Mixed Mulberry Fruit and Mulberry Leaf Fermented Alcoholic Beverages: Assessment of Chemical Composition, Antioxidant Capacity In Vitro and Sensory Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fresh Mulberry Fruits, Mulberry Leaves and Strain
2.2. Chemicals and Reagents
2.3. Preparation of Mixed Mulberry Fruit and Mulberry Leaf Fermented Alcoholic Beverages
2.4. Chemical Analysis
2.4.1. Determination of Basic Oenological and Chemical Parameters
2.4.2. Spectrophotometric Measurements of Phenolics, Color and Antioxidant Activity
2.4.3. Quantitative Determination of Phenolic Compounds by High Performance Liquid Chromatography (HPLC)
2.4.4. Determination of 1-Deoxynojirimycin (DNJ) Content
2.4.5. Determination of γ-Aminobutyric Acid (GABA) Content
2.4.6. Determination of Free Amino Acids
2.4.7. Determination of Volatile Substances
2.5. Sensory Evaluation
2.6. Data Statistics and Analysis
3. Results and Discussion
3.1. Analysis of Basic Oenological and Chemical Parameters of the Mixed Mulberry Fruit and Mulberry Leaf Fermented Alcoholic Beverages
3.2. Analysis of Phenolic Substances and Antioxidant Activity in Mixed Mulberry Fruit and Mulberry Leaf Fermented Alcoholic Beverages
3.3. Determination of Phenolics by HPLC
3.3.1. Changes in the Composition of Anthocyanins
3.3.2. Changes in the Composition of Phenolic Acids
3.3.3. Changes in the Flavonol Components
3.4. Changes in DNJ and GABA Contents in Mixed Mulberry Fruit and Mulberry Leaf Fermented Alcoholic Beverages
3.5. Changes in the Free Amino Acid Contents in Mixed Mulberry Fruit and Mulberry Leaf Fermented Alcoholic Beverages
3.6. Analysis of Volatile Substances in the Mixed Mulberry Fruit and Mulberry Leaf Fermented Alcoholic Beverages
3.7. Principal Component Analysis
3.8. Sensory Property
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, L.; Wang, C.; Guo, X.; Chen, D.; Zhou, W.; Chen, X.; Zhang, Q. Flavonoid levels and antioxidant capacity of mulberry leaves: Effects of growth period and drying methods. Front. Plant Sci. 2021, 11, 684974. [Google Scholar] [CrossRef]
- Shivangi, S.; Dorairaj, D.; Negi, P.S.; Shetty, N.P. Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocoll. 2021, 121, 107046. [Google Scholar] [CrossRef]
- Liu, J.; Wan, J.; Du, W.; Wang, D.; Wen, C.; Wei, Y.; Zhen, O. In vivo functional verification of four related genes involved in the 1-deoxynojirimycin biosynthetic pathway in mulberry leaves. J. Agric. Food Chem. 2021, 69, 10989–10998. [Google Scholar] [CrossRef]
- Tu, J.; Liu, G.; Jin, Y.; Tang, C.; Yao, T.; Zhuo, J.; Li, Q.; Liu, L.; Wang, J. Enrichment of γ-aminobutyric acid in mulberry leaves and the inhibitory effects of the water extract on ACE and α-glucosidase activity. Ind. Crops Prod. 2022, 177, 114485. [Google Scholar] [CrossRef]
- William, T.; Kuate, K.G.; Legrand, N.N.G.; Wang, K.; Gui, B.; Ma, Y.K.; Wang, X.Y.; Moses, M.C. In vitro assessment of the effect of microencapsulation techniques on the stability, bioaccessibility and bioavailability of mulberry leaf bioactive compounds. Food Biosci. 2022, 47, 101461. [Google Scholar]
- Phoonan, W.; Deowanish, S.; Chavasiri, W. Food attractant from mulberry leaf tea and its main volatile compounds for the biocontrol of Lasioderma serricorne F. (Coleoptera: Anobiidae). J. Stored Prod. Res. 2014, 59, 299–305. [Google Scholar] [CrossRef]
- Monika, P.; Ewa, F.; Dominik, K.; Maciej, S.B.; Halina, S.; Aneta, T.G.; Joanna, K.C.; Anna, G.M.; Joanna, F.F. Functional properties and antioxidant activity of morus alba L. leaves var. Zolwinska Wielkolistna (WML-P)—The effect of controlled conditioning process. Antioxidants 2020, 9, 668. [Google Scholar]
- Huang, X.; Sun, L.; Dong, K.; Wang, G.; Luo, P.; Tang, D.B.; Huang, Q. Mulberry fruit powder enhanced the antioxidant capacity and gel properties of hammered minced beef: Oxidation degree, rheological, and structure. LWT-Food Sci. Technol. 2022, 154, 112648. [Google Scholar] [CrossRef]
- Wang, R.S.; Dong, P.H.; Shuai, X.X.; Chen, M.S. Evaluation of Different Black Mulberry Fruits (Morus nigra L.) Based on Phenolic Compounds and Antioxidant Activity. Foods 2022, 11, 1252. [Google Scholar] [CrossRef]
- Yang, J.Y.; Lee, H.S. Evaluation of antioxidant and antibacterial activities of morin isolated from mulberry fruits (Morus alba L). J. Korean Soc. Appl. Biol. 2012, 55, 485–489. [Google Scholar] [CrossRef]
- Yang, T.; Yilin, W.; Jun, Y.; Qi, W.; Na, J.; Dinh, T.C.; Han, Y.B.; Zhou, J.Z. Chemical composition and sensory profiles of mulberry fermented beverages as fermented with different Saccharomyces cerevisiae strains. Int. J. Food Prop. 2017, 20, 2006–2021. [Google Scholar]
- Duarte, W.F.; Dias, D.R.; Oliveira, J.M.; Vilanova, M.; Teixeira, J.A.; Almeidae Silva, J.B.; Schwan, R.F. Raspberry (Rubus idaeus L) fermented beverages: Yeast selection, sensory evaluation and instrumental analysis of volatile and other compounds. Food Res. Int. 2010, 43, 2303–2314. [Google Scholar] [CrossRef]
- Chen, J.; Kan, J.; Tang, J.; Cai, Z.; Liu, J. The profile in polyphenols and volatile compounds in alcoholic beverages from different cultivars of mulberry. J. Food Sci. 2012, 77, C430–C436. [Google Scholar]
- OIV. Compendium of International Methods of Fermented beverages and Must Analysis; OIV: Paris, France, 2012. [Google Scholar]
- Wen, W.; Liu, S.; Huang, Y. Comparison of phenol sulfuric and anthrone sulfuric method for determination of lentinan. Mod. Food 2020, 21, 177–179. [Google Scholar]
- Tao, Y.; Sun, D.W.; Gorecki, A.; Blaszczak, W.; Lamparski, G.; Amarowicz, R.; Fornal, J.; Jelinski, T. A preliminary study about the influence of high hydrostatic pressure processing in parallel with oak chip maceration on the physicochemical and sensory properties of a young red wine. Food Chem. 2016, 194, 545–554. [Google Scholar] [CrossRef]
- Violeta, I.; Agnes, D.; Laszlo, M.; Borimir, V.; Trajce, S.; Marina, S.; Ferenc, K. Polyphenolic content of Vranec wines produced by different vinification conditions. Food Chem. 2011, 124, 10. [Google Scholar]
- Cliff, M.A.; King, M.C.; Schlosser, J. Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines. Food Res. Int. 2007, 40, 92–100. [Google Scholar] [CrossRef]
- Liang, L.; Wu, X.; Zhao, T.; Zhao, J.; Li, F.; Zou, Y.; Mao, G.; Yang, L. In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.) following simulated gastro-intestinal digestion. Food Res. Int. 2012, 46, 76–82. [Google Scholar] [CrossRef]
- He, Z.; Yuan, B.; Zeng, M.; Tao, G.; Chen, J. Effect of simulated processing on the antioxidant capacity and in vitro protein digestion of fruit juice-milk beverage model systems. Food Chem. 2015, 175, 457–464. [Google Scholar] [CrossRef]
- Hao, J.; Liang, Z.; Yin, S.; Lin, M.; Long, Y.; Tang, Y.; Liang, C.; Chen, J. Determination of nine phenolic compounds in Luocheng “Guipu 1” hairy grape by high performance liquid chromatography. Sci. Technol. Food Ind. 2021, 42, 303–310. [Google Scholar]
- Asadi, S.; Nojavan, S.; Behpour, M.; Mahdavi, P. Electromembrane extraction based on agarose gel for the extraction of phenolic acids from fruit juices. J. Chromatogr. B 2020, 1159, 122401. [Google Scholar] [CrossRef]
- Meng, D. Extract ginkgolic acid in ginkgo nut with high performance liquid chromatography (HPLC) analysis. J. Food Sci. Technol. Mys. 2020, 45, 314–318 + 322. [Google Scholar]
- Kim, J.W.; Kim, S.U.; Lee, H.S.; Kim, I.; Ahn, M.Y.; Ryu, K.S. Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography. J. Chromatogr. A. 2003, 1002, 93–99. [Google Scholar] [CrossRef]
- Bai, Q.Y.; Chai, M.Q.; Gu, Z.X.; Cao, X.; Li, Y.; Liu, K. Effects of components in culture medium on glutamate decarboxylase activity and γ-aminobutyric acid accumulation in foxtail millet (Setaria italica L.) during germination. Food Chem. 2009, 116, 152–157. [Google Scholar] [CrossRef]
- Syu, K.Y.; Lin, C.L.; Huang, H.C.; Lin, J.K. Determination of theanine, GABA, and other amino acids in green, oolong, black, and pu-erh teas with dabsylation and high-performance liquid chromatography. J. Agric. Food Chem. 2008, 56, 7637–7643. [Google Scholar] [CrossRef] [PubMed]
- Aro, J.M.A.; Nyam-Osor, P.; Tsuji, K.; Shimada, K.; Fukushima, M.; Sekikawa, M. The effect of starter cultures on proteolytic changes and amino acid content in fermented sausages. Food Chem. 2010, 119, 279–285. [Google Scholar] [CrossRef]
- Aznar, M.; Arroyo, T. Analysis of fermented beverages volatile profile by purge-and-trap–gas chromatography–mass spectrometry: Application to the analysis of red and white fermented beveragess from different Spanish regions. J. Agric. Food. Chem. 2007, 1165, 151. [Google Scholar]
- Yao, J.; Jiang, Y. Effect of rose addition on mead quality. J. Agric. Sci.-Tarim Bilimleri 2020, 48, 172–175. [Google Scholar]
- Meng, Z.; Yi, L.; Hu, Q.; Lin, Z.; Ramaswamy, H.S.; Wang, C. Optimized extraction and characterization of folates from date palm fruits and their tracking during fruits fermented beverages fermentation. Front. Nutr. 2021, 7, 699555. [Google Scholar] [CrossRef]
- Su, H.; He, Z.; Li, W.; Ren, X.; Lin, X.; Lin, X.; Liang, Z. Correlation analysis between free sulfur dioxide and oxidative browning and redox potential in wines. Food Ferm. Ind. 2019, 45, 143–147. [Google Scholar]
- Benucci, I.; Marco, E. Arginase Activity Characterization During Alcoholic Fermentation by Sequential Inoculation with Non-Saccharomyces and Saccharomyces Yeast. Food Bioprocess. Technol. 2021, 14, 1997–2003. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Z.; Xin, X.; Wang, J.; Wu, Z.; Lu, M. Study on antioxidant compositions and activity of blueberry wine during fermentation. China Brew. 2013, 32, 17–20. [Google Scholar]
- Liu, S.X.; Liu, E.C.; Zhu, B.Q.; Chai, B.W.; Liu, R.J.; Gao, Q.; Zhang, B.L. Impact of maceration time on colour-related phenolics, sensory characteristics and volatile composition of mulberry wine. J. Inst. Brew. 2018, 124, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.J.; Chi, L.; Chen, M.H.; Chiang, P.Y. Stability and Quality of Anthocyanin in Purple Sweet Potato Extracts. Foods 2019, 8, 393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Santosa, R.W.; Zhang, M.; Huo, J.W.; Huang, D.J. Characterization and bioactivity of proanthocyanidins during Malay cherry (Lepisanthes alata) fruit ripening. Food Biosci. 2020, 36, 100617. [Google Scholar] [CrossRef]
- Ju, W.T.; Kwon, O.C.; Kim, Y.S.; Kim, H.B.; Sung, G.B.; Kim, J. Flavonoids analysis about mulberry fruit of Korean mulberry cultivar, ’Daeshim’. Int. J. Ind. Entomol. 2018, 37, 43–48. [Google Scholar]
- Fulcrand, H.; Benabdeljalil, C.; Rigaud, J.; Cheynier, V.; Moutounet, M. A new class of fermented beverages pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry 1998, 47, 1401–1407. [Google Scholar] [CrossRef]
- Tan, J.B.L.; Lim, Y.Y. Critical analysis of current methods for assessing the in vitro antioxidant and antibacterial activity of plant extracts. Food Chem. 2015, 172, 814–822. [Google Scholar] [CrossRef]
- Jiang, D.Q.; Guo, Y.; Xu, D.H.; Huang, Y.S.; Yuan, K.; Lv, Z.Q. Antioxidant and anti-fatigue effects of anthocyanins of mulberry juice purification (MJP) and mulberry marc purification (MMP) from different varieties mulberry fruit in China. Food Chem. Toxicol. 2013, 59, 1–7. [Google Scholar] [CrossRef]
- Zhu, Y.; Yuen, M.; Li, W.; Yuen, H.; Wang, M.; Smith, D.; Peng, Q. Composition analysis and antioxidant activity evaluation of a high purity oligomeric procyanidin prepared from sea buckthorn by a green method. Curr. Res. Food Sci. 2021, 4, 840–851. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.Q.; Li, B.; Guo, M.C.; Lv, J.W.; Wei, Y.T. Comparison of three extraction methods for anthocyanins from Perilla frutescens leaves. Sustain. Chem. Pharm. 2022, 29, 100817. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, N.; Zhang, H.; Pan, F.; Ai, X.; Wang, Y.; Wang, C. Cyanidin-3-O-glucoside and its metabolite protocatechuic acid ameliorate 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) induced cytotoxicity in HepG2 cells by regulating apoptotic and Nrf2/p62 pathways. Food Chem. Toxicol. 2021, 157, 112582. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Li, Y.K.; Song, H.C.; Tao, Y.S.; Russo, N. Phenolic matrix effect on aroma formation of terpenes during simulated fermented beverages fermentation—Part I: Phenolic acids. Food Chem. 2021, 341, 128288. [Google Scholar] [CrossRef]
- Shen, W.; Liao, S.; Zou, Y.; Liu, F.; Shi, Y.; Liu, J.; Xiao, Y. Determination of total polyphenols and phenolic compounds in Mulberry leaves of Different mulberry germplasm resources. Sci. Seric. 2014, 40, 493–497. [Google Scholar]
- Zhao, H.; Chen, D.; Deng, L.; Lei, J.; Li, Y.; Zhang, L. Study on the Changes of Bioactive Substances and Antioxidant Activities in Fermentation process of Mulberry dried red Residue. Sci. Technol. Food Ind. 2015, 36, 182–185. [Google Scholar]
- Ravindra, S.; Kumar, J.S.; Badoni, S.R.; Kumar, D.S. Health benefits and limitations of rutin—A natural flavonoid with high nutraceutical value. Phytochem. Lett. 2021, 46, 119–128. [Google Scholar]
- Chen, H.W.; Lin, J.R. The summary of γ-aminobutyric acid (GABA) in mulberry leaf (Morata us alba L.). Sci. Technol. Food Ind. 2008, 8, 298–300 + 304. [Google Scholar]
- Yang, C.; Xing, Z.; Li, J.; Li, S.; Yu, J.; Wang, J. Effects of different fermentation conditions on phytase and GABA in brown rice. Food. Ind. 2021, 42, 19–24. [Google Scholar]
- Gao, X.; Liu, E.; Zhang, J.; Yang, M.; Chen, S.; Liu, Z.; Ma, H.; Hu, F. Effects of sonication during moromi fermentation on antioxidant activities of compounds in raw soy sauce. LWT-Food Sci Technol. 2019, 116, 108605. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Ren, J.; Wang, L.W.; Li, J.J.; Wang, M.Z.; Wang, L.Y.; Zhu, B.Q.; Zhang, B.L. Evolution of sensory attributes and physicochemical indexes of Gouqi fermented wine under different aging treatments and their correlations. J. Food Process. Preserv. 2019, 43, e13873. [Google Scholar] [CrossRef]
- Jun, Z.; Xin, Y.; Xin, G.; Tang, L.; Fei, L.; Ying, X.; Xiang, Z.; Yu, L. Content Determination and Principal Component Analysis of Free Amino Acids in Leaves of 15 Mulberry Varieties Collected in Different Seasons. Sci. Seric. 2016, 42, 131–142. [Google Scholar]
- Hou, Y.; Yang, Z.; Zhang, M.; Liu, S.; Jiang, X.; Shi, R.; Yang, X. Effects of different amino acids on simulated grape juice fermentation. China Brew. 2021, 40, 95–101. [Google Scholar]
- Phuong, H.L.; Liesa, V.; Thien, T.L.; Katleen, R. Implementation of HPLC Analysis for γ-Aminobutyric Acid (GABA) in Fermented Food Matrices. Food Anal. Methods 2020, 13, 1190–1201. [Google Scholar]
- Bai, J.; Baker, S.M.; Goodrich-Schneider, R.M.; Montazeri, N.; Sarnoski, P.J. Aroma Profile Characterization of Mahi-Mahi and Tuna for Determining Spoilage Using Purge and Trap Gas Chromatography-Mass Spectrometry. J. Food Sci. 2019, 84, 481–489. [Google Scholar] [CrossRef]
- Cheng, K.; Zhang, M.; Huang, L.; Zhou, H.; Yang, H. Isolation and identification of non-Saccharomyces cerevisiae from red yeast and its effect on flavor components of yellow rice fermented beverages. J. Nucl. Agric. Sci. 2021, 35, 1410–1419. [Google Scholar]
- Gabriella, D.; Jose, L.R.; Sarah, F.; Antonio, G.; Gianfranco, D.; Andrea, M. Color mutations alter the biochemical composition in the San Marzano tomato fruit. Metabolites 2020, 10, 110. [Google Scholar]
- Zhang, J.Q.; Chen, C.; Fu, X. Fructus mori L. polysaccharide-iron chelates formed by self-embedding with iron(iii) as the core exhibit good antioxidant activity. Food Funct. 2019, 10, 3150–3160. [Google Scholar] [CrossRef] [PubMed]
- Januszek, M.; Satora, P.; Tarko, T. Oenological Characteristics of Fermented Apple Musts and Volatile Profile of Brandies Obtained from Different Apple Cultivars. Biomolecules 2020, 10, 853. [Google Scholar] [CrossRef]
- Peng, O.; Zheng, H.J.; Meng, K.; Zhu, Y.M.; Zhu, W.X.; Zhu, H.Y.; Shen, C.; Fu, J.W.; Nabil, E.; Xie, G.F.; et al. The way of Qu-making significantly affected the volatile flavor compounds in Huangjiu (Chinese rice fermented beverages) during different brewing stages. Food Sci. Nutr. 2022, 10, 2255–2270. [Google Scholar] [CrossRef]
- Zhao, Z.; Sugimachi, M.; Yoshizaki, Y.; Yin, X.; Han, X.; Okutsu, K.; Futagami, T.; Tamaki, H.; Takamine, K. Impact of solid-state saccharification on the flavor of rice-flavor baijiu. J. Food Sci. 2021, 86, 4958–4968. [Google Scholar] [CrossRef]
- Zhang, X.R. The Characteristics in the Process of Mulberry Fermented Beverages Fermented Flavor Analysis and Antioxidant Activity in Vitro Studies. Master’s Thesis, Shenyang Agricultural University, Shenyang, Liaoning, China, 20 December 2020. [Google Scholar]
Parameters | Control | 1% | 2% | 3% |
---|---|---|---|---|
Alcohol (%) | 12.20 ± 0.81 a | 12.20 ± 0.46 a | 12.80 ± 0.37 a | 12.20 ± 0.63 a |
Volatile acid (g acetic acid/L) | 0.49 ± 0.11 b | 1.03 ± 0.24 a | 0.95 ± 0.12 a | 1.00 ± 0.38 a |
Total SO2 (mg/L) | 15.00 ± 1.00 c | 22.00 ± 1.56 a | 18.00 ± 1.25 b | 18.00 ± 1.06 b |
Free SO2 (mg/L) | 4.20 ± 0.20 c | 7.01 ± 0.41 a | 7.01 ± 0.58 a | 5.61 ± 0.32 b |
pH | 3.90 ± 0.02 d | 4.04 ± 0.01 c | 4.10 ± 0.01 b | 4.17 ± 0.01 a |
Parameter | Additive Amount | Time (Day) | |||||
---|---|---|---|---|---|---|---|
0 | 1 | 3 | 5 | 7 | 9 | ||
Total sugar (mg/mL) | Control | 132.19 ± 12.00 a | 77.48 ± 4.52 Bb | 9.74 ± 0.06 Ac | 3.74 ± 0.05 Bc | 3.93 ± 0.27 Bc | 3.34 ± 0.17 Bc |
1% | 132.19 ± 12.00 a | 60.97 ± 2.55 Cb | 5.15 ± 0.35 Cc | 3.54 ± 0.04 Bc | 3.78 ± 0.11 Bc | 4.52 ± 0.30 Ac | |
2% | 132.19 ± 12.00 a | 66.78 ± 3.54 Cb | 5.71 ± 0.16 BCc | 4.64 ± 0.21 Ac | 3.87 ± 0.18 Bc | 4.52 ± 0.27 Ac | |
3% | 132.19 ± 12.00 a | 103.70 ± 2.96 Ab | 6.27 ± 0.30 Bc | 4.12 ± 0.08 Ac | 5.20 ± 0.2 Ac | 5.08 ± 0.01 Ac | |
Phenolic family | |||||||
Total phenolics (mg GAE/g DW) | Control | 1.78 ± 0.01 a | 1.73 ± 0.05 Aab | 1.69 ± 0.01 Abc | 1.64 ± 0.01 Ac | 1.62 ± 0.01 Ac | 1.62 ± 0.03 Ac |
1% | 1.78 ± 0.01 a | 1.73 ± 0.02 Ab | 1.61 ± 0.02 Bc | 1.61 ± 0.01 Bc | 1.61 ± 0.01 Ac | 1.62 ± 0.01 Ac | |
2% | 1.78 ± 0.01 a | 1.74 ± 0.01 Aa | 1.63 ± 0.02 Bb | 1.60 ± 0.00 Bb | 1.60 ± 0.01 Ab | 1.60 ± 0.03 Ab | |
3% | 1.78 ± 0.01 a | 1.75 ± 0.03 Aa | 1.65 ± 0.01 Bb | 1.59 ± 0.05 Bc | 1.60 ± 0.05 Abc | 1.61 ± 0.02 Abc | |
Total anthocyanins (mg/mL) | Control | 1.14 ± 0.00 a | 0.70 ± 0.02 Ab | 0.52 ± 0.03 Ac | 0.46 ± 0.03 Ad | 0.39 ± 0.00 Ae | 0.42 ± 0.03 Ae |
1% | 1.14 ± 0.00 a | 0.55 ± 0.04 Bb | 0.44 ± 0.00 Ac | 0.42 ± 0.02 ABc | 0.33 ± 0.01 Bd | 0.37 ± 0.01 Ad | |
2% | 1.14 ± 0.00 a | 0.55 ± 0.00 Bb | 0.41 ± 0.06 Ac | 0.38 ± 0.01 Bcd | 0.31 ± 0.00 Bcd | 0.37 ± 0.00 Ad | |
3% | 1.14 ± 0.00 a | 0.60 ± 0.04 Bb | 0.41 ± 0.01 Ac | 0.36 ± 0.02 Bcd | 0.33 ± 0.01 Bd | 0.33 ± 0.02 Ad | |
Monomeric anthocyanins (AU) | Control | 17.45 ± 0.37 a | 13.23 ± 0.11 Ab | 8.43 ± 0.14 Ac | 7.1 ± 0.03 Ad | 6.64 ± 0.17 Ad | 6.67 ± 0.11 Ad |
1% | 17.45 ± 0.37 a | 9.04 ± 0.46 Cb | 6.67 ± 0.25 Bc | 5.95 ± 0.25 Bc | 5.11 ± 0.25 Bd | 5.02 ± 0.04 Bd | |
2% | 17.45 ± 0.37 a | 10.35 ± 0.25 BCb | 4.98 ± 0.45 Cc | 4.29 ± 0.23 Cc | 4.08 ± 0.06 Cc | 4.09 ± 0.01 Cc | |
3% | 17.45 ± 0.37 a | 11.25 ± 0.84 Bb | 4.25 ± 0.25 Cc | 3.69 ± 0.04 Dc | 4.35 ± 0.17 Cc | 4.14 ± 0.23 Cc | |
Polymeric anthocyanins (AU) | Control | 3.69 ± 0.13 a | 3.53 ± 0.08 Aa | 3.24 ± 0.18 Aab | 3.31 ± 0.21 Aab | 2.97 ± 0.10 Ab | 2.91 ± 0.04 Ab |
1% | 3.69 ± 0.13 a | 2.64 ± 0.20 Bb | 2.43 ± 0.05 Bb | 2.53 ± 0.02 Bb | 1.92 ± 0.01 Bc | 1.95 ± 0.16 Bc | |
2% | 3.69 ± 0.13 a | 2.58 ± 0.22 Bb | 2.10 ± 0.04 Bc | 2.10 ± 0.20 Cc | 1.57 ± 0.02 Cd | 1.61 ± 0.02 Cd | |
3% | 3.69 ± 0.13 a | 2.65 ± 0.25 Bb | 2.16 ± 0.15 Bc | 1.90 ± 0.01 Cc | 1.52 ± 0.04 Cd | 1.4 ± 0.01 Cd | |
Total anthocyanins (AU) | Control | 20.2 ± 1.22 a | 16.61 ± 0.83 Ab | 11.28 ± 0.04 Ac | 10.21 ± 0.01 Acd | 9.32 ± 0.17 Ad | 8.36 ± 0.09 Ad |
1% | 20.2 ± 1.22 a | 11.62 ± 0.59 Bb | 8.84 ± 0.44 Bc | 8.07 ± 0.21 Bcd | 6.98 ± 0.25 Bd | 6.29 ± 0.28 Bd | |
2% | 20.2 ± 1.22 a | 11.70 ± 0.76 Bb | 6.725 ± 0.28 Cc | 6.12 ± 0.12 Cc | 5.22 ± 0.36 Cc | 5.62 ± 0.08 Cc | |
3% | 20.2 ± 1.22 a | 13.15 ± 0.69 Bb | 6.17 ± 0.50 Cc | 5.49 ± 0.03 Dc | 5.56 ± 0.26 Cc | 5.46 ± 0.24 Cc | |
Total flavonols (mg RE/g DW) | Control | 0.23 ± 0.00 a | 0.22 ± 0.02 Ba | 0.23 ± 0.00 Ba | 0.22 ± 0.01 Ba | 0.21 ± 0.00 Ba | 0.13 ± 0.01 Bb |
1% | 0.23 ± 0.00 b | 0.27 ± 0.01 Aa | 0.25 ± 0.01 Bb | 0.16 ± 0.00 Cd | 0.20 ± 0.00 Cc | 0.23 ± 0.01 Ab | |
2% | 0.23 ± 0.00 bc | 0.29 ± 0.01 Aa | 0.26 ± 0.02 Bb | 0.17 ± 0.01 Cd | 0.21 ± 0.00 BCc | 0.24 ± 0.01 Ab | |
3% | 0.23 ± 0.00 c | 0.29 ± 0.02 Aab | 0.31 ± 0.02 Aa | 0.25 ± 0.00 Abc | 0.24 ± 0.00 Ac | 0.25 ± 0.02 Abc | |
Tartaric esters (mg caffeic acid/mL) | Control | 0.30 ± 0.00 a | 0.29 ± 0.01 Ba | 0.30 ± 0.00 Ca | 0.29 ± 0.01 Ba | 0.30 ± 0.00 Da | 0.22 ± 0.02 Cb |
1% | 0.30 ± 0.00 c | 0.35 ± 0.00 ABa | 0.36 ± 0.02 Ba | 0.23 ± 0.00 Cd | 0.32 ± 0.01 Cb | 0.29 ± 0.01 Bc | |
2% | 0.30 ± 0.00 b | 0.40 ± 0.03 Aa | 0.37 ± 0.01 Ba | 0.27 ± 0.00 Bb | 0.35 ± 0.00 Ba | 0.36 ± 0.02 Aa | |
3% | 0.30 ± 0.00 b | 0.41 ± 0.03 Aa | 0.47 ± 0.04 Aa | 0.39 ± 0.01 Aa | 0.41 ± 0.01 Aa | 0.40 ± 0.02 Aa | |
Color | |||||||
CI | Control | 3.31 ± 0.33 a | 2.92 ± 0.14 Aa | 2.17 ± 0.08 Ab | 2.17 ± 0.23 Ab | 2.03 ± 0.03 Ab | 1.99 ± 0.04 Ab |
1% | 3.31 ± 0.33 a | 2.16 ± 004 Bb | 1.71 ± 0.09 Bc | 1.79 ± 0.03 Bc | 1.48 ± 0.07 Bc | 1.48 ± 0.02 Bc | |
2% | 3.31 ± 0.33 a | 2.15 ± 0.15 Bb | 1.42 ± 0.12 Bc | 1.42 ± 0.03 Cc | 1.33 ± 0.05 BCc | 1.42 ± 0.00 Cc | |
3% | 3.31 ± 0.33 a | 2.67 ± 0.13 Ab | 1.40 ± 0.02 Bc | 1.36 ± 0.00 Cc | 1.21 ± 0.08 Cc | 1.14 ± 0.00 Dc | |
Red% | Control | 60.41 ± 1.00 a | 57.98 ± 0.30 ABb | 54.40 ± 0.l4 Ac | 53.31 ± 0.51 Acd | 52.3 5± 0.40 Ade | 51.15 ± 0.57 Ae |
1% | 60.41 ± 1.00 a | 58.62 ± 0.03 Ab | 52.49 ± 0.99 Bc | 50.92 ± 0.26 Bc | 51.08 ± 0.14 Bc | 50.56 ± 0.17 Ac | |
2% | 60.41 ± 1.00 a | 57.01 ± 0.57 Bb | 51.70 ± 0.45 BCc | 49.19 ± 0.43 Cd | 48.82 ± 0.04 Cd | 49.28 ± 0.17 Bd | |
3% | 60.41 ± 1.00 a | 57.31 ± 0.36 ABb | 50.18 ± 0.05 Cc | 47.96 ± 0.14 Dd | 48.66 ± 0.12 Cd | 47.72 ± 0.12 Cd | |
Yellow% | Control | 31.93 ± 0.27 f | 32.35 ± 0.10 Be | 36.89 ± 0.04 Cd | 37.99 ± 0.08 Dc | 38.79 ± 0.24 Db | 39.16 ± 0.14 Da |
1% | 31.93 ± 0.27 d | 33.62 ± 0.06 Ac | 38.87 ± 0.93 Bb | 39.69 ± 0.28 Cab | 40.09 ± 0.15 Cab | 40.44 ± 0.27 Ca | |
2% | 31.93 ± 0.27 e | 33.77 ± 0.07 Ad | 39.43 ± 0.09 ABc | 40.91 ± 0.11 Bb | 41.51 ± 0.02 Ba | 41.69 ± 0.00 Ba | |
3% | 31.93 ± 0.27 d | 33.75 ± 0.55 Ac | 40.59 ± 0.21 Ab | 42.83 ± 0.05 Aa | 43.04 ± 0.67 Aa | 42.95 ± 0.19 Aa | |
Blue% | Control | 7.66 ± 0.73 b | 9.66 ± 0.40 Aa | 8.71 ± 0.41 Aab | 8.70 ± 0.43 Aab | 8.91 ± 0.16 ABab | 9.70 ± 0.43 Aa |
1% | 7.66 ± 0.73 b | 7.76 ± 0.03 Bb | 8.64 ± 0.06 Aa | 9.40 ± 0.02 Aa | 8.83 ± 0.01 ABa | 9.00 ± 0.10 Aa | |
2% | 7.66 ± 0.73 b | 9.22 ± 0.65 Aab | 8.87 ± 0.36 Aab | 9.90 ± 0.54 Aa | 9.67 ± 0.06 Aa | 9.04 ± 0.17 Aab | |
3% | 7.66 ± 0.73 b | 8.94 ± 0.20 Aa | 9.23 ± 0.15 Aa | 9.20 ± 0.09 Aa | 8.30 ± 0.55 Bab | 9.33 ± 0.31 Aa | |
Tint | Control | 0.53 ± 0.01 f | 0.56 ± 0.00 Be | 0.68 ± 0.00 Cd | 0.71 ± 0.01 Dc | 0.74 ± 0.01 Db | 0.77 ± 0.01 Da |
1% | 0.53 ± 0.01 d | 0.57 ± 0.00 ABc | 0.74 ± 0.03 Bb | 0.78 ± 0.01 Cab | 0.78 ± 0.01 Cab | 0.80 ± 0.01 Ca | |
2% | 0.53 ± 0.01 d | 0.59 ± 0.00 Ac | 0.76 ± 0.01 ABb | 0.83 ± 0.01 Ba | 0.85 ± 0.00 Ba | 0.85 ± 0.00 Ba | |
3% | 0.53 ± 0.01 d | 0.59 ± 0.01Ac | 0.81 ± 0.00 Ab | 0.89 ± 0.00 Aa | 0.88 ± 0.02 Aa | 0.90 ± 0.00 Aa | |
Antioxidant activity | |||||||
ABTS+ (μmol Trolox/L) | Control | 155.36 ± 11.81 b | 206.04 ± 0.84 Aa | 220.95 ± 5.06 Aa | 228.70 ± 14.33 Aa | 228.11 ± 1.69 Aa | 229.90 ± 5.90 Aa |
1% | 155.36 ± 11.81 d | 210.22 ± 1.69 Ac | 212.01 ± 0.84 Ac | 223.93 ± 2.53 Abc | 235.86 ± 4.22 Ab | 255.54 ± 8.43 Aa | |
2% | 155.36 ± 11.81 d | 209.02 ± 13.49 Ac | 214.99 ± 8.43 Abc | 238.84 ± 1.69 Aab | 243.01 ± 2.53 Aab | 256.13 ± 12.65 Aa | |
3% | 155.36 ± 11.81 c | 218.57 ± 1.69 Ab | 228.11 ± 11.81 Ab | 241.82 ± 7.59 Aab | 242.42 ± 11.81 Aab | 262.69 ± 6.75 Aa | |
FRAP (μmol Fe2+/mL) | Control | 17.58 ± 1.69 c | 31.67 ± 1.86 Aa | 25.76 ± 1.52 Ab | 25.84 ± 1.19 Ab | 21.73 ± 1.24 ABbc | 19.65 ± 1.02 Bc |
1% | 17.58 ± 1.69 b | 24.73 ± 1.75 Ba | 19.10 ± 1.47 Bb | 18.70 ± 1.36 Bb | 17.46 ± 1.75 Bb | 18.86 ± 0.68 Bb | |
2% | 17.58 ± 1.69 b | 22.45 ± 1.13 Ba | 23.69 ± 0.40 Aa | 20.57 ± 1.98 ABab | 20.65 ± 0.62 ABab | 20.41 ± 0.17 Bab | |
3% | 17.58 ± 1.69 b | 22.97 ± 0.17 Ba | 26.44 ± 1.58 Aa | 26.48 ± 1.98 Aa | 25.05 ± 2.42 Aa | 23.12 ± 0.96 Aa |
Parameter | Additive Amount | Time (Day) | ||
---|---|---|---|---|
0 | 5 | 9 | ||
Anthocyanins | ||||
Cyanidin-3-O-glucoside (mg/L) | Control | 548.71 ± 43.20 a | 78.97 ± 0.86 Ab | 50.18 ± 0.38 Ab |
1% | 548.71 ± 43.20 a | 49.26 ± 2.77 Bb | 30.25 ± 0.41 Bb | |
2% | 548.71 ± 43.20 a | 42.46 ± 3.61 Cb | 25.56 ± 2.31 Cb | |
3% | 548.71 ± 43.20 a | 33.15 ± 1.07 Db | 18.35 ± 0.26 Db | |
Cyanidin-3-O-rutinoside (mg/L) | Control | 617.03 ± 28.24 a | 370.30 ± 6.02 Ab | 322.76 ± 4.43 Ab |
1% | 617.03 ± 28.24 a | 305.34 ± 26.62 Bb | 258.30 ± 9.50 Bb | |
2% | 617.03 ± 28.24 a | 296.79 ± 18.81 Bb | 253.57 ± 12.58 Bb | |
3% | 617.03 ± 28.24 a | 258.06 ± 4.11 Bb | 236.44 ± 1.72 Bb | |
Phenolic acids | ||||
Protocatechuic acid (mg/L) | Control | 17.95 ± 0.27 c | 43.17 ± 2.15 Bb | 73.33 ± 1.17 Aa |
1% | 17.95 ± 0.27 c | 45.14 ± 0.48 Bb | 71.35 ± 7.00 Aa | |
2% | 17.95 ± 0.27 c | 44.36 ± 4.35 Bb | 74.87 ± 2.79 Aa | |
3% | 17.95 ± 0.27 c | 58.78 ± 0.25 Ab | 77.26 ± 1.81 Aa | |
p-Hydroxybenzoic acid (mg/L) | Control | 7.14 ± 0.62 c | 15.50 ± 0.58 Cb | 24.15 ± 0.17 Ba |
1% | 7.14 ± 0.62 c | 24.54 ± 0.54 Bb | 30.37 ± 1.78 Aa | |
2% | 7.14 ± 0.62 c | 25.61 ± 1.05 Bb | 32.04 ± 1.90 Aa | |
3% | 7.14 ± 0.62 c | 33.53 ± 0.90 Aa | 32.88 ± 0.41 Aa | |
Caffeic acid (mg/L) | Control | 3.09 ± 0.08 b | 20.02 ± 0.69 Da | 19.22 ± 0.37 Da |
1% | 3.09 ± 0.08 b | 42.42 ± 1.43 Ca | 44.38 ± 2.31 Ca | |
2% | 3.09 ± 0.08 b | 51.98 ± 2.42 Bb | 58.94 ± 1.64 Ba | |
3% | 3.09 ± 0.08 b | 65.09 ± 3.86 Aa | 66.81 ± 2.51 Aa | |
4-Hydroxycinnamic acid (mg/L) | Control | 5.36 ± 0.36 c | 15.09 ± 0.34 Ab | 16.91 ± 0.37 Aa |
1% | 5.36 ± 0.36 b | 16.86 ± 0.42 Aa | 16.47 ± 1.01 Aa | |
2% | 5.36 ± 0.36 b | 16.84 ± 1.20 Aa | 15.21 ± 1.24 Aa | |
3% | 5.36 ± 0.36 b | 16.95 ± 1.48 Aa | 16.45± 0.44 Aa | |
Veratric acid (mg/L) | Control | 2.26 ± 0.22 b | 5.38 ± 0.22 Ba | 2.52 ± 0.03 Bb |
1% | 2.26 ± 0.22 b | 6.54 ± 0.59 Aa | 2.89 ± 0.11 Ab | |
2% | 2.26 ± 0.22 c | 6.92 ± 0.16 Aa | 2.93 ± 0.13 Ab | |
3% | 2.26 ± 0.22 b | 7.84 ± 0.51 Aa | 3.08 ± 0.08 Ab | |
Flavonols | ||||
Rutin (mg/L) | Control | 3.82 ± 0.17 b | 6.07 ± 0.28 Da | 3.21 ± 0.04 Dc |
1% | 3.82 ± 0.17 c | 18.70 ± 0.22 Ca | 14.56 ± 0.87 Cb | |
2% | 3.82 ± 0.17 b | 25.98 ± 0.63 Ba | 26.46 ± 1.18 Ba | |
3% | 3.82 ± 0.17 c | 33.24 ± 1.61 Ab | 39.10 ± 2.16 Aa | |
Myricetin (mg/L) | Control | 0.29 ± 0.03 b | 0.38 ± 0.00 Da | 0.15 ± 0.01 Dc |
1% | 0.29 ± 0.03 c | 3.52 ± 0.00 Ca | 2.26 ± 0.20 Cb | |
2% | 0.29 ± 0.03 b | 5.90 ± 0.53 Ba | 5.36 ± 0.06 Ba | |
3% | 0.29 ± 0.03 b | 8.85 ± 0.33 Aa | 9.02 ± 0.37 Aa | |
Quercetin (mg/L) | Control | 0.45 ± 0.01 c | 2.74 ± 0.14 Db | 3.47 ± 0.04 Ca |
1% | 0.45 ± 0.01 b | 9.55 ± 0.23 Ca | 10.37 ± 0.53 Ba | |
2% | 0.45 ± 0.01 c | 14.63 ± 0.37 Bb | 20.14 ± 0.08 Aa | |
3% | 0.45 ± 0.01 c | 17.45 ± 0.96 Ab | 22.39 ± 2.03 Aa | |
Dihydroquercetin (mg/L) | Control | 7.15 ± 0.01 b | 24.70 ± 0.77 Ba | 26.76 ± 1.49 Ca |
1% | 7.15 ± 0.01 b | 30.74 ± 2.82 Aa | 33.44 ± 1.61 Ba | |
2% | 7.15 ± 0.01 b | 32.38 ± 0.20 Aa | 33.31 ± 1.43 Ba | |
3% | 7.15 ± 0.01 c | 34.60 ± 1.43 Ab | 39.30 ± 0.72 Aa |
Amino Acid Species | Control (mg/L) | 1% (mg/L) | 2% (mg/L) | 3% (mg/L) |
---|---|---|---|---|
Asp | 6.30 ± 0.51 d | 16.61 ± 1.21 c | 22.81 ± 2.01 b | 30.71 ± 2.45 a |
Thr | 6.47 ± 0.62 d | 14.62 ± 1.24 c | 19.15 ± 1.28 b | 36.13 ± 3.12 a |
Ser | 6.13 ± 0.54 d | 12.42 ± 0.76 c | 16.43 ± 1.56 b | 22.47 ± 1.80 a |
Glu | 41.87 ± 3.46 d | 59.87 ± 4.83 c | 71.18 ± 4.68 b | 86.18 ± 6.45 a |
Gly | 28.90 ± 2.72 a | 30.18 ± 2.58 a | 26.95 ± 2.13 a | 33.59 ± 2.67 a |
Ala | 24.25 ± 2.35 c | 40.44 ± 3.45 b | 46.34 ± 3.67 b | 59.48 ± 3.26 a |
Cys | 21.03 ± 2.06 b | 36.88 ± 2.68 a | 35.74 ± 2.89 a | 37.99 ± 3.12 a |
Val | 9.17 ± 0.83 d | 17.56 ± 1.21 c | 21.75 ± 1.56 b | 26.00 ± 1.68 a |
Met | 3.50 ± 0.34 d | 8.02 ± 0.56 c | 10.16 ± 0.98 b | 13.63 ± 1.2 a |
Ile | 3.23 ± 0.32 d | 6.61 ± 0.47 c | 8.27 ± 0.68 b | 11.19 ± 1.04 a |
Leu | 10.24 ± 0.99 d | 26.65 ± 2.12 c | 34.55 ± 3.02 b | 47.48 ± 3.87 a |
Tyr | 3.75 ± 0.36 d | 8.78 ± 0.68 c | 11.42 ± 1.02 b | 15.46 ± 1.32 a |
Phe | 24.59 ± 2.31 d | 45.17 ± 3.45 c | 54.90 ± 2.65 b | 69.77 ± 3.67 a |
Lys | 13.09 ± 1.21 d | 33.55 ± 3.02 c | 45.79 ± 2.03 b | 63.37 ± 3.89 a |
His | 4.24 ± 0.32 d | 9.85 ± 0.63 c | 13.48 ± 1.69 b | 18.12 ± 1.03 a |
Arg | 16.25 ± 1.57 d | 42.88 ± 2.89 c | 58.29 ± 3.45 b | 77.66 ± 4.68 a |
Pro | 11.62 ± 0.98 c | 65.00 ± 1.21 b | 75.41 ± 2.65 a | 71.17 ± 3.24 a |
Total | 234.63 ± 21.13 d | 475.07 ± 32.99 c | 572.61 ± 37.95 b | 720.37 ± 48.30 a |
No. | Volatile Compound | Control | 1% | 2% | 3% |
---|---|---|---|---|---|
Alcohols | |||||
1 | Glycerin | (2.44 ± 0.06) × 10 7,c | (2.57 ± 0.07) × 10 7,c | (4.74 ± 0.38) × 10 7,b | (5.61 ± 0.38) × 10 7,a |
2 | 1-Propanol, 2-methyl- | (5.15 ± 0.12) × 10 8,b | (5.16 ± 0.12) × 10 8,b | (7.27 ± 0.65) × 10 8,a | (3.34 ± 0.20) × 10 8,c |
3 | 1-Butanol, 3-methyl- | (1.07 ± 0.08) × 10 9,b | (1.63 ± 0.11) × 10 9,a | (1.87 ± 0.06) × 10 9,a | (1.19 ± 0.11) × 10 9,b |
4 | 2-Octanol | (4.80 ± 0.08) × 10 6,c | (6.80 ± 0.65) × 10 6,ab | (7.53 ± 0.70) × 10 6,a | (5.68 ± 0.12) × 10 6,bc |
5 | Phenylethyl alcohol | (1.09 ± 0.06) × 10 7,b | (1.07 ± 0.09) × 10 7,b | (1.25 ± 0.03) × 10 7,b | (1.06 ± 0.13) × 10 7,a |
6 | (3-Methyl-oxiran-2-yl)-methanol | ND | (1.63 ± 0.12) × 10 9 | ND | ND |
Total | 1.63 × 10 9 | 3.82 × 10 9 | 2.66 × 10 9 | 1.60 × 10 9 | |
Esters | |||||
7 | Acetic acid, hydroxy-, ethyl ester | ND | (2.73 ± 0.10) × 10 6 | ND | ND |
8 | 1-Butanol, 3-methyl-, acetate | (3.24 ± 0.19) × 10 8,c | (1.01 ± 0.04) × 10 9,a | (9.87 ± 0.22) × 10 8,a | (8.17 ± 0.62) × 10 8,b |
9 | Acetic acid, hexyl ester | ND | (5.34 ± 0.07) × 10 6 | ND | ND |
10 | Acetic acid, heptyl ester | ND | (5.27 ± 0.29) × 10 6 | ND | ND |
11 | Acetic acid, 2-phenylethyl ester | (8.88 ± 0.05) × 10 6 | ND | ND | ND |
12 | Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester | (8.51 ± 0.23) × 10 6,a | ND | (7.29 ± 0.08) × 10 6,b | ND |
13 | Butanoic acid, ethyl ester | (5.46 ± 0.08) × 10 7,d | (2.36 ± 0.08) × 10 8,a | (1.09 ± 0.01) × 10 8,b | (7.72 ± 0.45) × 10 7,c |
14 | Hexanoic acid, ethyl ester | (1.11 ± 0.02) × 10 8,b | (3.34 ± 0.29) × 10 8,a | (3.32 ± 0.12) × 10 8,a | (3.45 ± 0.23) × 10 8,a |
15 | 2-Hexenoic acid, ethyl ester | ND | ND | ND | (1.21 ± 0.21) × 10 7 |
16 | Heptanoic acid, ethyl ester | ND | (1.69 ± 0.11) × 10 7,a | (1.55 ± 0.08) × 10 7,ab | (1.40 ± 0.08) × 10 7,b |
17 | Octanoic acid, methyl ester | ND | (3.07 ± 0.11) × 10 6,b | (3.34 ± 0.06) × 10 6,a | (3.14 ± 0.06) × 10 6,b |
18 | Octanoic acid, ethyl ester | (3.73 ± 0.21) × 10 8,c | (6.10 ± 0.57) × 10 8,a | (5.16 ± 0.25) × 10 8,ab | (4.50 ± 0.31) × 10 8,bc |
19 | Nonanoic acid, ethyl ester | ND | (4.45 ± 0.23) × 10 6,b | (1.43 ± 0.12) × 10 7,a | (3.35 ± 0.12) × 10 6,b |
20 | Ethyl 9-decenoate | (1.30 ± 0.08) × 10 8 | ND | ND | ND |
21 | Decanoic acid, ethyl ester | (1.80 ± 0.06) × 10 8,d | (2.82 ± 0.02) × 10 8,a | (2.41 ± 0.03) × 10 8,b | (2.04 ± 0.12) × 10 8,c |
22 | Dodecanoic acid, ethyl ester | (1.90 ± 0.14) × 10 7,a | (9.40 ± 0.22) × 10 6,c | (1.26 ± 0.06) × 10 7,b | (1.22 ± 0.06) × 10 7,b |
23 | 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate | ND | ND | ND | (1.71 ± 0.04) × 10 7 |
Total | 1.21 × 10 9 | 2.52 × 10 9 | 2.24 × 10 9 | 1.96 × 10 9 | |
Aldehydes and ketones | |||||
24 | Acetaldehyde | (1.75 ± 0.04) × 10 8,c | (1.71 ± 0.09) × 10 9,a | (4.26 ± 0.38) × 10 8,b | (4.73 ± 0.44) × 10 8,b |
25 | 5-Hydroxymethylfurfural | (4.58 ± 0.14) × 10 7,b | (3.27 ± 0.25) × 10 8,a | (5.31 ± 0.12) × 10 7,b | (6.19 ± 0.53) × 10 7,b |
Alkanes | |||||
26 | Ethane, 1,1-diethoxy- | ND | (1.63 ± 0.12) × 10 9 | ND | ND |
27 | Pentane, 1-(1-ethoxyethoxy)- | ND | (1.20 ± 0.07) × 10 7 | ND | ND |
28 | Tridecane | ND | (1.62 ± 0.03) × 10 6,a | (1.53 ± 0.003) × 10 6,b | ND |
29 | Tetradecane | (2.19 ± 0.05) × 10 6,b | (5.04 ± 0.27) × 10 6,a | (5.12 ± 0.38) × 10 6,a | (2.60 ± 0.07) × 10 6,b |
30 | Pentadecane | (3.84 ± 0.20) × 10 6,b | (1.00 ± 0.12) × 10 7,a | (6.17 ± 0.48) × 10 6,b | (4.25 ± 0.07) × 10 6,b |
31 | Hexadecane | (3.76 ± 0.15) × 10 6,c | (9.24 ± 0.80) × 10 6,a | (6.76 ± 0.20) × 10 6,b | (4.37 ± 0.05) × 10 6,c |
32 | Heptadecane | ND | (3.58 ± 0.23) × 10 6 | ND | ND |
Total | 9.79 × 10 6 | 1.67 × 10 9 | 1.96 × 10 7 | 1.12 × 10 7 | |
Other | |||||
33 | Naphthalene, 2-methyl- | (2.28 ± 0.11) × 10 6,a | (2.17 ± 0.14) × 10 6,a | (2.48 ± 0.19) × 10 6,a | (2.53 ± 0.01) × 10 6,a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, T.; Chen, J.; Xu, F.; Wang, Y.; Zhao, P.; Ding, Y.; Han, Y.; Yang, J.; Tao, Y. Mixed Mulberry Fruit and Mulberry Leaf Fermented Alcoholic Beverages: Assessment of Chemical Composition, Antioxidant Capacity In Vitro and Sensory Evaluation. Foods 2022, 11, 3125. https://doi.org/10.3390/foods11193125
Gao T, Chen J, Xu F, Wang Y, Zhao P, Ding Y, Han Y, Yang J, Tao Y. Mixed Mulberry Fruit and Mulberry Leaf Fermented Alcoholic Beverages: Assessment of Chemical Composition, Antioxidant Capacity In Vitro and Sensory Evaluation. Foods. 2022; 11(19):3125. https://doi.org/10.3390/foods11193125
Chicago/Turabian StyleGao, Tengqi, Jinling Chen, Feng Xu, Yilin Wang, Pengpeng Zhao, Yunfei Ding, Yongbin Han, Jie Yang, and Yang Tao. 2022. "Mixed Mulberry Fruit and Mulberry Leaf Fermented Alcoholic Beverages: Assessment of Chemical Composition, Antioxidant Capacity In Vitro and Sensory Evaluation" Foods 11, no. 19: 3125. https://doi.org/10.3390/foods11193125
APA StyleGao, T., Chen, J., Xu, F., Wang, Y., Zhao, P., Ding, Y., Han, Y., Yang, J., & Tao, Y. (2022). Mixed Mulberry Fruit and Mulberry Leaf Fermented Alcoholic Beverages: Assessment of Chemical Composition, Antioxidant Capacity In Vitro and Sensory Evaluation. Foods, 11(19), 3125. https://doi.org/10.3390/foods11193125