Effect of Bioprocessing on Techno-Functional Properties of Climate-Resilient African Crops, Sorghum and Cowpea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Enzymes and Microbial Strains
2.3. Bioprocessing Treatments
2.4. Chemical Characterisation of the Bioprocessed Samples
2.4.1. Protein Analysis
2.4.2. Carbohydrate Analysis
2.4.3. Phytate Analysis
2.5. Microbiological Analyses
2.6. Moisture Sorption Behaviour of Native and Treated Flours
2.7. Thermal Analysis of Native and Treated Flours
2.8. Rapid Viscous Analysis (RVA) of Native and Treated Flours
2.9. Water-Binding Capacity and Soluble Solids of Native and Treated Flours
2.10. Assessment of Flour Functionality in Tin Bread Application
2.11. Bread Quality Evaluation
2.12. Statistical Data Analysis
3. Results and Discussion
3.1. Effects of Treatments on Chemical Characteristics
3.2. Effect of Treatments on Techno-Functional Properties
3.3. Principal Component Analysis
3.4. Breadmaking
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mason, N.M.; Jayne, T.S.; Shiferaw, B. Africa’s Rising Demand for Wheat: Trends, Drivers, and Policy Implications. Dev. Policy Rev. 2015, 33, 581–613. [Google Scholar] [CrossRef]
- Shew, A.M.; Tack, J.B.; Nalley, L.L.; Chaminuka, P. Yield Reduction under Climate Warming Varies among Wheat Cultivars in South Africa. Nat. Commun. 2020, 11, 4408. [Google Scholar] [CrossRef] [PubMed]
- Noort, M.W.J.; Renzetti, S.; Linderhof, V.; du Rand, G.E.; Marx-Pienaar, N.J.M.M.; de Kock, H.L.; Magano, N.; Taylor, J.R.N. Towards Sustainable Shifts to Healthy Diets and Food Security in Sub-Saharan Africa with Climate-Resilient Crops in Bread-Type Products: A Food System Analysis. Foods 2022, 11, 135. [Google Scholar] [CrossRef]
- Chimonyo, V.G.P.; Modi, A.T.; Mabhaudhi, T. Water Use and Productivity of a Sorghum-Cowpea-Bottle Gourd Intercrop System. Agric. Water Manag. 2016, 165, 82–96. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations FAOSTAT Database. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 22 August 2022).
- Arendt, E.; Zannini, E. 8 Sorghum. In Cereal Grains for the Food and Beverage Industries; Woodhead Publishing Ltd.: Sawston, UK, 2013; pp. 285–311. ISBN 9780857098924. [Google Scholar]
- Asif, M.; Rooney, L.W.; Ali, R.; Riaz, M.N. Application and Opportunities of Pulses in Food System: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 1168–1179. [Google Scholar] [CrossRef]
- Belton, P.S.; Delgadillo, I.; Halford, N.G.; Shewry, P.R. Kafirin Structure and Functionality. J. Cereal Sci. 2006, 44, 272–286. [Google Scholar] [CrossRef]
- Hamaker, B.R.; Bugusu, B.A. Overview: Sorghum Proteins and Food Quality. In Workshop on the Proteins of Sorghum and Millets: Enhancing Nutritional and Functional Properties for Africa; Department of Food Science, Purdue University and the INTSORMIL CRSP: West Lafayette, IN, USA, 2003. [Google Scholar]
- Elkhalifa, A.E.O.; Bernhardt, R.; Bonomi, F.; Iametti, S.; Pagani, M.A.; Zardi, M. Fermentation Modifies Protein/Protein and Protein/Starch Interactions in Sorghum Dough. Eur. Food Res. Technol. 2006, 222, 559–564. [Google Scholar] [CrossRef]
- Wong, J.H.; Lau, T.; Cai, N.; Singh, J.; Pedersen, J.F.; Vensel, W.H.; Hurkman, W.J.; Wilson, J.D.; Lemaux, P.G.; Buchanan, B.B. Digestibility of Protein and Starch from Sorghum (Sorghum bicolor) Is Linked to Biochemical and Structural Features of Grain Endosperm. J. Cereal Sci. 2009, 49, 73–82. [Google Scholar] [CrossRef]
- Duodu, K.G.; Taylor, J.R.N.; Belton, P.S.; Hamaker, B.R. Factors Affecting Sorghum Protein Digestibility. J. Cereal Sci. 2003, 38, 117–131. [Google Scholar] [CrossRef]
- Verbruggen, M.A.; Spronk, B.A.; Schols, H.A.; Beldman, G.; Voragen, A.G.J.; Thomas, J.R.; Kamerling, J.P.; Vliegenthart, J.F.G. Structures of Enzymically Derived Oligosaccharides from Sorghum Glucuronoarabinoxylan. Carbohydr. Res. 1998, 306, 265–274. [Google Scholar] [CrossRef]
- Renzetti, S.; Rosell, C.M. Role of Enzymes in Improving the Functionality of Proteins in Non-Wheat Dough Systems. J. Cereal Sci. 2016, 67, 35–45. [Google Scholar] [CrossRef]
- Schober, T.J.; Bean, S.R.; Boyle, D.L. Gluten-Free Sorghum Bread Improved by Sourdough Fermentation: Biochemical, Rheological, and Microstructural Background. J. Agric. Food Chem. 2007, 55, 5137–5146. [Google Scholar] [CrossRef]
- Renzetti, S.; Arendt, E.K. Effects of Oxidase and Protease Treatments on the Breadmaking Functionality of a Range of Gluten-Free Flours. Eur. Food Res. Technol. 2009, 229, 307–317. [Google Scholar] [CrossRef]
- Uwaegbute, A.C.; Iroegbu, C.U.; Eke, O. Chemical and Sensory Evaluation of Germinated Cowpeas (Vigna unguiculata) and Their Products. Food Chem. 2000, 68, 141–146. [Google Scholar] [CrossRef]
- Giami, S.Y. Effect of Processing on the Proximate Composition and Functional Properties of Cowpea (Vigna unguiculata) Flour. Food Chem. 1993, 47, 153–158. [Google Scholar] [CrossRef]
- Segura-Campos, M.R.; Espinosa-García, L.; Chel-Guerrero, L.A.; Betancur-Ancona, D.A. Effect of Enzymatic Hydrolysis on Solubility, Hydrophobicity, and In Vivo Digestibility in Cowpea (Vigna unguiculata). Int. J. Food Prop. 2012, 15, 770–780. [Google Scholar] [CrossRef]
- Arte, E.; Katina, K.; Holopainen-Mantila, U.; Nordlund, E. Effect of Hydrolyzing Enzymes on Wheat Bran Cell Wall Integrity and Protein Solubility. Cereal Chem. 2016, 93, 162–171. [Google Scholar] [CrossRef]
- Gama, R.; Van Dyk, J.S.; Pletschke, B.I. Optimisation of Enzymatic Hydrolysis of Apple Pomace for Production of Biofuel and Biorefinery Chemicals Using Commercial Enzymes. 3 Biotech 2015, 5, 1075–1087. [Google Scholar] [CrossRef]
- Hartikainen, K.; Poutanen, K.; Katina, K. Influence of Bioprocessed Wheat Bran on the Physical and Chemical Properties of Dough and on Wheat Bread Texture. Cereal Chem. 2014, 91, 115–123. [Google Scholar] [CrossRef]
- Šebela, M.; Řehulka, P.; Kábrt, J.; Řehulková, H.; Oždian, T.; Raus, M.; Franc, V.; Chmelík, J. Identification of N-Glycosylation in Prolyl Endoprotease from Aspergillus Niger and Evaluation of the Enzyme for Its Possible Application in Proteomics. J. Mass Spectrom. 2009, 44, 1587–1595. [Google Scholar] [CrossRef]
- Spellman, D.; O’Cuinn, G.; FitzGerald, R.J. Bitterness in Bacillus Proteinase Hydrolysates of Whey Proteins. Food Chem. 2009, 114, 440–446. [Google Scholar] [CrossRef]
- Renzetti, S.; Theunissen, M.; Horrevorts, K. A Systematic Comparison of the Intrinsic Properties of Wheat and Oat Bran Fractions and Their Effects on Dough and Bread Properties: Elucidation of Chemical Mechanisms, Water Binding, and Steric Hindrance. Foods 2021, 10, 2311. [Google Scholar] [CrossRef] [PubMed]
- Saeman, J.F.; Moore, W.E.; Mitchell, R.A.; Millett, M.A. Techniques for the Determination of Pulp Constituents by Quantitiative Paper Chromatography. Tappi J. 1954, 37, 336–343. [Google Scholar]
- Gilbert-López, B.; Mendiola, J.A.; Fontecha, J.; Van Den Broek, L.A.M.; Sijtsma, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E. Downstream Processing of Isochrysis Galbana: A Step towards Microalgal Biorefinery. Green Chem. 2015, 17, 4599–4609. [Google Scholar] [CrossRef]
- Vaintraub, I.A.; Lapteva, N.A. Colorimetric Determination of Phytate in Unpurified Extracts of Seeds and the Products of Their Processing. Anal. Biochem. 1988, 175, 227–230. [Google Scholar] [CrossRef]
- Erickson, D.P.; Renzetti, S.; Jurgens, A.; Campanella, O.H.; Hamaker, B.R. Modulating State Transition and Mechanical Properties of Viscoelastic Resins from Maize Zein through Interactions with Plasticizers and Co-Proteins. J. Cereal Sci. 2014, 60, 576–583. [Google Scholar] [CrossRef]
- Zanoletti, M.; Marti, A.; Marengo, M.; Iametti, S.; Pagani, M.A.; Renzetti, S. Understanding the Influence of Buckwheat Bran on Wheat Dough Baking Performance: Mechanistic Insights from Molecular and Material Science Approaches. Food Res. Int. 2017, 102, 728–737. [Google Scholar] [CrossRef]
- Renzetti, S.; Heetesonne, I.; Ngadze, R.T.; Linnemann, A.R. Dry Heating of Cowpea Flour below Biopolymer Melting Temperatures Improves the Physical Properties of Bread Made from Climate-Resilient Crops. Foods 2022, 11, 1554. [Google Scholar] [CrossRef]
- Santala, O.; Kiran, A.; Sozer, N.; Poutanen, K.; Nordlund, E. Enzymatic Modification and Particle Size Reduction of Wheat Bran Improves the Mechanical Properties and Structure of Bran-Enriched Expanded Extrudates. J. Cereal Sci. 2014, 60, 448–456. [Google Scholar] [CrossRef]
- Taylor, J.; Taylor, J.R.N. Alleviation of the Adverse Effect of Cooking on Sorghum Protein Digestibility through Fermentation in Traditional African Porridges. Int. J. Food Sci. Technol. 2002, 37, 129–137. [Google Scholar] [CrossRef]
- Rosa-Sibakov, N.; Re, M.; Karsma, A.; Laitila, A.; Nordlund, E. Phytic Acid Reduction by Bioprocessing as a Tool to Improve the In Vitro Digestibility of Faba Bean Protein. J. Agric. Food Chem. 2018, 66, 10394–10399. [Google Scholar] [CrossRef]
- Hu, X.Z.; Cheng, Y.Q.; Fan, J.F.; Lu, Z.H.; Yamaki, K.; Li, L. Effects of Drying Method on Physicochemical and Functional Properties of Soy Protein Isolates. J. Food Process. Preserv. 2010, 34, 520–540. [Google Scholar] [CrossRef]
- Oliete, B.; Yassine, S.A.; Cases, E.; Saurel, R. Drying Method Determines the Structure and the Solubility of Microfluidized Pea Globulin Aggregates. Food Res. Int. 2019, 119, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, E.; Villarán, M.C.; Aranguiz, N. Functional Properties of Faba Bean (Vicia faba) Protein Flour Dried by Spray Drying and Freeze Drying. J. Food Eng. 1998, 36, 303–310. [Google Scholar] [CrossRef]
- Yang, J.; Mocking-bode, H.C.M.; Van Den Hoek, I.A.F.; Theunissen, M.; Voudouris, P.; Meinders, M.B.J.; Sagis, L.M.C. The Impact of Heating and Freeze or Spray Drying on the Interface and Foam Stabilising Properties of Pea Protein Extracts: Explained by Aggregation and Protein Composition. Food Hydrocoll. 2022, 133, 107913. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Coda, R.; Wang, Y.; Verni, M.; Kajala, I.; Katina, K.; Laitila, A. Characterization of Indigenous Pediococcus pentosaceus, Leuconostoc kimchii, Weissella cibaria and Weissella confusa for Faba Bean Bioprocessing. Int. J. Food Microbiol. 2019, 302, 24–34. [Google Scholar] [CrossRef]
- Chew-Guevara, A.A.; Pérez-Carrillo, E.; Othon Serna-Saldívar, S.R.; De La Rosa-Millán, J. Effect of Decortication and Protease Treatment on Physicochemical and Functional Characteristics of Red Sorghum (Sorghum bicolor) and Yellow Maize (Zea maiz) Starches. Starch/Staerke 2016, 68, 1–8. [Google Scholar] [CrossRef]
- Lu, J.Y.; Sanni-Osomo, E. A Flour from Fermented Cowpeas: Properties, Composition and Acceptability. J. Food Process. Preserv. 1988, 12, 197–206. [Google Scholar] [CrossRef]
- Li, C.; Chen, X.; Jin, Z.; Gu, Z.; Rao, J.; Chen, B. Physicochemical Property Changes and Aroma Differences of Fermented Yellow Pea Flours: Role of: Lactobacilli and Fermentation Time. Food Funct. 2021, 12, 6950–6963. [Google Scholar] [CrossRef]
- Houben, A.; Höchstötter, A.; Becker, T. Possibilities to Increase the Quality in Gluten-Free Bread Production: An Overview. Eur. Food Res. Technol. 2012, 235, 195–208. [Google Scholar] [CrossRef]
- Al-Muhtaseb, A.H.; McMinn, W.A.M.; Magee, T.R.A. Moisture Sorption Isotherm Characteristics of Food Products: A Review. Food Bioprod. Process. Trans. Inst. Chem. Eng. Part C 2002, 80, 118–128. [Google Scholar] [CrossRef]
- Lasekan, O.O.; Lasekan, W.O. Moisture Sorption and the Degree of Starch Polymer Degradation on Flours of Popped and Malted Sorghum (Sorghum bicolor). J. Cereal Sci. 2000, 31, 55–61. [Google Scholar] [CrossRef]
- Renzetti, S.; van der Sman, R.G.M. Food Texture Design in Sugar Reduced Cakes: Predicting Batters Rheology and Physical Properties of Cakes from Physicochemical Principles. Food Hydrocoll. 2022, 131, 107795. [Google Scholar] [CrossRef]
- Błaszczak, W.; Doblado, R.; Frias, J.; Vidal-Valverde, C.; Sadowska, J.; Fornal, J. Microstructural and Biochemical Changes in Raw and Germinated Cowpea Seeds upon High-Pressure Treatment. Food Res. Int. 2007, 40, 415–423. [Google Scholar] [CrossRef]
- Adjei-Fremah, S.; Worku, M.; De Erive, M.O.; He, F.; Wang, T.; Chen, G. Effect of Microfluidization on Microstructure, Protein Profile and Physicochemical Properties of Whole Cowpea Flours. Innov. Food Sci. Emerg. Technol. 2019, 57, 102207. [Google Scholar] [CrossRef]
- Nionelli, L.; Rizzello, C.G. Sourdough-Based Biotechnologies for the Production of Gluten-Free Foods. Foods 2016, 5, 65. [Google Scholar] [CrossRef] [Green Version]
Sample Code | Crop | Enzyme(s) and Microbes Tested | Info on Bioprocessing Method | Enzyme Dosage (%) |
---|---|---|---|---|
SRef | Sorghum | None | Raw material | - |
SCtrl | Sorghum | None | Control for 4 h 50 °C treatment | - |
SEnzP1_Hi | Sorghum | Brewer’s Clarex | Protease | 0.036 |
SEnzP1_Lo | Sorghum | Brewer’s Clarex | Protease | 0.01 |
SEnzP2_0.5 | Sorghum | FlavourSEB | Protease | 0.5 |
SEnzP3 | Sorghum | Corolase | Protease | 1 |
SEnzP4 | Sorghum | Alcalase | Alkaline protease | 1 |
SAlc | Sorghum | Alkaline control | Alkaline control | - |
SEnzF1 | Sorghum | Celluclast BG | Fibre degrading | 1 |
SEnzF2 | Sorghum | Veron CP | Fibre degrading | 1 |
SEnzF3_Lo | Sorghum | Viscozyme L | Fibre degrading | 0.1 |
SEnzF3_Hi | Sorghum | Viscozyme L | Fibre degrading | 1 |
SEnzF2 + 3 | Sorghum | Veron CP + Viscozyme L | Fibre degrading | 1 + 1 |
SEnzA | Sorghum | BAN480L | α-Amylase | 0.2 |
SEnzP2 + F3 | Sorghum | FlavourSEB + Viscozyme | Protease + Fibre degrading | 0.5 + 1 |
SEnzP2 + Ph | Sorghum | Flavourseb + Ultrabio phytase | Protease + Phytase | 0.5 + 1 |
SEnzP1 + A | Sorghum | Flavourseb + BAN480L | Protease + α-Amylase | 0.5 + 0.2 |
SChem | Sorghum | Chemical acidification | Control for acidic conditions | - |
SLab1 | Sorghum | L. plantarum | LAB fermentation | - |
SLab2 | Sorghum | L. pseudomesenteroides | LAB fermentation | - |
SLab3 | Sorghum | P. pentosaceus | LAB fermentation | - |
SLab1 + 3 | Sorghum | L. plantarum + P. pentosaceus | LAB fermentation | - |
SLab + EnzMix | Sorghum | L. plantarum + P. pentosaceus + Viscozyme + Ultrabio + Corolase | LAB fermentation + Fibre degrading + Phytase + Protease | 1 + 1 + 1 |
CRef | Cowpea | None | Control (no treatment) | - |
CCtrl | Cowpea | None | Control for 4 h 50 °C treatment | - |
CEnzP1 | Cowpea | FlavourSEB | Protease | 0.5 |
CEnzP2 | Cowpea | Corolase | Protease | 1 |
CEnzA | Cowpea | BAN480L | Amylase | 0.2 |
CEnzF1 | Cowpea | Viscozyme | Fibre degrading | 1% |
CEnzP1 + F1 | Cowpea | FlavourSEB + Viscozyme | Protease + Fibre degrading | 0.5 + 1 |
CEnzP1 + Ph | Cowpea | FlavourSEB + Ultrabio Phytase | Protease + Phytase | 0.5 + 1 |
CEnzP1 + A | Cowpea | FlavourSEB + BAN480L | Protease + Amylase | 0.5 + 0.2 |
CChem | Cowpea | Chemically acidified | Control for acidic conditions | - |
CLab1 | Cowpea | L. plantarum | LAB fermentation | - |
CLab2 | Cowpea | L. pseudomesenteroides | LAB fermentation | - |
CLab3 | Cowpea | P. pentosaceus | LAB fermentation | - |
CLab1 + L2 | Cowpea | L. plantarum + P. pentosaceus | LAB fermentation | - |
CLab + Enz | Cowpea | L. plantarum + P. pentosaceus + Viscozyme + UltraBio + Corolase | LAB fermentation + Fibre degrading + Phytase + Protease | 1 + 1 + 1 |
Free Sugars (g/100 g) | TFA Sugars (g/100 g) | H2SO4 Hydrolyzed Sugars (g/100 g) | Protein Solubility (% of Total Protein) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Code | Glucose | Fructose | Total FS | Galactose | Glucose | Total TFA | TFA-FS | Glucose | Total SO4 | SO4-TFA | pH (Native) 6.3 | pH 3 |
SRef | 0.67 bc | 0.55 de | 1.21 bc | <0.1 a | 0.95 bc | 0.95 bc | −0.27 a | 0.95 b | 0.95 b | 0.00 ab | 6.86 cdef | 6.3 cd |
SCtrl | 0.68 bc | 0.51 bc | 1.19 b | <0.1 a | 0.91 b | 0.91 b | −0.28 a | 0.97 b | 0.97 b | 0.06 ab | 6.24 abcde | 6.39 de |
SEnzP1_Hi | 0.66 b | 0.53 bcd | 1.19 b | 0.102 b | 1.00 bcd | 1.11 cd | −0.08 abc | 0.98 b | 0.98 b | −0.13 ab | 7.06 def | 6.63 defg |
SEnzP1_Lo | 0.76 c | 0.56 def | 1.32 c | 0.11 bc | 1.17 d | 1.28 d | −0.04 bcd | 1.00 b | 1.00 b | −0.28 a | 7.14 def | 6.93 defg |
SEnzP2_0.5 | 1.58 g | 0.57 ef | 2.15 f | <0.1 a | 2.68 h | 2.68 h | 0.52 g | 3.04 e | 3.04 e | 0.36 bc | 8.55 ghi | 8.91 j |
SEnzP3 | na | na | na | na | na | na | na | na | na | na | 9.68 ijk | 9.61 kl |
SEnzP4 | na | na | na | na | na | na | na | na | na | na | 42.71 l | 42.17 n |
SAlc | na | na | na | na | na | na | na | na | na | na | 8.08 fgh | 6.81 defg |
SEnzF1 | 1.27 f | 0.51 bc | 1.78 e | 0.12 c | 2.00 g | 2.12 g | 0.34 fg | 2.01 d | 2.01 d | −0.11 ab | 10.93 k | 10.12 l |
SEnzF2 | 0.95 de | 0.53 bcd | 1.48 d | 0.11 bc | 1.49 e | 1.61 e | 0.13 de | 1.39 bc | 1.39 bc | −0.21 a | 7.39 efg | 6.93 defg |
SEnzF3_Lo | 1.26 f | 0.54 cde | 1.79 e | 0.11 bc | 1.79 f | 1.90 f | 0.10 cde | 1.68 cd | 1.68 cd | −0.22 a | 7.21 def | 7.05 fgh |
SEnzF3_Hi | 2.39 j | 0.64 g | 3.03 h | 0.11 bc | 3.07 ij | 3.18 j | 0.15 def | 3.01 e | 3.01 e | −0.17 a | 7.37 efg | 7.24 ghi |
SEnzF2 + 3 | 2.42 j | 0.59 f | 3.01 h | 0.11 bc | 3.12 ij | 3.24 j | 0.22 ef | 3.34 ef | 3.34 ef | 0.11 ab | 7.93 fgh | 7.67 hi |
SEnzA | 0.98 e | 0.50 b | 1.48 d | <0.1 a | 1.56 ef | 1.56 e | 0.08 cde | 1.73 cd | 1.73 cd | 0.17 abc | 6.6 bcde | 7 efg |
SEnzP2 + F3 | 2.20 i | 0.75 i | 2.92 h | 0.10 b | 4.18 k | 4.28 k | 1.36 i | 4.93 g | 4.93 g | 0.65 c | 7.49 efg | 7.74 i |
SEnzP2 + Ph | 1.62 gh | 0.54 cde | 2.15 f | <0.1 a | 2.98 i | 2.99 i | 0.83 h | 3.05 e | 3.05 e | 0.06 ab | 8.94 hij | 9.37 jk |
SEnzP1 + A | 1.68 h | 0.67 h | 2.35 g | 0.10 b | 3.25 j | 3.35 j | 1.00 h | 3.57 f | 3.57 f | 0.22 abc | 6.02 abcd | 6.48 def |
SChem | 0.86 d | 0.59 f | 1.45 d | 0.10 b | 1.13 cd | 1.23 d | −0.22 ab | 1.20 b | 1.20 b | −0.03 ab | 7.47 efg | 7.07 fgh |
SLab1 | <0.1 a | <0.1 a | 0 a | <0.1 a | 0.14 a | 0.14 a | 0.14 def | 0.16 a | 0.16 a | 0.02 ab | 5.69 abc | 5.57 b |
SLab2 | <0.1 a | <0.1 a | 0 a | <0.1 a | 0.11 a | 0.11 a | 0.11 cde | 0.13 a | 0.13 a | 0.02 ab | 6.48 bcde | 5.68 bc |
SLab3 | <0.1 a | <0.1 a | 0 a | <0.1 a | 0.15 a | 0.15 a | 0.15 def | 0.17 a | 0.17 a | 0.02 ab | 5.51 ab | 5.19 b |
SLab1 + 3 | na | na | na | na | na | na | na | na | na | na | 5.01 a | 4.69 a |
SLab + EnzMix | na | na | na | na | na | na | na | na | na | na | 10.14 jk | 10.87 m |
Sample Code | Free Sugars (g/100 g) | H2SO4 Hydrolyzed Sugars (g/100 g) | Protein Solubility (% of Total Protein) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Arabinose | Galactose | Glucose | Fructose | Sucrose | Total FS | Arabinose | Galactose | Glucose | Total SO4 | pH (Native) 6.3 | pH 4 | |
CRef | <0.1 a | 0.57 a | 0.1 a | 0.78 c | 1.28 b | 2.93 b | 0.1 abc | 2.73 a | 2.45 b | 5.68 bc | 78.62 e | 15.80 a |
CCtrl | <0.1 a | 0.58 a | 1.24 e | 1.72 ef | <0.1 a | 3.54 d | 0.1 ab | 2.89 a | 3.82 cd | 6.71 cd | 37.30 c | 15.80 a |
CEnzP1 | <0.1 a | 0.58 a | 1.60 f | 1.72 ef | <0.1 a | 3.89 e | <0.1 a | 2.88 a | 4.50 cde | 7.38 cd | 58.97 e | 21.50 bcd |
CEnzP2 | na | na | na | na | <0.1 a | na | na | na | na | na | 51.93 d | 40.33 g |
CEnzA | <0.1 a | 0.56 a | 1.81 h | 1.80 g | <0.1 a | 4.16 f | 0.33 e | 2.65 a | 10.92 g | 13.90 e | 34.38 de | 17.28 ab |
CEnzF1 | na | na | na | na | <0.1 a | na | na | na | na | na | 32.45 abc | 18.3 abc |
CEnzP1 + F1 | <0.1 a | 0.63 b | 2.01 i | 1.75 fg | <0.1 a | 4.40 g | <0.1 a | 2.62 a | 4.98 e | 7.60 d | 60.38 e | 22.08 cd |
CEnzP1 + Ph | <0.1 a | 0.58 a | 1.69 g | 1.73 efg | <0.1 a | 4.01 e | <0.1 a | 2.85 a | 4.65 de | 7.50 d | 48.57 d | 43.84 g |
CEnzP1 + A | <0.1 a | 0.58 ab | 2.26 j | 1.72 ef | <0.1 a | 4.56 h | 0.28 de | 2.54 a | 9.82 f | 12.64 e | 60.68 e | 22.90 de |
CChem | 0.16 d | 1.16 c | 1.59 f | 1.66 e | <0.1 a | 4.57 h | 0.16 bcd | 2.86 a | 3.53 c | 6.55 cd | 32.42 abc | 29.02 f |
CLab1 | 0.17 d | 1.14 c | 0.39 c | 0.23 a | <0.1 a | 1.93 a | 0.18 cd | 2.69 a | 1.28 a | 4.15 ab | 29.16 ab | 24.30 de |
CLab2 | 0.11 b | 1.14 c | 0.27 b | 0.38 b | <0.1 a | 1.89 a | 0.11 abc | 2.26 a | 0.91 a | 3.28 a | 30.58 ab | 26.94 ef |
CLab3 | 0.13 c | 1.18 c | 0.44 d | 1.35 d | <0.1 a | 3.10 c | <0.1 a | 2.57 a | 1.40 a | 3.97 ab | 27.58 a | 24.36 de |
CLab1 + L2 | na | na | na | na | <0.1 a | na | na | na | na | na | 26.74 a | 24.43 de |
CLab + Enz | na | na | na | na | <0.1 a | na | na | na | na | na | 31.53 abc | 44.06 g |
Biopolymers’ Melting Temperature (DSC) | WBC | MC Sorption at 0.95 aw | Soluble Solids | Viscosity (cP) | Tpasting | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample Code | Onset °C | Peak °C | g Water/g dm Pellet | g Water/g dm | (% dm) | Peak | Hold | Final | Set Back | Breakdown | °C |
SCtrl | 65.0 f | 73.8 abcde | 1.87 abcd | 0.28 | 3.2 abcd | 504 def | 494 defg | 952 j | 458 hi | 10 ab | 93.5 cd |
SEnzP1_Hi | 64.6 cdef | 73.5 abc | 2.11 hi | 0.28 | 3.4 bcd | 569.5 jk | 563 i | 912 hij | 349 ef | 6.5 ab | 92.2 ab |
SEnzP1_Lo | 64.6 cdef | 73.5 abc | 2.10 hi | 0.28 | 3.5 bcde | 558.5 hijk | 551.5 hi | 891.5 ghi | 340 ef | 7 ab | 93.5 cd |
SEnzP2_0.5 | 65.1 f | 73.8 abcde | 1.83 ab | 0.30 | 5.0 ghi | 571.5 k | 562 i | 1043.5 k | 481.5 i | 9.5 ab | 93.9 de |
SEnzP3 | 64.6 cdef | 73.3 a | 2.04 gh | 0.32 | 3.1 abcd | 567.5 jk | 561 i | 1134 l | 573 j | 6.5 ab | 93.7 cd |
SEnzP4 | 64.2 abcde | 74.8 h | 1.89 abcdef | 0.39 | 6.0 ij | 612 l | 545.5 hi | 764 cd | 218.5 b | 66.5 h | 95.5 f |
SAlc | 65.2 f | 74.6 fgh | 2.18 i | 0.34 | 3.3 abcde | 625 l | 567 i | 733.5 c | 166.5 a | 58 h | 94.6 ef |
SEnzF1 | 65.2 f | 74.3 efgh | 2.02 fgh | 0.30 | 4.6 fgh | 507 def | 495 defg | 848 efg | 353 ef | 12 abc | 93.7 cd |
SEnzF2 | 64.6 cdef | 73.8 abcde | 1.99 defgh | 0.28 | 3.5 cdef | 563.5 ijk | 560 i | 944.5 ij | 384.5 fg | 3.5 a | 93.5 cd |
SEnzF3_Lo | 65.1 f | 74.0 bcdef | 2.04 gh | 0.29 | 3.9 defg | 525 efghi | 517 fgh | 866.5 fgh | 349.5 ef | 8 ab | 93.5 cd |
SEnzF3_Hi | 64.9 def | 73.7 abcde | 1.98 defgh | 0.31 | 4.7 gh | 491 def | 481.5 def | 799.5 de | 318 de | 9.5 ab | 93.9 de |
SEnzF2 + 3 | 64.9 ef | 73.8 abcde | 1.98 defgh | 0.30 | 4.7 gh | 489 de | 481 de | 821.5 ef | 340.5 ef | 8 ab | 93.9 de |
SEnzA | 64.8 def | 73.7 abcde | 1.88 abcde | 0.28 | 4.4 efg | 325.5 a | 311.5 b | 583 ab | 271.5 cd | 14 bcd | 92.5 b |
SEnzP2 + F3 | 65.1 f | 74.2 defgh | 1.85 abcd | 0.33 | 6.6 j | 529.5 fghij | 520.5 gh | 864 fgh | 343.5 ef | 9 ab | 94.6 ef |
SEnzP2 + Ph | 65.2 f | 74.4 efgh | 1.81 ab | 0.30 | 4.8 gh | 550.5 ghijk | 544 h | 1115.5 l | 571.5 j | 6.5 ab | 93.5 cd |
SEnzP1 + A | 65.0 f | 74.1 cdefg | 1.93 bcdefg | 0.31 | 5.7 hij | 425 c | 392 c | 636 b | 244 bc | 33 fg | 92.8 bc |
SChem | 63.8 ab | 73.6 abcd | 1.96 cdefg | 0.30 | 3.2 abcd | 482.5 d | 462 d | 881 gh | 419 gh | 20.5 cde | 91.5 a |
SLab1 | 64.2 abcd | 73.9 abcde | 1.82 ab | 0.28 | 2.4 ab | 514 defg | 485 defg | 849 efg | 364 ef | 29 ef | 91.4 a |
SLab2 | 63.8 a | 73.7 abcd | 1.86 abcd | 0.28 | 2.3 a | 523 efgh | 516.5 efgh | 874 fgh | 357.5 ef | 6.5 ab | 91.4 a |
SLab3 | 64.0 abc | 73.9 abcde | 1.93 bcdefg | 0.28 | 2.7 abc | 497.5 def | 474 d | 802.5 de | 328.5 e | 23.5 def | 92.3 ab |
SLab1 + 3 | 64.2 abcde | 73.7 abcde | 1.80 ab | 0.30 | 2.7 abc | 438 c | 398 c | 724.5 c | 326.5 e | 40 g | 92.2 ab |
SLab + EnzMix | 64.0 abc | 74.7 gh | 1.76 a | 0.42 | 6.6 j | 370 b | 275.5 a | 528.5 a | 253 bc | 94.5 i | 92.2 ab |
Biopolymers’ Melting Temperature (DSC) | WBC | MC Sorption at 0.95 aw | Soluble Solids | Viscosity (cP) | Tpasting | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample Code | Onset °C | T Peak °C | g Water/g dm Pellet | g Water/g dm | (% dm) | Peak | Hold | Final | Set Back | Breakdown | °C |
CRef | 67.0 bcde | 78.5 abc | 3.21 c | 17 abc | 219 b | 215 bc | 362 ef | 147 f | 3.5 a | 86 c | |
CCtrl | 66.0 abc | 77.7 a | 3.21 c | 0.48 | 16 ab | 282 de | 277 gh | 397 g | 120 e | 4.5 ab | 92 e |
CEnzP1 | 65.9 ab | 79.5 def | 3.21 c | 0.56 | 22 de | 269 cd | 265 f | 374 f | 108 d | 3.5 a | 95 g |
CEnzP2 | 66.9 bcde | 78.7 abcd | 2.91 b | 0.68 | 21 bcde | 302 f | 279 gh | 361 ef | 82 b | 23.5 c | 94 f |
CEnzA | 66.2 abcd | 80.4 fg | 3.41 c | 0.56 | 21 bcde | 23.5 a | 14 a | 19 a | 5 a | 9.5 ab | 0 a |
CEnzF1 | 66.7 abcde | 78.4 abc | 2.85 b | 0.56 | 18 abcd | 292 ef | 285 h | 390 g | 105 d | 7 ab | 91 e |
CEnzP1 + F1 | 66.0 abc | 79.3 cde | 3.21 c | 0.58 | 21 cde | 260 c | 254 e | 335 d | 81 b | 6 ab | 95 g |
CEnzP1 + Ph | 66.0 abc | 79.1 bcd | 3.25 c | 0.56 | 16 ab | 280 de | 273 fg | 371 f | 98 c | 7 ab | 94 f |
CEnzP1 + A | 65.3 a | 80.8 g | 3.39 c | 0.62 | 24 e | 25.5 a | 15 a | 20 a | 5 a | 10.5 b | 0 a |
CChem | 67.1 bcde | 78.3 ab | 2.88 b | 0.57 | 16 ab | 468 j | 309 i | 413 h | 104 d | 159 g | 85 b |
CLab1 | 66.5 abcde | 78.3 ab | 2.52 a | 0.51 | 14 a | 334 gh | 242 d | 326 cd | 84 b | 92 d | 85 b |
CLab2 | 66.8 bcde | 78.6 abcd | 2.77 ab | 0.52 | 14 a | 366 i | 272 fg | 354 e | 82 b | 94 d | 86 c |
CLab3 | 67.3 cde | 78.6 abcd | 2.73 ab | 0.55 | 14 a | 345 h | 248 de | 334 d | 86 b | 97.5 d | 86 c |
CLab1 + L2 | 67.5 de | 78.7 bcd | 2.73 ab | 0.63 | 18 abcd | 331 g | 226 c | 306 b | 80 b | 105 e | 87 d |
CLab + Enz | 67.8 e | 80.2 efg | 2.65 ab | 0.76 | 23 e | 326 g | 213 b | 319 bc | 105 d | 113 f | 87 d |
Samples | Specific Volume (mL/g) | Crumb Moisture (%) | Hardness (N) | Springiness | Cohesiveness | Resilience | Chewiness |
---|---|---|---|---|---|---|---|
Ref | 1.51 ± 0.06 bcd | 51.1 ± 0.3 c | 17.7 ± 1.8 ab | 0.884 ± 0.011 bcd | 0.591 ± 0.028 cd | 0.283 ± 0.018 c | 9.2 ± 0.7 c |
SCtrl | 1.34 ± 0.05 ab | 49.5 ± 0.3 ab | 38.0 ± 4.3 d | 0.890 ± 0.006 bcd | 0.585 ± 0.017 c | 0.293 ± 0.009 cd | 19.8 ± 2.6 f |
SEnzP4 | 1.57 ± 0.03 cd | 49.4 ± 0.1 ab | 15.9 ± 1.6 a | 0.835 ± 0.015 b | 0.518 ± 0.021 b | 0.224 ± 0.012 b | 6.9 ± 0.7 ab |
SAlc | 1.30 ± 0.08 ab | 49.7 ± 0.1 b | 30.5 ± 0.9 c | 0.912 ± 0.005 cd | 0.625 ± 0.011 cde | 0.325 ± 0.008 ef | 17.3 ± 0.6 e |
SLab + EnzMix | 1.43 ± 0.04 abc | 49.0 ± 0.2 a | 21.6 ± 1.3 b | 0.922 ± 0.010 d | 0.654 ± 0.009 e | 0.349 ± 0.007 f | 13.0 ± 0.6 d |
CCrtl | 1.58 ± 0.02 cd | 50.6 ± 0.0 c | 18.4 ± 2.6 ab | 0.852 ± 0.099 bc | 0.629 ± 0.034 de | 0.315 ± 0.029 de | 9.9 ± 1.9 c |
CEnzP1 + F1 | 1.64 ± 0.08 de | 50.7 ± 0.1 c | 17.2 ± 1.3 ab | 0.909 ± 0.010 cd | 0.625 ± 0.018 cde | 0.315 ± 0.012 de | 9.7 ± 0.5 c |
CEnzP1 + A | 1.78 ± 0.09 e | 54.0 ± 0.2 e | 37.8 ± 3.3 d | 0.531 ± 0.028 a | 0.307 ± 0.018 a | 0.114 ± 0.008 a | 6.2 ± 1.1 ab |
CLab1 + L2 | 1.61 ± 0.05 de | 53.3 ± 0.3 d | 14.8 ± 1.5 a | 0.908 ± 0.013 cd | 0.648 ± 0.017 e | 0.331 ± 0.012 ef | 8.7 ± 0.5 bc |
CChem | 1.64 ± 0.10 de | 50.5 ± 0.1 c | 15.8 ± 1.1 a | 0.894 ± 0.009 bcd | 0.632 ± 0.011 de | 0.315 ± 0.009 de | 8.9 ± 0.5 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikinmaa, M.; Renzetti, S.; Juvonen, R.; Rosa-Sibakov, N.; Noort, M.; Nordlund, E. Effect of Bioprocessing on Techno-Functional Properties of Climate-Resilient African Crops, Sorghum and Cowpea. Foods 2022, 11, 3049. https://doi.org/10.3390/foods11193049
Nikinmaa M, Renzetti S, Juvonen R, Rosa-Sibakov N, Noort M, Nordlund E. Effect of Bioprocessing on Techno-Functional Properties of Climate-Resilient African Crops, Sorghum and Cowpea. Foods. 2022; 11(19):3049. https://doi.org/10.3390/foods11193049
Chicago/Turabian StyleNikinmaa, Markus, Stefano Renzetti, Riikka Juvonen, Natalia Rosa-Sibakov, Martijn Noort, and Emilia Nordlund. 2022. "Effect of Bioprocessing on Techno-Functional Properties of Climate-Resilient African Crops, Sorghum and Cowpea" Foods 11, no. 19: 3049. https://doi.org/10.3390/foods11193049
APA StyleNikinmaa, M., Renzetti, S., Juvonen, R., Rosa-Sibakov, N., Noort, M., & Nordlund, E. (2022). Effect of Bioprocessing on Techno-Functional Properties of Climate-Resilient African Crops, Sorghum and Cowpea. Foods, 11(19), 3049. https://doi.org/10.3390/foods11193049