8, 2409–2417. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Subhashini, S.; Priya, E.B.; Kothakota, A.; Ramesh, S.; Shahir, S. Ozone based food preservation: A promising green technology for enhanced food safety. Ozone Sci. Eng. 2018, 41, 17–34. [Google Scholar] [CrossRef]
- Xu, G.; Chen, S.; Shi, J.; Wang, S.; Zhu, G. Combination treatment of ultrasound and ozone for improving solubilization and anaerobic biodegradability of waste activated sludge. J. Hazard. Mater. 2010, 180, 340–346. [Google Scholar] [CrossRef]
- Chawla, A.; Bell, J.W.; Janes, M.E. Optimization of Ozonated Water Treatment of Wild-Caught and Mechanically Peeled Shrimp Meat. J. Aquat. Food Prod. Technol. 2007, 16, 41–56. [Google Scholar] [CrossRef]
- Aday, M.S.; Caner, C. Individual and combined effects of ultrasound, ozone and chlorine dioxide on strawberry storage life. LWT 2014, 57, 344–351. [Google Scholar] [CrossRef]
- Fan, X.-D.; Zhang, W.-L.; Xiao, H.-Y.; Qiu, T.-Q.; Jiang, J.-G. Effects of ultrasound combined with ozone on the degradation of organophosphorus pesticide residues on lettuce. RSC Adv. 2015, 5, 45622–45630. [Google Scholar] [CrossRef]
- Zhao, Y.-M.; De Alba, M.; Sun, D.-W.; Tiwari, B. Principles and recent applications of novel non-thermal processing technologies for the fish industry—A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 728–742. [Google Scholar] [CrossRef] [PubMed]
- Issa-Zacharia, A.; Kamitani, Y.; Tiisekwa, A.; Morita, K.; Iwasaki, K. In vitro inactivation of Escherichia coli, Staphylococcus aureus and Salmonella spp. using slightly acidic electrolyzed water. J. Biosci. Bioeng. 2010, 110, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Duan, D.; Wu, Z.; Xue, S.; Xu, X.; Zhou, G. Primary concerns regarding the application of electrolyzed water in the meat industry. Food Control 2019, 95, 50–56. [Google Scholar] [CrossRef]
- Luan, C.; Zhang, M.; Fan, K.; Devahastin, S. Effective pretreatment technologies for fresh foods aimed for use in central kitchen processing. J. Sci. Food Agric. 2021, 101, 347–363. [Google Scholar] [CrossRef]
- Athayde, D.R.; Flores, D.R.M.; da Silva, J.S.; Genro, A.L.G.; Silva, M.S.; Klein, B.; Mello, R.; Campagnol, P.C.B.; Wagner, R.; de Menezes, C.R.; et al. Application of electrolyzed water for improving pork meat quality. Food Res. Int. 2017, 100, 757–763. [Google Scholar] [CrossRef]
- Jadeja, R.; Hung, Y.-C. Efficacy of near neutral and alkaline pH electrolyzed oxidizing waters to control Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 from beef hides. Food Control 2014, 41, 17–20. [Google Scholar] [CrossRef]
- Li, J.; Ding, T.; Liao, X.; Chen, S.; Ye, X.; Liu, D. Synergetic effects of ultrasound and slightly acidic electrolyzed water against Staphylococcus aureus evaluated by flow cytometry and electron microscopy. Ultrason. Sonochem. 2016, 38, 711–719. [Google Scholar] [CrossRef]
- Ding, T.; Ge, Z.; Shi, J.; Xu, Y.-T.; Jones, C.L.; Liu, D.-H. Impact of slightly acidic electrolyzed water (SAEW) and ultrasound on microbial loads and quality of fresh fruits. LWT 2015, 60, 1195–1199. [Google Scholar] [CrossRef]
- Luo, K.; Kim, S.Y.; Wang, J.; Oh, D.-H. A combined hurdle approach of slightly acidic electrolyzed water simultaneous with ultrasound to inactivate Bacillus cereus on potato. LWT 2016, 73, 615–621. [Google Scholar] [CrossRef]
- Hati, S.; Patel, M.; Yadav, D. Food bioprocessing by non-thermal plasma technology. Curr. Opin. Food Sci. 2018, 19, 85–91. [Google Scholar] [CrossRef]
- Scholtz, V.; Pazlarova, J.; Souskova, H.; Khun, J.; Julak, J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnol. Adv. 2015, 33, 1108–1119. [Google Scholar] [CrossRef]
- Otto, C.; Zahn, S.; Rost, F.; Zahn, P.; Jaros, D.; Rohm, H. Physical Methods for Cleaning and Disinfection of Surfaces. Food Eng. Rev. 2011, 3, 171–188. [Google Scholar] [CrossRef]
- Huang, Y.; Ye, X.P.; Doona, C.J.; Feeherry, F.E.; Radosevich, M.; Wang, S. An investigation of inactivation mechanisms of Bacillus amyloliquefaciens spores in non-thermal plasma of ambient air. J. Sci. Food Agric. 2019, 99, 368–378. [Google Scholar] [CrossRef]
- Kilonzo-Nthenge, A.; Liu, S.; Yannam, S.; Patras, A. Atmospheric Cold Plasma Inactivation of Salmonella and Escherichia coli on the Surface of Golden Delicious Apples. Front. Nutr. 2018, 5, 120. [Google Scholar] [CrossRef]
- Liao, X.; Li, J.; Muhammad, A.I.; Suo, Y.; Ahn, J.; Liu, D.; Chen, S.; Hu, Y.; Ye, X.; Ding, T. Preceding treatment of non-thermal plasma (NTP) assisted the bactericidal effect of ultrasound on Staphylococcus aureus. Food Control 2018, 90, 241–248. [Google Scholar] [CrossRef]
- Rosário, D.K.A.D.; Mutz, Y.D.S.; Peixoto, J.M.C.; Oliveira, S.B.S.; de Carvalho, R.V.; Carneiro, J.C.S.; José, J.F.B.D.S.; Bernardes, P.C. Ultrasound improves chemical reduction of natural contaminant microbiota and Salmonella enterica subsp. enterica on strawberries. Int. J. Food Microbiol. 2017, 241, 23–29. [Google Scholar] [CrossRef]
- Gómez-López, V.; Orsolani, L.; Martínez-Yépez, A.; Tapia, M. Microbiological and sensory quality of sonicated calcium-added orange juice. LWT 2010, 43, 808–813. [Google Scholar] [CrossRef]
- Liu, D.-K.; Xu, C.-C.; Guo, C.-X.; Zhang, X.-X. Sub-zero temperature preservation of fruits and vegetables: A review. J. Food Eng. 2020, 275, 109881. [Google Scholar] [CrossRef]
- Huang, L.-L.; Zhang, M. Trends in Development of Dried Vegetable Products as Snacks. Dry. Technol. 2012, 30, 448–461. [Google Scholar] [CrossRef]
- Zhang, X.-T.; Zhang, M.; Devahastin, S.; Guo, Z. Effect of Combined Ultrasonication and Modified Atmosphere Packaging on Storage Quality of Pakchoi (Brassica chinensis L.). Food Bioprocess Technol. 2019, 12, 1573–1583. [Google Scholar] [CrossRef]
- Rollin, F.; Kennedy, J.; Wills, J. Consumers and new food technologies. Trends Food Sci. Technol. 2011, 22, 99–111. [Google Scholar] [CrossRef]
- Uriakhil, M.A.; Sidnell, T.; Fernández, A.D.C.; Lee, J.; Ross, I.; Bussemaker, M. Per- and poly-fluoroalkyl substance remediation from soil and sorbents: A review of adsorption behaviour and ultrasonic treatment. Chemosphere 2021, 282, 131025. [Google Scholar] [CrossRef]
- Guo, C. The Relationship between the Collapsing Cavitation Bubble and Its Microjet near a Rigid Wall under an Ultrasound Field. In Cavitation–Selected Issues; IntechOpen: London, UK, 2018; pp. 73–89. [Google Scholar] [CrossRef]
- Nguyen, T.; Wang, J. A review on the erosion mechanisms in abrasive waterjet micromachining of brittle materials. Int. J. Extreme Manuf. 2019, 1, 012006. [Google Scholar] [CrossRef]
- Koukouvinis, P.; Strotos, G.; Zeng, Q.; Gonzalez-Avila, S.R.; Theodorakakos, A.; Gavaises, M.; Ohl, C.-D. Parametric Investigations of the Induced Shear Stress by a Laser-Generated Bubble. Langmuir 2018, 34, 6428–6442. [Google Scholar] [CrossRef]
- Fan, X.; Wang, W. Quality of fresh and fresh-cut produce impacted by nonthermal physical technologies intended to enhance microbial safety. Crit. Rev. Food Sci. Nutr. 2022, 62, 362–382. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, M.; Xu, B. Application of ultrasonic technology in postharvested fruits and vegetables storage: A review. Ultrason. Sonochem. 2020, 69, 105261. [Google Scholar] [CrossRef]
- Muzaffar, S.; Ahmad, M.; Wani, S.M.; Gani, A.; Baba, W.N.; Shah, U.; Khan, A.A.; Masoodi, F.A.; Gani, A.; Wani, T.A. Ultrasound treatment: Effect on physicochemical, microbial and antioxidant properties of cherry (Prunus avium). J. Food Sci. Technol. 2016, 53, 2752–2759. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, T.; Xu, D.; Wang, S.; Yuan, Y.; He, S.; Cao, Y. The removal of pesticide residues from pakchoi (Brassica rape L. ssp. chinensis) by ultrasonic treatment. Food Control 2019, 95, 176–180. [Google Scholar] [CrossRef]
- Lubner, R.J.; Kondamuri, N.S.; Knoll, R.M.; Ward, B.K.; Littlefield, P.D.; Rodgers, D.; Abdullah, K.G.; Remenschneider, A.K.; Kozin, E.D. Review of Audiovestibular Symptoms Following Exposure to Acoustic and Electromagnetic Energy Outside Conventional Human Hearing. Front. Neurol. 2020, 11, 234. [Google Scholar] [CrossRef]
- Iversen, M.M.; Christensen, D.A.; Parker, D.L.; Holman, H.A.; Chen, J.; Frerck, M.J.; Rabbitt, R.D. Low-intensity ultrasound activates vestibular otolith organs through acoustic radiation force. J. Acoust. Soc. Am. 2017, 141, 4209–4219. [Google Scholar] [CrossRef]
- Takagi, R.; Koseki, Y.; Yoshizawa, S.; Umemura, S.-I. Investigation of feasibility of noise suppression method for cavitation-enhanced high-intensity focused ultrasound treatment. Ultrasonics 2021, 114, 106394. [Google Scholar] [CrossRef]
- Basumatary, R.; Vatankhah, H.; Dwivedi, M.; John, D.; Ramaswamy, H.S. Ultrasound-steam combination process for microbial decontamination and heat transfer enhancement. J. Food Process Eng. 2020, 43, e13367. [Google Scholar] [CrossRef]
- Patist, A.; Bates, D. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov. Food Sci. Emerg. Technol. 2008, 9, 147–154. [Google Scholar] [CrossRef]
Food | Microorganism | Methods | Reduction (log10 CFU/g Sample) | Cleaning Effect(Y/N) | References |
---|---|---|---|---|---|
Strawberry | E. coli | 32 kHz, 10 W/L, 600 s, surfactant | 1.96 | Y | [48] |
Total mesophiles | 35 kHz, 21.4 W/L, 120 s, 65 °C | 8.24 | Y | [49] | |
TVC, YMC | 120 W, 35 kHz, 15 °C Sample/water: 1/25 | 0.6,1.4 | Y | [50] | |
TVC, YMC | 350 W/L, 40 kHz, 20 °C, 10 min | 0.6,0.5 | Y | [51] | |
E Coli, S. aureus, S. Enteritidis and L. innocua | 37 kHz, 30 W/L, 3600 s, BPW, 24 kJ/m2, 1200 s | 3.04, 2.42, 5.52, 6.12, 2.73–3.98 | Y | [52,53] | |
Total bacteria | 33 kHz, 60 W | 2 | Y | [54] | |
Cabbage | E. coli | 40 kHz,300 W, 20–30min | >3 | Y | [55] |
E. coli | 32 kHz, 10 W/L, 600 s, surfactant | 2.91 | Y | [56] | |
L. monocytogenes | 40 kHz, 400 W/L, 180 s, 40 °C | 2.8–3.11 | Y | [57] | |
mesophilic aerobic bacteria | 20–60 kHz, 300 W, 10 min | 0.7 | Y | [58] | |
Lettuce | S. enterica | 26 kHz, 200 W, 5 min | 2.23 | Y | [59] |
E. coli O157:H7 | 280 W/L, 20 kHz, 53 min | 4.4 | Y | [60] | |
E. coli and L. monocytogenes | 40 kHz, 400 W/L, 180 s, SAEW | 2.5–2.8, 2.6 | Y | [61] | |
E. coli, S. Typhimurium and L. monocytogenes | 40 kHz, 30 W/L, 300 s, organic acids | 2.75, 3.18 2.87 | Y | [62] | |
E. Coli, S. aureus, S. Enteritidis and L. innocua | 37 kHz, 30 W/L, 3600 s, 1200 s | 2.3, 1.7, 5.72 1.88, 1.75–2.85 | Y | [52,53] | |
S. enterica and E. coli | 26 kHz, 200 W, 90 s, essential oils | 1.68–3.08,0.76–2.65 | Y | [63,64] | |
E. coli and S. Typhimurium | 20 kHz, 131.25 W/L, NNEW | 4.4,4.3 | Y | [65] | |
S. Typhimurium and E. coli | 32 kHz, 10 W/L, 600 s, surfactant | 2.7, 2.11 | Y | [48] | |
Spinach | E. coli and L. monocytogenes | 40 kHz, 400 W/L, 180 s, SAEW | 2.41, 2.49 | Y | [61] |
E. coli O157:H7 | 200 W/L, 21.2 kHz, 2 min, acidified sodium chloride (200 mg/L) | 4 | Y | [66] | |
E. coli | 25 kHz, 79.41 W/L, 60 s | 4.45 | Y | [67] | |
Carrots | Bacillus cereus spores | 40 kHz, 0.1% Tween 20, 20 °C, 5 min | 2.22 | Y | [68] |
Tomato | E. coli O157:H7 | 20 kHz, 130–210 W, 5–15 min | 2.88–4.22 | Y | [65] |
E. coli, S. Typhimurium | 20 kHz, 131.25 W/L, NNEW | no detection | Y | [65] | |
S. enterica, aerobic mesophile | 45 kHz, 600 s + peracetic acid | 3.90, 4.44 | Y | [69] | |
Cherry tomatoes | Aerobic mesophiles and yeasts and molds | 20/40 kHz, 300 W,10 min | >2 | Y | [70] |
mesophilic aerobic bacteria, and mold and yeast | 20–60 kHz, 300W, 25 min | 2–4 | Y | [71] | |
spoilage bacteria | 20 kHz, 800 W,4–8 min | 0.42–1.04 | Y | [72] | |
S. enterica Typhimurium | 45 kHz, 10–30 min | 0.83–1.73 | Y | [69] | |
Japanese plum | Aerobic mesophilic bacteria | US 40 kHz, ClO2,10 min, 20 °C | 3 | Y | [11] |
Peach fruit | Penicillium expansum | US 40 kHz þ salicylic acid, 10 min, 20 °C | Reduce blue mold inpeach fruit | Y | [73] |
Apples | E. coli and S. enterica | 170 kHz, 20 ppm ClO2, 360 s | 3.3, 4 | Y | [56] |
Psychrophilic and mesophilic bacteria | 35 kHz, 72–840W, VI | 1.0–2.6 | Y | [74] | |
Broccoli | E. coli O157:H7 | 40 kHz,30 min/23 °C | 1.04 | Y | [75] |
Cauliflower | Hemipychomycota fungi | 20–40 kHz, 40 W/L, 15 min. | 2 | Y | [76] |
Alfalfa | E. coli and S. enterica | 26 kHz, 200 W, 5 min | 1.40 and 1.06 | Y | [77] |
Cucumber | C. sakazakii | 37 kHz, 13.57 W/L, PA | 0.60–3.51 | Y | [78] |
Melons | E. coli and S. enterica Enteritidis | 40 kHz, 120 s, 1% lactic acid | 2.5, 3.1 | Y | [79] |
Red bell pepper | L. innocua | 35 kHz, 120 W, 15 °C | 1.98 | Y | [80] |
Iceberg lettuce | S. Typhimurium | 32–40 kHz, 10 W/L, 10 min | 1.5 | Y | [48] |
Disinfectants | Mechanism | Food | Results | Conclusion | References |
---|---|---|---|---|---|
Chlorine dioxide | Destroy amino acids of microorganisms | plum | Significant reduction in surface bacteria | Effectively inactivate the bacteria and viruses | [89] |
bean sprouts | Significant reduction in E. coli and Salmonella | [77] | |||
apples | Reduced rate of loss of vitamin C and flavonoids | [11] | |||
Ozone | Destroy microbial cell membrane | tomatoes | Effective inactivation of microorganisms | High disinfection efficiency, no secondary contamination and reduced pesticide residues, but use with extra care | [92] |
strawberries | Better quality obtained | [93] | |||
lettuce | Significantly reduces pesticide residues | [94] | |||
Electrolyzed water | Destroy cell membranes of microorganisms, destroy electron respiratory transport chain of microorganisms | broccoli | Significant reduction in surface bacteria | A new and potentially more environmentally friendly sterilization technology that accelerates bacterial death and reduces early damage to cells | [77] |
cherry tomatoes and strawberries | Significant reduction in surface bacteria | [102] | |||
Non-thermal plasma | Alter chemical properties or structures of biomolecules | apples | Effective reduction of E. coli and Salmonella | Effective in killing bacteria on its own, but less studied in combination with ultrasound on fruits and vegetables | [108] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Sarpong, F.; Zhou, C. Use of Ultrasonic Cleaning Technology in the Whole Process of Fruit and Vegetable Processing. Foods 2022, 11, 2874. https://doi.org/10.3390/foods11182874
Zhou W, Sarpong F, Zhou C. Use of Ultrasonic Cleaning Technology in the Whole Process of Fruit and Vegetable Processing. Foods. 2022; 11(18):2874. https://doi.org/10.3390/foods11182874
Chicago/Turabian StyleZhou, Wenhao, Frederick Sarpong, and Cunshan Zhou. 2022. "Use of Ultrasonic Cleaning Technology in the Whole Process of Fruit and Vegetable Processing" Foods 11, no. 18: 2874. https://doi.org/10.3390/foods11182874
APA StyleZhou, W., Sarpong, F., & Zhou, C. (2022). Use of Ultrasonic Cleaning Technology in the Whole Process of Fruit and Vegetable Processing. Foods, 11(18), 2874. https://doi.org/10.3390/foods11182874