Increases in Ginsenoside Rg3, Compound K, and Antioxidant Activity of Cultivated Wild Panax Ginseng (CWPG) by Puffing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Puffing Process
2.3. Extraction
2.4. Crude Saponin Analysis
2.5. Ginsenoside Profiling
2.6. Quantification of Antioxidant Activities
2.6.1. DPPH Radical Scavenging Activity
2.6.2. ABTS Radical Scavenging Activity
2.7. Assessment of Total Phenolics and Total Flavonoids
2.8. Acidic Polysaccharide
2.9. Color Measurement
2.10. Statistical Analysis
3. Results and Discussions
3.1. Extraction Yield and Crude Saponin Contents
3.2. Determination of Acid Polysaccharide Contents
3.3. Effects of Puffing on Ginsenoside Contents
3.4. Antioxidant Properties, TPC, and TFC
3.5. Production of MRPs by Puffing Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sonoda, Y.; Kasahara, T.; Mukaida, N.; Shimizu, N.; Tomoda, M.; Takeda, T. Stimulation of interleukin-8 production by acidic polysaccharides from the root of Panax ginseng. Immunopharmacology 1998, 38, 287–294. [Google Scholar] [CrossRef]
- Shin, J.-Y.; Song, J.-Y.; Yun, Y.-S.; Yang, H.-O.; Rhee, D.-K.; Pyo, S. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharmacol. Immunotoxicol. 2002, 24, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J.; Kim, Y.S.; Kwak, Y.S.; Song, Y.B.; Kim, Y.S.; Park, J.D. Enhancement of antitumor effects of paclitaxel (taxol) in combination with red ginseng acidic polysaccharide (RGAP). Planta Med. 2004, 70, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Chen, X. Cardiovascular protection by ginsenosides and their nitric oxide releasing action. Clin. Exp. Pharmacol. Physiol. 1996, 23, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Attele, A.S.; Wu, J.A.; Yuan, C.-S. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 1999, 58, 1685–1693. [Google Scholar] [CrossRef]
- Jie, Y.H.; Cammisuli, S.; Baggiolini, M. Immunomodulatory effects of Panax ginseng CA Meyer in the mouse. Inflamm. Res. 1984, 15, 386–391. [Google Scholar]
- Cho, W.C.; Chung, W.-S.; Lee, S.K.; Leung, A.W.; Cheng, C.H.; Yue, K.K. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 2006, 550, 173–179. [Google Scholar] [CrossRef]
- Bae, M.-J.; Kim, S.-J.; Ye, E.-J.; Nam, H.-S.; Park, E.-M. Antioxidant activity of tea made from Korean mountain-cultivated ginseng leaves and its influence on lipid metabolism. J. Korean Soc. Food Cult. 2009, 24, 77–83. [Google Scholar]
- Lee, S.M.; Bae, B.-S.; Park, H.-W.; Ahn, N.-G.; Cho, B.-G.; Cho, Y.-L.; Kwak, Y.-S. Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition. J. Ginseng Res. 2015, 39, 384–391. [Google Scholar] [CrossRef]
- Hoseney, R.C. Principles of Cereal Science and Technology; American Association of Cereal Chemists (AACC): Saint Paul, MN, USA, 1994. [Google Scholar]
- Mariotti, M.; Alamprese, C.; Pagani, M.; Lucisano, M. Effect of puffing on ultrastructure and physical characteristics of cereal grains and flours. J. Cereal Sci. 2006, 43, 47–56. [Google Scholar] [CrossRef]
- Kim, J.-H.; Ahn, S.-C.; Choi, S.-W.; Hur, N.-Y.; Kim, B.-Y.; Baik, M.-Y. Changes in effective components of ginseng by puffing. Appl. Biol. Chem. 2008, 51, 188–193. [Google Scholar]
- An, Y.-E.; Ahn, S.-C.; Yang, D.-C.; Park, S.-J.; Kim, B.-Y.; Baik, M.-Y. Chemical conversion of ginsenosides in puffed red ginseng. LWT-Food Sci. Technol. 2011, 44, 370–374. [Google Scholar] [CrossRef]
- Kim, S.-T.; Jang, J.-H.; Kwon, J.-H.; Moon, K.-D. Changes in the chemical components of red and white ginseng after puffing. Korean J. Food Preserv. 2009, 16, 355–361. [Google Scholar]
- Mishra, G.; Joshi, D.; Panda, B.K. Popping and puffing of cereal grains: A review. J. Grain Process. Storage 2014, 1, 34–46. [Google Scholar]
- Lee, S.; Lee, J. Effects of oven-drying, roasting, and explosive puffing process on isoflavone distributions in soybeans. Food Chem. 2009, 112, 316–320. [Google Scholar] [CrossRef]
- Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 2000, 11, 340–346. [Google Scholar] [CrossRef]
- Kato, H.; Lee, I.E.; Van Chuyen, N.; Kim, S.B.; Hayase, F. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric. Biol. Chem. 1987, 51, 1333–1338. [Google Scholar]
- Kim, S.-B.; Do, J.-R.; Lee, Y.-W.; Gu, Y.-S.; Kim, C.-N.; Park, Y.-H. Nitrite-scavenging effects of roasted-barley extracts according to processing conditions. Korean J. Food Sci. Technol. 1990, 22, 748–752. [Google Scholar]
- Choi, Y.; Ban, I.; Lee, H.; Baik, M.Y.; Kim, W. Puffing as a Novel Process to Enhance the Antioxidant and Anti-Inflammatory Properties of Curcuma longa L. (Turmeric). Antioxidants 2019, 8, 506. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Kim, D.-O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Yoon, S.R.; Lee, G.D.; Park, J.H.; Lee, I.S.; Kwon, J.H. Ginsenoside composition and antiproliferative activities of explosively puffed ginseng (Panax ginseng CA Meyer). J. Food Sci. 2010, 75, C378–C382. [Google Scholar] [CrossRef]
- Helmes, S. Cancer prevention and therapeutics: Panax ginseng. Altern. Med. Rev. 2004, 9, 259–275. [Google Scholar]
- Do, J.; Lee, H.; Lee, S.; Jang, J.; Lee, S.; Sung, H. Colorimetric determination of acidic polysaccharide from Panax ginseng, its extraction condition and stability. Korean J. Ginseng Sci. 1993, 17, 139–144. [Google Scholar]
- Gui, Y.; Ryu, G.H. The effect of extrusion conditions on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng. J. Ginseng Res. 2013, 37, 219. [Google Scholar] [CrossRef]
- Do, J.; Lee, J.; Lee, S.; Sung, H. Preparation of red ginseng extract rich in acidic polysaccharide from red tail ginseng marc produced after extraction with 70 ethyl alcohol. Korean J. Ginseng Sci. 1996, 20, 60–64. [Google Scholar]
- Park, E.-K.; Shin, Y.-W.; Lee, H.-U.; Kim, S.-S.; Lee, Y.-C.; Lee, B.-Y.; Kim, D.-H. Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin E2 biosyntheses of RAW264. 7 cells induced by lipopolysaccharide. Biol. Pharm. Bull. 2005, 28, 652–656. [Google Scholar] [CrossRef]
- Choo, M.-K.; Park, E.-K.; Han, M.J.; Kim, D.-H. Antiallergic activity of ginseng and its ginsenosides. Planta Med. 2003, 69, 518–522. [Google Scholar]
- Jung, J.; Lee, N.K.; Paik, H.D. Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products. Food Sci. Biotechnol. 2017, 26, 1155–1168. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Kim, Y.-J.; Jeon, J.-N.; Wang, C.; Min, J.-W.; Noh, H.-Y.; Yang, D.-C. Effect of white, red and black ginseng on physicochemical properties and ginsenosides. Plant Foods Hum. Nutr. 2015, 70, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xia, J.; Wang, C.-Z.; Zhang, J.-Q.; Ruan, C.-C.; Sun, G.-Z.; Yuan, C.-S. Remarkable impact of acidic ginsenosides and organic acids on ginsenoside transformation from fresh ginseng to red ginseng. J. Agric. Food Chem. 2016, 64, 5389–5399. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M. Thermal conversion pathways of ginsenoside in red ginseng processing. Nat. Prod. Sci. 2014, 20, 119–125. [Google Scholar]
- Kim, M.S.; Jeon, S.J.; Youn, S.J.; Lee, H.; Park, Y.J.; Kim, D.O.; Kim, B.Y.; Kim, W.; Baik, M.Y. Enhancement of Minor Ginsenosides Contents and Antioxidant Capacity of American and Canadian Ginsengs (Panax quinquefolius) by Puffing. Antioxidants 2019, 8, 527. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
Moisture Contents (%) | Puffing Pressure (kPa) | Extraction Yield (%) | Crude Saponin Content (mg/g Dried Ginseng) | Acidic Polysaccharide Contents (mg Galacturonic Acid Equivalent/g Dry Ginseng) |
---|---|---|---|---|
Control | 23.80 ± 0.40 a* | 73.22 ± 7.42 ABCD | 2.26 ± 0.75 h | |
14% | 686 | 21.72 ± 1.15 bc | 70.28 ± 3.53 BCD | 12.87 ± 1.44 g |
784 | 20.92 ± 1.79 bcd | 57.57 ± 7.63 D | 16.77 ± 2.50 bc | |
882 | 18.67 ± 1.58 ef | 69.73 ± 4.92 BCD | 15.35 ± 1.96 de | |
980 | 20.01 ± 1.66 cdef | 70.60 ± 6.51 BCD | 15.81 ± 1.95 cde | |
10% | 686 | 20.05 ± 2.59 cdef | 73.05 ± 4.98 ABCD | 14.94 ± 0.57 ef |
784 | 20.32 ± 2.48 bcde | 60.28 ± 3.83 CD | 17.58 ± 0.95 b | |
882 | 18.42 ± 1.51 f | 68.42 ± 3.78 BCD | 13.26 ± 1.51 g | |
980 | 19.54 ± 1.33 def | 61.92 ± 3.06 CD | 16.22 ± 0.75 cd | |
8% | 686 | 21.87 ± 1.01 b | 89.45 ± 7.66 A | 12.76 ± 2.10 g |
784 | 20.31 ± 0.72 bcde | 76.70 ± 7.50 ABC | 18.97 ± 2.01 a | |
882 | 19.17 ± 0.85 def | 83.90 ± 8.76 AB | 13.94 ± 1.07 fg | |
980 | 18.59 ± 3.97 ef | 69.63 ± 5.34 BCD | 17.43 ± 0.64 b |
DPPH | ABTS | TFC | TPC | L | a | b | ∆E | MRPs | |
---|---|---|---|---|---|---|---|---|---|
DPPH | 0.960 *** | 0.465 | 0.989 *** | −0.963 *** | −0.677 * | −0.807 *** | 0.953 *** | 0.967 *** | |
ABTS | 0.613 * | 0.959 *** | −0.968 *** | −0.728 *** | −0.852 *** | 0.963 *** | 0.957 *** | ||
TFC | 0.467 | −0.603 * | −0.728 *** | −0.723 ** | 0.627 * | 0.583 * | |||
TPC | −0.961 *** | −0.618 * | −0.768 *** | 0.946 *** | 0.961 *** | ||||
L | 0.795 *** | −0.906 *** | −0.998 *** | −0.987 *** | |||||
a | 0.974 *** | −0.828 *** | −0.776 ** | ||||||
b | −0.929 *** | −0.892 *** | |||||||
∆E | 0.985 *** | ||||||||
MRPs |
Moisture Contents (%) | Puffing Pressure (kPa) | L | a | b | ∆E | MRPS ** (Absorbance at 420 nm) |
---|---|---|---|---|---|---|
Control | 68.32 ± 1.56 a* | 9.33 ± 0.95 a | 25.91 ± 1.82 a* | 0.05 ± 0.02 H | ||
14% | 686 | 36.53 ± 1.61 b | 8.32 ± 0.92 b | 19.23 ± 1.69 b | 32.49529 | 0.61 ± 0.04 G |
784 | 30.01 ± 1.16 d | 6.94 ± 0.85 c | 14.64 ± 1.96 d | 40.00235 | 0.70 ± 0.02 F | |
882 | 25.48 ± 3.91 e | 5.35 ± 1.43 de | 9.94 ± 4.16 ef | 45.88677 | 0.77 ± 0.08 DE | |
980 | 22.32 ± 2.05 f | 4.46 ± 0.58 f | 7.27 ± 1.52 g | 49.87165 | 0.94 ± 0.01 A | |
10% | 686 | 32.64 ± 2.79 c | 7.88 ± 1.10 b | 16.68 ± 2.92 cd | 36.88232 | 0.69 ± 0.02 F |
784 | 32.26 ± 0.76 c | 7.71 ± 0.40 bc | 16.51 ± 0.39 cd | 37.29976 | 0.74 ± 0.02 EF | |
882 | 25.18 ± 2.68 e | 5.46 ± 0.68 de | 10.63 ± 2.24 e | 45.93355 | 0.85 ± 0.02 BC | |
980 | 22.98 ± 1.32 f | 4.70 ± 0.45 ef | 8.39 ± 1.01 fg | 48.82999 | 0.90 ± 0.05 AB | |
8% | 686 | 34.71 ± 3.19 b | 8.27 ± 0.65 b | 17.85 ± 1.91 bc | 34.57783 | 0.72 ± 0.03 F |
784 | 29.91 ± 1.10 d | 7.08 ± 0.30 c | 14.77 ± 0.88 d | 40.05783 | 0.80 ± 0.03 D | |
882 | 26.11 ± 1.15 e | 5.84 ± 0.32 d | 11.68 ± 0.79 e | 44.6799 | 0.82 ± 0.01 CD | |
980 | 22.42 ± 1.89 f | 4.43 ± 0.81 f | 7.99 ± 1.95 fg | 49.51781 | 0.87 ± 0.10 B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, G.-S.; Shin, J.-S.; Kim, W.; Baik, M.-Y. Increases in Ginsenoside Rg3, Compound K, and Antioxidant Activity of Cultivated Wild Panax Ginseng (CWPG) by Puffing. Foods 2022, 11, 2936. https://doi.org/10.3390/foods11192936
Choi G-S, Shin J-S, Kim W, Baik M-Y. Increases in Ginsenoside Rg3, Compound K, and Antioxidant Activity of Cultivated Wild Panax Ginseng (CWPG) by Puffing. Foods. 2022; 11(19):2936. https://doi.org/10.3390/foods11192936
Chicago/Turabian StyleChoi, Gwang-Su, Jae-Sung Shin, Wooki Kim, and Moo-Yeol Baik. 2022. "Increases in Ginsenoside Rg3, Compound K, and Antioxidant Activity of Cultivated Wild Panax Ginseng (CWPG) by Puffing" Foods 11, no. 19: 2936. https://doi.org/10.3390/foods11192936
APA StyleChoi, G.-S., Shin, J.-S., Kim, W., & Baik, M.-Y. (2022). Increases in Ginsenoside Rg3, Compound K, and Antioxidant Activity of Cultivated Wild Panax Ginseng (CWPG) by Puffing. Foods, 11(19), 2936. https://doi.org/10.3390/foods11192936