Purification, Characterization, and Immobilization of a Novel Protease-Resistant α-Galactosidase from Oudemansiella radicata and Its Application in Degradation of Raffinose Family Oligosaccharides from Soymilk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Enzyme Activity Standard Assay and Protein Content Determination
2.3. Purification of α-Galactosidase
2.4. Determination of Molecular Mass
2.5. Analysis of Amino Acid Sequence
2.6. Immobilization of ORG
2.7. Biochemical Characterization
2.7.1. Effects of Temperature and pH on Activity of ORG and iORG
2.7.2. Effects of Metal Ions, Chemical Reagents, and Side Modification Reagents on ORG
2.7.3. Effects of Proteases on Activity of ORG
2.7.4. Substrate Specificity Determination
2.7.5. Inhibitors Kinetics
2.7.6. Enzymatic Hydrolysis of Raffinose and Stachyose
2.7.7. Kinetic Constants of ORG and iORG
2.7.8. Storage Stability and Reusability
2.8. Elimination of RFOs from Soymilk by ORG and iORG
2.9. Statistical Analysis
3. Results
3.1. Purification of ORG
3.2. Molecular Mass and Amino Acid Sequence
3.3. α-Galactosidase Immobilization
3.4. Biochemical Characterization
3.4.1. Effects of Temperature and pH on Activity of ORG and iORG
3.4.2. Effects of Various Metal Ions on ORG
3.4.3. Effects of Various Chemical Reagents on ORG
3.4.4. Effects of Side Modification Reagents on ORG
3.4.5. Resistance to Proteases of ORG
3.4.6. Substrate Specificity of ORG
3.4.7. Effects of Inhibitors on ORG
3.4.8. Enzymatic Hydrolysis of Raffinose and Stachyose by ORG
3.4.9. Kinetic Constants of ORG and iORG
3.4.10. Storage Stability and Reusability
3.5. Elimination of RFOs from Soymilk by ORG and iORG
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, W.; Zhang, Y.; Zhou, X.; Zhang, W.; Xu, X.; Chen, R.; Meng, Q.; Yuan, J.; Yang, P.; Yao, B. Production of a Highly Protease-Resistant Fungal alpha-Galactosidase in Transgenic Maize Seeds for Simplified Feed Processing. PLoS ONE 2015, 10, e0129294. [Google Scholar]
- Clarke, J.H.; Davidson, K.; Rixon, J.E.; Halstead, J.R.; Fransen, M.P.; Gilbert, H.J.; Hazlewood, G.P. A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and alpha-galactosidase. Appl. Microbiol. Biotechnol. 2000, 53, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Garman, S.C.; Garboczi, D.N. The molecular defect leading to Fabry disease: Structure of human alpha-galactosidase. J. Mol. Biol. 2004, 337, 319–335. [Google Scholar] [CrossRef] [PubMed]
- Lu-Kwang, J.; Abdullah, A.L.; SM, M.I. α-Galactosidase and Its Applications in Food Processing. Encycl. Food Chem. 2019, 337, 124–128. [Google Scholar]
- Llamas-Moya, S.; Higgins, N.F.; Adhikari, R.; Lawlor, P.G.; Lacey, S. Effect of multicarbohydrase enzymes containing α-galactosidase on the growth and apparent metabolizable energy digestibility of broiler chickens: A meta-analysis. Anim. Feed Sci. Tech. 2021, 277, 114949. [Google Scholar] [CrossRef]
- Anisha, G.S. Microbial α-galactosidases: Efficient biocatalysts for bioprocess technology. Bioresour. Technol. 2022, 344, 126293. [Google Scholar] [CrossRef]
- Jang, J.M.; Yang, Y.; Wang, R.; Bao, H.; Yuan, H.; Yang, J. Characterization of a high performance alpha-galactosidase from Irpex lacteus and its usage in removal of raffinose family oligosaccharides from soymilk. Int. J. Biol. Macromol. 2019, 131, 1138–1146. [Google Scholar] [CrossRef]
- Baffa Júnior, J.C.; Viana, P.A.; de Rezende, S.T.; Soares, N.D.F.F.; Guimarães, V.M. Immobilization of an alpha-galactosidase from Debaryomyces hansenni UFV-1 in cellulose film and its application in oligosaccharides hydrolysis. Food Bioprod. Process. 2018, 111, 30–36. [Google Scholar] [CrossRef]
- Hu, Y.; Tian, G.; Geng, X.; Zhang, W.; Zhao, L.; Wang, H.; Ng, T.B. A protease-resistant α-galactosidase from Pleurotus citrinopileatus with broad substrate specificity and good hydrolytic activity on raffinose family oligosaccharides. Process Biochem. 2016, 51, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Geng, X.; Fan, J.; Xu, L.; Wang, H.; Ng, T.B. Hydrolysis of oligosaccharides by a fungal alpha-galactosidase from fruiting bodies of a wild mushroom Leucopaxillus tricolor. J. Basic Microbiol. 2018, 58, 1043–1052. [Google Scholar] [CrossRef]
- Du, F.; Liu, Q.; Wang, H.; Ng, T. Purification an alpha-galactosidase from Coriolus versicolor with acid-resistant and good degradation ability on raffinose family oligosaccharides. World J. Microbiol. Biotechnol. 2014, 30, 1261–1267. [Google Scholar] [CrossRef]
- Geng, X.; Yang, D.; Zhang, Q.; Chang, M.; Xu, L.; Cheng, Y.; Wang, H.; Meng, J. Good hydrolysis activity on raffinose family oligosaccharides by a novel alpha-galactosidase from Tremella aurantialba. Int. J. Biol. Macromol. 2019, 150, 1249–1257. [Google Scholar] [CrossRef]
- Zhang, W.; Du, F.; Wang, L.; Zhao, L.; Wang, H.; Ng, T.B. Hydrolysis of Oligosaccharides by a Thermostable alpha-Galactosidase from Termitomyces eurrhizus. Int. J. Mol. Sci. 2015, 16, 29226–29235. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Geng, X.R.; Xu, L.J.; Chang, M.C.; Feng, C.P.; Meng, J.L. Purification and characterization of a novel protease-resistant GH27 alpha-galactosidase from Hericium erinaceus. Int. J. Biol. Macromol. 2018, 120, 2165–2174. [Google Scholar] [CrossRef]
- Geng, X.; Tian, G.; Zhao, Y.; Zhao, L.; Wang, H.; Ng, T.B. A Fungal alpha-Galactosidase from Tricholoma matsutake with Broad Substrate Specificity and Good Hydrolytic Activity on Raffinose Family Oligosaccharides. Molecules 2015, 20, 13550–13562. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.J.; Tian, G.T.; Zhao, L.Y.; Wang, H.; Ng, T.B. A protease-resistant alpha-galactosidase from Pleurotus djamor with broad pH stability and good hydrolytic activity toward raffinose family oligosaccharides. Int. J. Biol. Macromol. 2017, 94, 122–130. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, M.; Tian, G.; Zhao, L.; Wang, H.; Ng, T.B. Isolation of a protease-resistant and pH-stable alpha-galactosidase displaying hydrolytic efficacy toward raffinose family oligosaccharides from the button mushroom Agaricus bisporus. Int. J. Biol. Macromol. 2017, 104, 576–583. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, J.; Ren, X.; Li, B.; Zhang, Q. Extraction, preliminary characterization and in vitro antioxidant activity of polysaccharides from Oudemansiella radicata mushroom. Int. J. Biol. Macromol. 2018, 120, 1760–1769. [Google Scholar] [CrossRef]
- Geng, X.; Te, R.; Tian, G.; Zhao, Y.; Zhao, L.; Wang, H.; Ng, T.B. Purification and characterization of a novel metalloprotease from fruiting bodies of Oudemansiella radicata. Acta Biochim. Pol. 2017, 64, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Balaraju, K.; Park, K.; Jahagirdar, S.; Kaviyarasan, V. Production of cellulase and laccase enzymes by Oudemansiella radicata using agro wastes under solid-state and submerged conditions. Res. Biotechnol. 2010, 1, 21–28. [Google Scholar]
- Liu, Q.; Chen, H.; Wang, H.; Ng, T.B. Isolation and Characterization of a Ubiquitin-Like Ribonuclease from the Cultured Deep Root Mushroom, Oudemansiella radicata (Higher Basidiomycetes). Int. J. Med. Mushrooms 2015, 17, 1037–1045. [Google Scholar] [CrossRef]
- Çelem, E.B.; Önal, S. Sepabeads EC-EP immobilized α-galactosidase: Immobilization, characterization and application in the degradation of raffinose-type oligosaccharides. Process Biochem. 2022, 116, 136–147. [Google Scholar] [CrossRef]
- Singh, N.; Kayastha, A.M. Cicer alpha-galactosidase immobilization onto chitosan and Amberlite MB-150: Optimization, characterization, and its applications. Carbohydr. Res. 2012, 358, 61–66. [Google Scholar] [CrossRef]
- Cao, W.J.; Yuan, H.S. Immobilization and dye degradation of laccase from Lenzites betulina. Mycosystema 2016, 35, 343–354. [Google Scholar]
- Zhou, Z.D.; Li, G.Y.; Li, Y.J. Immobilization of Saccharomyces cerevisiae alcohol dehydrogenase on hybrid alginate-chitosan beads. Int. J. Biol. Macromol. 2010, 47, 21–26. [Google Scholar] [CrossRef]
- Du, F.; Zhu, M.; Wang, H.; Ng, T. Purification and characterization of an alpha-galactosidase from Phaseolus coccineus seeds showing degrading capability on raffinose family oligosaccharides. Plant Physiol. Biochem. 2013, 69, 49–53. [Google Scholar] [CrossRef]
- Hammond, J.B.W.; Kruger, N.J. The Bradford Method for Protein Quantitation. In New Protein Techniques; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 1988; pp. 25–32. [Google Scholar]
- Boudrant, J.; Woodley, J.M.; Fernandez-Lafuente, R. Parameters necessary to define an immobilized enzyme preparation. Process Biochem. 2020, 90, 66–80. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Thippeswamy, S.; Mulimani, V.H. Enzymic degradation of raffinose family oligosaccharides in soymilk by immobilized α-galactosidase from Gibberella fujikuroi. Process Biochem. 2002, 38, 635–640. [Google Scholar] [CrossRef]
- Wang, H.; Shi, P.; Luo, H.; Huang, H.; Yang, P.; Yao, B. A thermophilic alpha-galactosidase from Neosartorya fischeri P1 with high specific activity, broad substrate specificity and significant hydrolysis ability of soymilk. Bioresour. Technol. 2014, 153, 361–364. [Google Scholar] [CrossRef]
- Xu, L.; Chen, B.; Geng, X.; Feng, C.; Meng, J.; Chang, M. A protease-resistant alpha-galactosidase characterized by relatively acid pH tolerance from the Shitake Mushroom Lentinula edodes. Int. J. Biol. Macromol. 2019, 128, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.J.; Woo, S.H.; Jeong, H.M.; Kim, J.S.; Ko, D.S.; Jeong, D.W.; Lee, J.H.; Shim, J.H. Characterization of novel alpha-galactosidase in glycohydrolase family 97 from Bacteroides thetaiotaomicron and its immobilization for industrial application. Int. J. Biol. Macromol. 2020, 152, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Bayraktar, H.; Serilmez, M.; Karkas, T.; Celem, E.B.; Onal, S. Immobilization and stabilization of alpha-galactosidase on Sepabeads EC-EA and EC-HA. Int. J. Biol. Macromol. 2011, 49, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Sakharayapatna Ranganatha, K.; Venugopal, A.; Chinthapalli, D.K.; Subramanyam, R.; Nadimpalli, S.K. Purification, biochemical and biophysical characterization of an acidic alpha-galactosidase from the seeds of Annona squamosa (custard apple). Int. J. Biol. Macromol. 2021, 175, 558–571. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, H.; Ben, P.; Duan, Y.; Lu, M.; Li, Z.; Cui, Z. Characterization of a novel GH36 alpha-galactosidase from Bacillus megaterium and its application in degradation of raffinose family oligosaccharides. Int. J. Biol. Macromol. 2018, 108, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Mutra, R.; Joseph, J.E.; Panwar, D.; Kaira, G.S.; Kapoor, M. Low molecular weight alpha-galactosidase from black gram (Vigna mungo): Purification and insights towards biochemical and biophysical properties. Int. J. Biol. Macromol. 2018, 119, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Morales-Quintana, L.; Faundez, C.; Herrera, R.; Zavaleta, V.; Ravanal, M.C.; Eyzaguirre, J.; Moya-Leon, M.A. Biochemical and structural characterization of Penicillium purpurogenum alpha-D galactosidase: Binding of galactose to an alternative pocket may explain enzyme inhibition. Carbohydr. Res. 2017, 448, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Bayraktar, H.; Onal, S. Cross-linked alpha-galactosidase aggregates: Optimization, characterization and application in the hydrolysis of raffinose-type oligosaccharides in soymilk. J. Sci. Food Agric. 2019, 99, 4748–4760. [Google Scholar] [CrossRef]
- Sampietro, D.; Quiroga, E.; Sgariglia, M.; Soberón, J.; Vattuone, M.A. A thermostable α-galactosidase from Lenzites elegans (Spreng.) ex Pat. MB445947: Purification and properties. Anton. Leeuw. 2012, 102, 257–267. [Google Scholar] [CrossRef]
- Similä, J.; Gernig, A.; Murray, P.; Fernandes, S.; Tuohy, M.G. Cloning and expression of a thermostable α-galactosidase from the thermophilic fungus Talaromyces emersonii in the methylotrophic yeast Pichia pastoris. J. Microbiol. Biotechnol. 2010, 20, 1653–1663. [Google Scholar]
- Fialho Lda, S.; Guimaraes, V.M.; Callegari, C.M.; Reis, A.P.; Barbosa, D.S.; Borges, E.E.; Moreira, M.A.; de Rezende, S.T. Characterization and biotechnological application of an acid alpha-galactosidase from Tachigali multijuga Benth. seeds. Phytochemistry 2008, 69, 2579–2585. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, S.; Yan, Q.; Liu, J.; Jiang, Z. High-level expression of a novel protease-resistant α-galactosidase from Thielavia terrestris. Process Biochem. 2018, 71, 82–91. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, Q.; Jiang, Z.; Liu, Y.; Li, Y. High-level expression of a novel α-galactosidase gene from Rhizomucor miehei in Pichia pastoris and characterization of the recombinant enyzme. Protein Expres. Purifi. 2015, 110, 107–114. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, Q.; Guan, L.; Jiang, Z.; Yang, S. Biochemical characterization of a novel protease-resistant α-galactosidase from Paecilomyces thermophila suitable for raffinose family oligosaccharides degradation. Process Biochem. 2020, 94, 370–379. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Yang, Y.; Liu, Y.; Piao, X.; Cao, Y. Characterization of a protease-resistant alpha-galactosidase from Aspergillus oryzae YZ1 and its application in hydrolysis of raffinose family oligosaccharides from soymilk. Int. J. Biol. Macromol. 2020, 158, 708–720. [Google Scholar] [CrossRef]
- Sripuan, T.; Aoki, K.; Yamamoto, K.; Tongkao, D.; Kumagai, H. Purification and characterization of thermostable α-galactosidase from Ganoderma lucidum. Biosci. Biotechnol. Biochem. 2003, 67, 1485–1491. [Google Scholar] [CrossRef]
- Su, R.; Shi, P.; Zhu, M.; Hong, F.; Li, D. Studies on the properties of graphene oxide-alkaline protease bio-composites. Bioresour. Technol. 2012, 115, 136–140. [Google Scholar] [CrossRef]
- Ortega, N.; Perez-Mateos, M.; Pilar, M.C.; Busto, M.D. Neutrase Immobilization on Alginate−Glutaraldehyde Beads by Covalent Attachment. J. Agric. Food Chem. 2009, 57, 109–115. [Google Scholar] [CrossRef]
- Ferreira, J.G.; Reis, A.P.; Guimarães, V.M.; Falkoski, D.L.; da Silva Fialho, L.; de Rezende, S.T. Purification and Characterization of Aspergillus terreus α-Galactosidases and Their Use for Hydrolysis of Soymilk Oligosaccharides. Appl. Biochem. Biotech. 2011, 164, 1111–1125. [Google Scholar] [CrossRef]
Purification Step | Protein (mg) | Total Activity (U) | Specific Activity (U/mg) | Recovery a (%) | Purification Fold |
---|---|---|---|---|---|
Crude enzyme | 19,868.33 ± 50.11 | 1788.15 ± 2.00 | 0.09 ± 0.00 | 100 ± 0.20 | 1 ± 0.00 |
D3 | 194.31 ± 1.24 | 409.99 ± 2.37 | 2.11 ± 0.02 | 22.9 ± 0.30 | 23.44 ± 0.35 |
C1 | 7.36 ± 0.75 | 219.29 ± 1.76 | 29.8 ± 0.45 | 12.26 ± 0.11 | 331.12 ± 2.13 |
Q2 | 3.59 ± 0.05 | 147.6 ± 1.40 | 41.15 ± 0.85 | 0.08 ± 0.00 | 457.22 ± 15.93 |
F1 | 2.41 ± 0.02 | 123. 38 ± 1.06 | 55.06 ± 1.26 | 0.07 ± 0.00 | 611.78 ± 14.01 |
F1-1 | 0.27 ± 0.01 | 68.44 ± 1.10 | 170.47 ± 1.81 | 0.04 ± 0.00 | 1894.11 ± 20.12 |
Number | Description | Protein Sequence | Identity | Accession |
---|---|---|---|---|
1 | α-galactosidase [Fistulina hepatica ATCC 64428] GH27 | 265 SPLLIGTDLSR 275 | 100% | KIY47914.1 |
2 | α-galactosidase [Crucibulum laeve] GH27 | 333 DQKHTAVMYLNFNER 347 | 100% | TFK41875.1 |
3 | α-galactosidase [Cylindrobasidium torrendii FP15055 ss-10] GH27 | 227 MSNAIKDLAK 236 | 100% | KIY65758.1 |
4 | α-galactosidase [Hypholoma sublateritium FD-334 SS-4] GH27 | 165 EGEVGRYQR 173 | 100% | KJA21426.1 |
5 | α-galactosidase [Moniliophthora roreri MCA 2997] GH27 | 164 IHQLGLK 170 | 100% | ESK96753.1 |
6 | α-galactosidase [Hebeloma cylindrosporum h7] GH27 | 316 NDLDMLEIGHSKLTYDEQK 334 | 100% | KIM37201.1 |
7 | α-galactosidase [Dendrothele bispora (strain CBS 962.96)] GH27 | 434 DLWTHTDNGTAVR 446 | 100% | THU90266.1 |
8 | α-galactosidase [Amanita muscaria Koide BX008] GH27 | 155 YDNCAIPFDDVIR 167 | 100% | KIL60293.1 |
9 | α-galactosidase [Armillaria solidipes] GH27 | 99 QRNSDGNIVENAK 111 | 100% | PBK67780.1 |
10 | α-galactosidase [Pleurotus ostreatus PC15] GH27 | 363 QYAMRDLWTHTDNGTAVR 380 | 100% | KDQ32138.1 |
11 | alpha-galactosidase [Laccaria bicolor (strain S238N-H82/ATCC MYA-4686)] GH27 | 96 QTFPSGMNSLTNK 108 | 100% | XP_001881346.1 |
12 | α-galactosidase [Armillaria gallica] GH27 | 102 FPSGMRSLTDHIHGLR 117 | 100% | PBL00348.1 |
13 | α-galactosidase A [Schizophyllum commune (strain H4-8/FGSC 9210)] GH27 | 16 EKEVAYGSSTPR 27 | 100% | XP_003038638.1 |
14 | α-galactosidase [Gymnopus androsaceus JB14] GH27 | 252 NGGFTFDESK 261 | 100% | KAE9385869.1 |
15 | putative alpha-galactosidase B [Termitomyces sp.] | 149 YDNCAVPFDSIIK 161 | 100% | KNZ77552.1 |
Metal Ion | Relative Activity (%) (mean ± SD, n = 3) | |||
---|---|---|---|---|
1.25 mM | 2.5 mM | 5 mM | 10 mM | |
Ca2+ | 93.7 ± 1.39 bcd | 97.4 ± 2.62 abc | 103.8 ± 3.81 ab | 109.1 ± 3.99 bc |
Mg2+ | 85.5 ± 5.56 d | 90.8 ± 4.41 bcde | 101.9 ± 1.47 cd | 108.8 ± 4.58 bc |
Cu2+ | 70.1 ± 5.06 e | 65.6 ± 2.83 h | 68.1 ± 3.41 g | 74.2 ± 5.36 e |
Zn2+ | 71.1 ± 0.57 e | 81.2 ± 3.31 fg | 89.2 ± 1.01 ef | 92.7 ± 1.31 d |
Cr2+ | 109 ± 3.2 a | 88.8 ± 5.84 cdef | 78.7 ± 1.3 d | 72.3 ± 3.06 e |
Fe2+ | 76.4 ± 8.01 e | 84.6 ± 4.20 fgh | 94.7 ± 2.31 de | 95.8 ± 1.60 d |
Mn2+ | 88.8 ± 3.71 cd | 69.2 ± 3.22 h | 64.5 ± 3.23 g | 29.3 ± 1.58 g |
K+ | 72.7 ± 7.91 e | 89.3 ± 2.44 cdef | 101.9 ± 3.61 cd | 113.0 ± 0.76 ab |
Ba2+ | 97.1 ± 5.11 bc | 95.7 ± 4.00 abcd | 94.0 ± 0.46 bc | 94.8 ± 5.27 d |
Pb2+ | 89.7 ± 7.54 cd | 84.8 ± 1.84 fg | 77.3 ± 4.62 de | 62.3 ± 1.35 f |
Cd2+ | 99.8 ± 4.85 b | 77.8 ± 6.25 g | 74.9 ± 3.40 f | 74.1 ± 1.99 e |
Hg2+ | 2.53 ± 0.83f | 1.2 ± 0.71 j | 1.8 ± 1.4 i | 2.76 ± 0.08 h |
Fe3+ | 77.6 ± 6.15 e | 42.7 ± 4.73 i | 34.8 ± 1.78 h | 27.6 ± 1.78 g |
Ag+ | 1.02 ± 1.45 f | 1.53 ± 0.31 j | 1.02 ± 0.54 i | 2.48 ± 1.57 h |
Al3+ | 99.6 ± 3.39 b | 102.9 ± 0.62 a | 100.2 ± 2.31 a | 115.7 ± 1.00 a |
Li+ | 101.7 ± 1.38 ab | 87.4 ± 4.14 efg | 79.3 ± 3.16 de | 76.3 ± 1.68 e |
Chemical Reagents | Relative Activity (%) (Mean ± SD, n = 3) | ||
---|---|---|---|
100 mM | 10 mM | 1 mM | |
Melibiose | 44.40 ± 2.38 h | 79.23 ± 3.12 f | 102.16 ± 1.44 cd |
Sucrose | 96.87 ± 3.44 d | 103.22 ± 2.14 d | 106.84 ± 2.20 bc |
Lactose | 94.60 ± 1.21 d | 105.84 ± 1.24 cd | 99.12 ± 1.56 d |
Glucose | 118.67 ± 2.77 a | 110.92 ± 1.26 bc | 110.36 ± 1.82 ab |
Galactose | 32.74 ± 3.94 i | 89.85 ± 1.31 e | 103.00 ± 2.99 cd |
Xylose | 96.78 ± 1.65 d | 112.65 ± 2.09 bc | 110.80 ± 0.52 ab |
Maltose | 82.46 ± 3.86 e | 77.21 ± 1.38 f | 74.15 ± 2.73 e |
NaCl | 116.31 ± 2.89 a | 118.00 ± 1.23 a | 113.04 ± 3.45 a |
(NH4)2SO4 | 106.16 ± 1.53 b | 109.14 ± 3.00 c | 106.12 ± 4.10 bc |
NaAc | 76.49 ± 1.09 f | 106.82 ± 1.51 cd | 103.48 ± 3.79 cd |
EDTA | 101.94 ± 2.42 c | 114.30 ± 1.00 b | 99.16 ± 1.91 d |
SDS | 53.67 ± 1.47 g | 89.57 ± 0.98 e | 106.32 ± 2.46 bc |
Substrate | Concentration | Relative Activity (%) |
---|---|---|
4-Nitrophenyl α-D-galactopyranoside (pNPG) | 10 mM | 100.00 ± 0.00 a |
4-Nitrophenyl β-D-galactopyranoside (oNPG) | 10 mM | 0.51 ± 0.01 gh |
4-Nitrophenyl α-D-glucuronide | 10 mM | 0.48 ± 0.03 gh |
4-Nitrophenyl β-D-glucuronide | 10 mM | 0.46 ± 0.01 gh |
Sucrose Lactose | 100 mM | 0.20 ± 0.01 h |
Lactose | 100 mM | 1.10 ± 0.15 ef |
Melibiose | 100 mM | 0.80 ± 0.02 efg |
Maltose | 100 mM | 25.08 ± 0.46 b |
Raffinose | 100 mM | 20.33 ± 0.75 c |
Stachyose | 100 mM | 17.53 ± 0.43 d |
Guar gum | 1% | 1.27 ± 0.10 e |
Locust bean gum | 1% | 0.68 ± 0.04 fgh |
Enzyme | Source | pNPG | Raffinose | Stachyose | Degradation Effect of RFOs in Soymilk | |||
---|---|---|---|---|---|---|---|---|
Km (mM) | Kcat/Km (mM−1s−1) | Km (mM) | Kcat/Km (mM−1s−1) | Km (mM) | Kcat/Km (mM−1s−1) | |||
ORG a | Oudemansiella radicata | 0.58 | 60.62 | 16.52 | 7.78 | 19.03 | 6.42 | completely hydrolyzed at 50 °C within 5 h |
iORG a | Oudemansiella radicata | 1.13 | 35.13 | 18.16 | 7.83 | 20.03 | 6.88 | completely hydrolyzed at 50 °C within 3 h |
rILgalA [7] | Irpex lacteus | 1.2 | 1900 | 5.3 | 130 | 4.1 | 180 | completely hydrolyzed at 60 °C in 30 min (2.7 U/mL) |
HEG [14] | Hericium erinaceus | 0.36 | 91.39 | 40.07 | 3.1 | 54.71 | 2.15 | NF |
LEGI [32] | Lentinula edodes | 1.08 | 13.49 | 17.24 | 1.23 | 13.8 | 3.18 | NF |
Bt_3294 [33] | Bacteroides thetaiotaomicron | 2.2 | 12.8 | 32.2 | 0.6 | 26.9 | 0.02 | 98.9% hydrolyzed at 40 °C for 10 h |
AgaB [36] | Bacillus megaterium | 0.42 | 610 | 16.97 | 1.69 | 25.43 | 0.67 | completely hydrolyzed at 37 °C for 4 h |
VM-αGal [37] | black gram seeds | 0.99 | 0.413 | 17.23 | 0.0026 | NF | NF | stachyose and raffinose were hydrolyzed by 26.5% and 18.45% at 40 °C for 2 h, respectively |
PtGal36A [45] | Paecilomyces thermophila | 0.46 | 1.87 | 10.81 | 3.86 | 8.06 | 0.07 | completely (>95%) degraded for 6, 4, and 2 h by 1, 2, and 5 U/mL enzyme dose (soybean meal) |
PCGI [9] | Pleurotus citrinopileatus | 0.21 | 140.31 b | 18.91 | 22.99 b | 16.71 | 9.25 b | NF |
GalC [46] | Aspergillus oryzae YZ1 | 2.16 | 112.5b | 4.63 | 12.45 b | 8.54 | 5.28 b | Degradation rates (5, 10, and 15 U/mL) were 87.1%, 88.0%, and 97.8% for 3 h |
α-Galactosidases | Fungi | Optimal pH | Optimum Temperature (°C) | pH Stability | Heat Stability (°C) | Molecular Weight (kDa) | GH Family | Reference |
---|---|---|---|---|---|---|---|---|
Some natural mushroom sources of α-galactosidases | Oudemansiella radicata | 3 | 50 | 2.0–4.0 | 57.75%, 60 °C for 1 h | 74 | NF | this study |
Pleurotus citrinopileatus | 4.4 | 50 | 4.0–7.0 | Stable at 40 °C or below | 60 | GH 27 | [9] | |
Leucopaxillus tricolor | 5 | 50 | 3.0–5.0 | Completely loss, 60 °C for 1 h | 60 | NF | [10] | |
Coriolus versicolor | 3 | 60 | 2.0–5.0 | 80%, 50 °C for 30 min | 40 | NF | [11] | |
Tremella aurantialba | 5 | 54 | 2.0–5.0 | 30.8%, 70 °C for 1 h | 88 | NF | [12] | |
Termitomyces eurrhizus | 5 | 60 | 2.0–6.0 | Stable at 50 °C and 60 °C | 72 | NF | [13] | |
Hericium erinaceus | 6 | 60 | 2.2–7.0 | Over 50%, 50 °C for 2 h | 57 | GH 27 | [14] | |
Tricholoma matsutake | 4.5 | 55 | NF | Completely loss, 50 °C for 30 min | 47 | GH 27 | [15] | |
Pleurotus djamor | 5 | 53.5 | 3.0–10.0 | Over 68%, 50 °C for 1 h | 60 | NF | [16] | |
Agaricus bisporus | 4 | 60 | 2.0–9.0 | 10%, 50 °C for 40 min | 45 | GH 27 | [17] | |
Lentinula edodes | 5 | 60 | 4.0–6.0 | Stable at 40 °C or below | 64 | GH 27 | [32] | |
Lenzites elegans | 4.5 | 70~80 | 3–7.5 | Retained 94% activity after 2 h at 60 °C | 158 | GH 36 | [40] | |
Ganoderma Lucidum | 6 | 70 | 5.0–7.0 | Stable at 70 °C or below | 249 | NF | [47] | |
Some recombinant α-galactosidases | Irpex lacteus | 4.8 | 70 | 3.0–11.0 | 90% after 10 h at 60 °C | 64 | GH 27 | [7] |
Penicillium Purpurogenum | 4.5 | 55 | 4.0–6.0 | Stable below 40 °C | 67 | GH27 | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, X.; Lei, J.; Bau, T.; Guo, D.; Chang, M.; Feng, C.; Xu, L.; Cheng, Y.; Zuo, N.; Meng, J. Purification, Characterization, and Immobilization of a Novel Protease-Resistant α-Galactosidase from Oudemansiella radicata and Its Application in Degradation of Raffinose Family Oligosaccharides from Soymilk. Foods 2022, 11, 3091. https://doi.org/10.3390/foods11193091
Geng X, Lei J, Bau T, Guo D, Chang M, Feng C, Xu L, Cheng Y, Zuo N, Meng J. Purification, Characterization, and Immobilization of a Novel Protease-Resistant α-Galactosidase from Oudemansiella radicata and Its Application in Degradation of Raffinose Family Oligosaccharides from Soymilk. Foods. 2022; 11(19):3091. https://doi.org/10.3390/foods11193091
Chicago/Turabian StyleGeng, Xueran, Jiayu Lei, Tergun Bau, Dongdong Guo, Mingchang Chang, Cuiping Feng, Lijing Xu, Yanfen Cheng, Ningke Zuo, and Junlong Meng. 2022. "Purification, Characterization, and Immobilization of a Novel Protease-Resistant α-Galactosidase from Oudemansiella radicata and Its Application in Degradation of Raffinose Family Oligosaccharides from Soymilk" Foods 11, no. 19: 3091. https://doi.org/10.3390/foods11193091
APA StyleGeng, X., Lei, J., Bau, T., Guo, D., Chang, M., Feng, C., Xu, L., Cheng, Y., Zuo, N., & Meng, J. (2022). Purification, Characterization, and Immobilization of a Novel Protease-Resistant α-Galactosidase from Oudemansiella radicata and Its Application in Degradation of Raffinose Family Oligosaccharides from Soymilk. Foods, 11(19), 3091. https://doi.org/10.3390/foods11193091