Fluorescent Sensing of Ciprofloxacin and Chloramphenicol in Milk Samples via Inner Filter Effect and Photoinduced Electron Transfer Based on Nanosized Rod-Shaped Eu-MOF
Abstract
:1. Introduction
2. Experimental
2.1. Main Reagents and Materials
2.2. Experimental Instruments
2.3. The Preparation of Eu-MOF
2.4. Fluorescence Detection of Ciprofloxacin and Chloramphenicol
2.5. Determination of Ciprofloxacin and Chloramphenicol in Milk
3. Results and Discussions
3.1. Physical Characterization of Eu-MOF
3.2. Detection Mechanisms
3.3. Optimization of Detection Conditions
3.4. Fluorescence Detection of Ciprofloxacin and Chloramphenicol
3.5. Anti-Interference Performance
3.6. The Practical Application of Fluorescence Sensor Based on Eu-MOF in the Detection of Ciprofloxacin and Chloramphenicol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, N.; Liu, J.; Yang, F.; Lv, S.; Wang, J.; Wang, S. Easy Green Construction of a Universal Sensing Platform Based on Crystalline Polyimide Covalent Organic Frameworks with Sensitive Fluorescence Response to Metal Ions and Antibiotics. ACS Appl. Bio Mater. 2020, 4, 995–1002. [Google Scholar] [CrossRef]
- Jia, P.; Bu, T.; Sun, X.; Liu, Y.; Liu, J.; Wang, Q.; Shui, Y.; Guo, S.; Wang, L. A sensitive and selective approach for detection of tetracyclines using fluorescent molybdenum disulfide nanoplates. Food Chem. 2019, 297, 124969. [Google Scholar] [CrossRef]
- Yuan, C.; He, Z.; Chen, Q.; Wang, X.; Zhai, C.; Zhu, M. Selective and efficacious photoelectrochemical detection of ciprofloxacin based on the self-assembly of 2D/2D g-C3N4/Ti3C2 composites. Appl. Surf. Sci. 2021, 539, 148241. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, F.; Wang, H.; Gao, L.; Wang, Z. A Sensor Based on Au Nanoparticles/Carbon Nitride/Graphene Composites for the Detection of Chloramphenicol and Ciprofloxacin. ECS J. Solid State Sci. Technol. 2018, 7, M201–M208. [Google Scholar] [CrossRef]
- Wang, B.; Pang, M.; Zhao, X.; Xie, K.; Zhang, P.; Zhang, G.; Zhang, T.; Liu, X.; Dai, G. Development and comparison of liquid–liquid extraction and accelerated solvent extraction methods for quantitative analysis of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry eggs. J. Mass Spectrom. 2019, 54, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, Y.; Jin, H.; Pang, B.; Yang, R.; Yan, L.; Jiang, C.; Shao, D.; Shi, J. Fungal In Situ Assembly Gives Novel Properties to CdSxSe1–x Quantum Dots for Sensitive Label-Free Detection of Chloramphenicol. ACS Sustain. Chem. Eng. 2020, 8, 6806–6814. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, M.; Hu, Q.; Cheng, Y.; Guo, Y.; Qian, H.; Yao, W. Selective detection of chloramphenicol in milk based on a molecularly imprinted polymer–surface-enhanced Ramanspectroscopic nanosensor. J. Raman Spectrosc. 2017, 48, 204–210. [Google Scholar] [CrossRef]
- Hussain, A.; Alajmi, M.F.; Ali, I. Determination of chloramphenicol in biological matrices by solid-phase membrane micro-tip extraction and capillary electrophoresis. Biomed. Chromatogr. 2016, 30, 1935–1941. [Google Scholar] [CrossRef]
- Liu, S.; Wu, X.-Z.; Gao, Z.-H.; Jiao, F. On-site solid phase extraction and HPLC determination of chloramphenicol in surface water and sewage. Anal. Methods 2013, 5, 1150–1154. [Google Scholar] [CrossRef]
- Barveen, N.R.; Wang, T.-J.; Chang, Y.-H. Photochemical decoration of silver nanoparticles on silver vanadate nanorods as an efficient SERS probe for ultrasensitive detection of chloramphenicol residue in real samples. Chemosphere 2021, 275, 130115. [Google Scholar] [CrossRef]
- Fedeniuk, R.W.; Mizuno, M.; Neiser, C.; O’Byrne, C. Development of LC–MS/MS methodology for the detection/determination and confirmation of chloramphenicol, chloramphenicol 3-O-β-d-glucuronide, florfenicol, florfenicol amine and thiamphenicol residues in bovine, equine and porcine liver. J. Chromatogr. B 2015, 991, 68–78. [Google Scholar] [CrossRef]
- Vivekanandan, K.; Swamy, M.G.; Prasad, S.; Mukherjee, R. A simple method of isolation of chloramphenicol in honey and its estimation by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 3025–3030. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-W.; Xu, P.; Ding, B.; Liu, Z.-Y.; Zhao, X.-J.; Yang, E.-C. A Highly Stable Luminescent Eu-MOF Exhibiting Efficient Response to Nitrofuran Antibiotics through the Inner Filter Effect and Photoinduced Electron Transfer. Eur. J. Inorg. Chem. 2019, 2019, 5077–5084. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, D. Lanthanide-functionalized metal–organic frameworks as ratiometric luminescent sensors. J. Mater. Chem. C 2020, 8, 12739–12754. [Google Scholar] [CrossRef]
- Gan, Z.; Hu, X.; Xu, X.; Zhang, W.; Zou, X.; Shi, J.; Zheng, K.; Arslan, M. A portable test strip based on fluorescent europium-based metal–organic framework for rapid and visual detection of tetracycline in food samples. Food Chem. 2021, 354, 129501. [Google Scholar] [CrossRef] [PubMed]
- Xing, K.; Fan, R.; Du, X.; Zheng, X.; Zhou, X.; Gai, S.; Wang, P.; Yang, Y. Dye-insertion dynamic breathing MOF as dual-emission platform for antibiotics detection and logic molecular operation. Sens. Actuators B Chem. 2019, 288, 307–315. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Jia, L.; Bi, N.; Bie, H.; Chen, X.; Zhang, C.; Xu, J. Ultrasensitive and visual detection of tetracycline based on dual-recognition units constructed multicolor fluorescent nano-probe. J. Hazard. Mater. 2021, 409, 124935. [Google Scholar] [CrossRef]
- Ti, M.; Li, Y.; Li, Z.; Zhao, D.; Wu, L.; Yuan, L.; He, Y. A ratiometric nanoprobe based on carboxylated graphitic carbon nitride nanosheets and Eu3+ for the detection of tetracyclines. Analyst 2021, 146, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Yang, X.; Peng, Q.; Wang, F.; Zhu, Y.; Hu, X.; Zheng, B.; Du, J.; Xiao, D. A highly sensitive visual sensor for tetracycline in food samples by a double-signal response fluorescent nanohybrid. Food Control 2020, 108, 106832. [Google Scholar] [CrossRef]
- Ye, Y.; Wu, T.; Jiang, X.; Cao, J.; Ling, X.; Mei, Q.; Chen, H.; Han, D.; Xu, J.J.; Shen, Y. Portable Smartphone-Based QDs for the Visual Onsite Monitoring of Fluoroquinolone Antibiotics in Actual Food and Environmental Samples. ACS Appl. Mater. Interfaces 2020, 12, 14552–14562. [Google Scholar] [CrossRef] [PubMed]
- Yan, B. Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal–organic framework hybrids. Inorg. Chem. Front. 2021, 8, 201–233. [Google Scholar] [CrossRef]
- Zhao, Y.; Zeng, H.; Zhu, X.-W.; Lu, W.; Li, D. Metal–organic frameworks as photoluminescent biosensing platforms: Mechanisms and applications. Chem. Soc. Rev. 2021, 50, 4484–4513. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.-B.; Li, R.-X.; Lv, J.; He, T.; Xu, M.-M.; Wang, B.; Xie, L.-H.; Li, J.-R. Two isomeric In(iii)-MOFs: Unexpected stability difference and selective fluorescence detection of fluoroquinolone antibiotics in water. Inorg. Chem. Front. 2020, 7, 1161–1171. [Google Scholar] [CrossRef]
- Li, C.; Zhang, F.; Li, X.; Zhang, G.; Yang, Y. A luminescent Ln-MOF thin film for highly selective detection of nitroimidazoles in aqueous solutions based on inner filter effect. J. Lumin. 2019, 205, 23–29. [Google Scholar] [CrossRef]
- Mao, X.; Liu, S.; Su, B.; Wang, D.; Huang, Z.; Li, J.; Zhang, Y. Luminescent europium(III)-organic framework for visual and on-site detection of hydrogen peroxide via a tablet computer. Microchim. Acta 2020, 187, 416. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, L.; Sun, M.; Wei, P.; Li, G.; Li, Y. Highly sensitive luminescent detection toward polytypic antibiotics by a water-stable and white-light-emitting MOF-76 derivative. Dye. Pigment. 2020, 180, 108444. [Google Scholar] [CrossRef]
- Guo, X.; Pan, Q.; Song, X.; Guo, Q.; Zhou, S.; Qiu, J.; Dong, G. Embedding carbon dots in Eu 3+ -doped metal-organic framework for label-free ratiometric fluorescence detection of Fe 3+ ions. J. Am. Ceram. Soc. 2020, 104, 886–895. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, M.; Tian, F.; Liu, Z. Stable Europium-based Metal–Organic Frameworks for Naked-eye Ultrasensitive Detecting Fluoroquinolones Antibiotics. Inorg. Chem. 2021, 60, 5282–5289. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Xie, Y.; Wang, X.; Li, Y.; Li, G. Highly Water-Stable Dye@Ln-MOFs for Sensitive and Selective Detection toward Antibiotics in Water. ACS Appl. Mater. Interfaces 2019, 11, 21201–21210. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhu, T.; Xu, W.; Liu, L.; Zheng, J.; Gong, X.; Wudl, F. Solution-processed broadband polymer photodetectors with a spectral response of up to 2.5 μm by a low bandgap donor–acceptor conjugated copolymer. J. Mater. Chem. C 2018, 6, 3634–3641. [Google Scholar] [CrossRef]
- Wang, B.; Lv, X.-L.; Feng, D.; Xie, L.-H.; Zhang, J.; Li, M.; Xie, Y.; Li, J.-R.; Zhou, H.-C. Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. J. Am. Chem. Soc. 2016, 138, 6204–6216. [Google Scholar] [CrossRef]
- Yang, M.; Tang, Q.; Meng, Y.; Liu, J.; Feng, T.; Zhao, X.; Zhu, S.; Yu, W.; Yang, B. Reversible “Off–On” Fluorescence of Zn2+-Passivated Carbon Dots: Mechanism and Potential for the Detection of EDTA and Zn2+. Langmuir ACS J. Surf. Colloids 2018, 34, 7767–7775. [Google Scholar] [CrossRef]
- Miao, X.; Yan, X.; Qu, D.; Li, D.; Tao, F.F.; Sun, Z. Red Emissive Sulfur, Nitrogen Codoped Carbon Dots and Their Application in Ion Detection and Theraonostics. ACS Appl. Mater. Interfaces 2017, 9, 18549–18556. [Google Scholar] [CrossRef]
- Lim, S.A.; Ahmed, M.U. A Simple DNA-based Electrochemical Biosensor for Highly Sensitive Detection of Ciprofloxacin Using Disposable Graphene. Anal. Sci. Int. J. Jpn. Soc. Anal. Chem. 2016, 32, 687–693. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Peng, M.; Li, N.; Liu, L. CdSe quantum dots-sensitized FRET system for ciprofloxacin detection. Chem. Phys. Lett. 2020, 740, 137085. [Google Scholar] [CrossRef]
- Garrido, J.M.P.J.; Melle-Franco, M.; Strutyński, K.; Borges, F.; Brett, C.M.A.; Garrido, E.M.P.J. β–Cyclodextrin carbon nanotube-enhanced sensor for ciprofloxacin detection. J. Environ. Sci. Health Part A 2017, 52, 313–319. [Google Scholar] [CrossRef]
- Attia, M.S.; Youssef, A.O.; Ismael, A.M.; Gaafer, R.; Adel, A.; Twfik, A.; Wafeey, A.; Afify, H.G.; Sayed, A. Highly Sensitive Eu3+ Doped in Sol-Gel Matrix Optical Sensor for The Assessment of Ciprofloxacin in Different Real Samples. Egypt J. Chem. 2018, 61, 121–129. [Google Scholar] [CrossRef]
- Chang, C.-C.; Wang, G.; Takarada, T.; Maeda, M. Iodine-Mediated Etching of Triangular Gold Nanoplates for Colorimetric Sensing of Copper Ion and Aptasensing of Chloramphenicol. ACS Appl. Mater. Interfaces 2017, 9, 34518–34525. [Google Scholar] [CrossRef]
- Li, Y.; Dai, H.; Feng, N.; Xie, X.; Zhang, J.; Li, W. Silver chloride nanoparticles-decorated molybdenum disulfide nanosheets for highly sensitive chloramphenicol detection. Mater. Express 2019, 9, 59–64. [Google Scholar] [CrossRef]
Methods | Materials | Analytes | Linear Range | LOD | Ref. |
---|---|---|---|---|---|
Electrochemical | Graphene | Ciprofloxacin | 0.1–100 μM | 0.1 μM | [34] |
Fluorescence | CdSe quantum dots | Ciprofloxacin | 0–120 μM | 0.6 μM | [35] |
Electrochemical | Ciprofloxacin | 10–80 µM | 0.050 μM | [36] | |
Fluorescence | Eu3+ Doped in Sol-Gel Matrix | Ciprofloxacin | 5.0 × 10−3–1.0 μM | 1.65 × 10 −3 μM | [37] |
Colorimetric | Triangular gold nanoplates | Chloramphenicol | 0–2000 μM | 5 μM | [38] |
Electrochemical | Silver chloride/molybdenum disulfide | Chloramphenicol | 4–531 μM | 1.93 μM | [39] |
Fluorescence | Eu-MOF | Ciprofloxacin | 0.1–18 μM | 0.0136 μM | This work |
Chloramphenicol | 5–150 μM | 3.16 μM |
Spiked Concentration (μM) | Eu-MOF | HPLC | Recoveries (%) | RSD (%) | |
---|---|---|---|---|---|
CIP | 2 | 2.001 | 2.152 | 100 | 3.6 |
5 | 4.728 | 6.402 | 94.5 | 4.2 | |
10 | 10.196 | 12.362 | 102 | 9.1 | |
CHL | 10 | 9.704 | 12.106 | 97 | 4.8 |
15 | 16.549 | 16.508 | 110 | 1.5 | |
20 | 20.898 | 20.133 | 104 | 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, X.; Wu, C.; Zhou, Z.; Fu, L.; Bai, Y. Fluorescent Sensing of Ciprofloxacin and Chloramphenicol in Milk Samples via Inner Filter Effect and Photoinduced Electron Transfer Based on Nanosized Rod-Shaped Eu-MOF. Foods 2022, 11, 3138. https://doi.org/10.3390/foods11193138
Yue X, Wu C, Zhou Z, Fu L, Bai Y. Fluorescent Sensing of Ciprofloxacin and Chloramphenicol in Milk Samples via Inner Filter Effect and Photoinduced Electron Transfer Based on Nanosized Rod-Shaped Eu-MOF. Foods. 2022; 11(19):3138. https://doi.org/10.3390/foods11193138
Chicago/Turabian StyleYue, Xiaoyue, Chaoyun Wu, Zijun Zhou, Long Fu, and Yanhong Bai. 2022. "Fluorescent Sensing of Ciprofloxacin and Chloramphenicol in Milk Samples via Inner Filter Effect and Photoinduced Electron Transfer Based on Nanosized Rod-Shaped Eu-MOF" Foods 11, no. 19: 3138. https://doi.org/10.3390/foods11193138
APA StyleYue, X., Wu, C., Zhou, Z., Fu, L., & Bai, Y. (2022). Fluorescent Sensing of Ciprofloxacin and Chloramphenicol in Milk Samples via Inner Filter Effect and Photoinduced Electron Transfer Based on Nanosized Rod-Shaped Eu-MOF. Foods, 11(19), 3138. https://doi.org/10.3390/foods11193138