Plant-Based Innovations for the Transition to Sustainability: A Bibliometric and in-Depth Content Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Descriptive and Scientometric Analysis
3.2. Content Analysis
- Agricultural and environmental innovations;
- Food/feed innovations;
- Pharmaceutical/medicinal innovations;
- Innovations related to technology;
- Economic/business aspects of plant-based innovations.
3.2.1. Agricultural and Environmental Innovations
3.2.2. Food/Feed Innovations
3.2.3. Pharmaceutical/Medicinal Innovations
3.2.4. Technology-Related Innovations
3.2.5. Economic/Business Aspects of Plant-Based Innovations
4. Discussion
5. Conclusions and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Courvisanos, J.; Mackenzie, S. Innovation economics and the role of the innovative entrepreneur in economic theory. J. Innov. Econ. Manag. 2014, 14, 41–61. [Google Scholar] [CrossRef]
- Pérez-Luño, A.; Valle Cabrera, R.; Wiklund, J. Innovation and Imitation as Sources of Sustainable Competitive Advantage. Manag. Res. J. Iberoam. Acad. Manag. 2007, 5, 71–82. [Google Scholar] [CrossRef]
- Edwards-Schachter, M. The nature and variety of innovation. Int. J. Innov. Stud. 2018, 2, 65–79. [Google Scholar] [CrossRef]
- Woodman, R.W.; Sawyer, J.E.; Griffin, R.W. Toward a Theory of Organizational Creativity. Acad. Manag. Rev. 1993, 18, 293–321. [Google Scholar] [CrossRef]
- Tarde, G. L’Invention Considérée Comme Moteur de L’évolution Sociale; V. Giard et Brière: Paris, France, 1902. [Google Scholar]
- Schumpeter, J.A. Business Cycles: A Theoretical, Historical and Statistical Analysis of the Capitalist Process. J. R. Stat. Soc. 1941, 104, 177–180. [Google Scholar] [CrossRef]
- Schumpeter, J.A. Capitalism, Socialism, and Democracy; Harper & Brothers: New York, NY, USA; London, UK, 1942. [Google Scholar]
- Lundvall, B.-Å. Innovation studies: A personal interpretation of ‘The state of the art’. In Innovation Studies: Evolution and Future Challenges; Fagerberg, J., Martin, B.R., Andersen, E.S., Eds.; Oxford University Press Oxford: Oxford, UK, 2013; Volume 21. [Google Scholar]
- OECD. Oslo Manual: Proposed Guidelines for Collecting and Interpreting Technological Innovation Data; Organisation for Economic Co-operation and Development: Paris, France, 1997. [Google Scholar]
- Pece, A.M.; Simona, O.E.O.; Salisteanu, F. Innovation and Economic Growth: An Empirical Analysis for CEE Countries. Proc. Econ. Fin. 2015, 26, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Pyka, A.; Prettner, K. Economic Growth, Development, and Innovation: The Transformation Towards a Knowledge-Based Bioeconomy. In Bioeconomy Shaping the Transition to a Sustainable, Biobased Economy, Lewandowski, I., Ed.; Bioeconomy; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Long, X. Scientific and technological innovation related to real economic growth. China Political Econ. 2019, 2, 108–122. [Google Scholar] [CrossRef] [Green Version]
- Ehrenfeld, W.; Kropfhausser, F. Plant-based bioeconomy in Central Germany—A mapping of actors, industries and places. Technol. Anal. Strateg. Manag. 2017, 29, 514–527. [Google Scholar] [CrossRef] [Green Version]
- LeBel, P. The role of creative innovation in economic growth: Some international comparisons. J. Asian Econ. 2008, 19, 334–347. [Google Scholar] [CrossRef]
- Stilgoe, J.; Owen, R.; Macnaghten, P. Developing a framework for responsible innovation. Res. Policy 2013, 42, 1568–1580. [Google Scholar] [CrossRef]
- Von Schomberg, R. A Vision of responsible research and innovation. In Responsible Innovation; Owen, R., Bessant, J., Heintz, M., Eds.; Wiley Online Books; Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 51–74. [Google Scholar]
- Hojnik, J.; Ruzzier, M. What drives eco-innovation? A review of an emerging literature. Environ. Innov. Soc. Transit. 2016, 19, 31–41. [Google Scholar] [CrossRef]
- Lambin, A.; Corpart, J.M. UN sustainable development goals and green chemistry, key points for sustainably innovating at Roquette, a global leader in plant-based ingredients. Curr. Opin. Green Sustain. Chem. 2018, 13, 137–139. [Google Scholar] [CrossRef]
- Fichter, K.; Clausen, J. Diffusion of environmental innovations: Sector differences and explanation range of factors. Environ. Innov. Soc. Transit. 2021, 38, 34–51. [Google Scholar] [CrossRef]
- Pandey, S. Review on medicinal importance of Vigna genus. Plant. Sci. Today 2019, 6, 450–456. [Google Scholar] [CrossRef]
- Hardy, R.W.F.; Eaglesham, A.; Shelton, A. Agriculture & forestry for energy, chemicals, & materials the road forward. Ind. Biotechnol. 2007, 3, 133–137. [Google Scholar] [CrossRef] [Green Version]
- ProVeg. Plant-Based Foods in Europe: How Big Is the Market? Smart Protein Plant-Based Food Sector Report; European Union’s Horizon 2020 Research and Innovation Programme (No 862957); ProVeg: Berlin, Germany, 2021. [Google Scholar]
- Pun, A. The Plant-Based Revolution: 10 European Vegan Meat Alternative Brands to Check Out. Available online: https://www.eu-startups.com/2021/12/the-plant-based-revolution-10-european-vegan-meat-alternative-brands-to-check-out/ (accessed on 25 April 2022).
- Van der Weele, C.; Feindt, P.; Jan van der Goot, A.; van Mierlo, B.; van Boekel, M. Meat alternatives: An integrative comparison. Trends Food Sci. Technol. 2019, 88, 505–512. [Google Scholar] [CrossRef]
- Abdallah, M.; Arab, M.; Shabib, A.; El-Sherbiny, R.; El-Sheltawy, S. Characterization and sustainable management strategies of municipal solid waste in Egypt. Clean Technol. Environ. 2020, 22, 1371–1383. [Google Scholar] [CrossRef]
- Elisabetsky, E.; Costa-Campos, L. The alkaloid alstonine: A review of its pharmacological properties. Evid. Based Complement. Altern. Med. 2006, 3, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Rosales-Mendoza, S.; Tello-Olea, M.A. Carrot Cells: A Pioneering Platform for Biopharmaceuticals Production. Mol. Biotechnol. 2015, 57, 219–232. [Google Scholar] [CrossRef]
- Arevalo-Villalobos, J.I.; Rosales-Mendoza, S.; Zarazua, S. Immunotherapies for neurodegenerative diseases: Current status and potential of plant-made biopharmaceuticals. Expert Rev. Vaccines 2017, 16, 151–159. [Google Scholar] [CrossRef]
- Bonam, S.R.; Wu, Y.S.; Tunki, L.; Chellian, R.; Halmuthur, M.S.K.; Muller, S.; Pandy, V. What Has Come out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? ChemMedChem 2018, 13, 1854–1872. [Google Scholar] [CrossRef] [PubMed]
- Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strik, D.P.B.T.B.; Hamelers, H.V.M.; Snel, J.F.H.; Buisman, C.J.N. Green electricity production with living plants and bacteria in a fuel cell. Int. J. Energy Res. 2008, 32, 870–876. [Google Scholar] [CrossRef]
- Nayak, L.; Mishra, S.P. Prospect of bamboo as a renewable textile fiber, historical overview, labeling, controversies and regulation. Fash. Text. 2016, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, N.; Sharanagat, V.S.; Mor, R.S.; Kumar, K. Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends Food Sci. Technol. 2020, 105, 385–401. [Google Scholar] [CrossRef]
- Gonera, A.; Svanes, E.; Bugge, A.B.; Hatlebakk, M.M.; Prexl, K.-M.; Ueland, Ø. Moving Consumers along the Innovation Adoption Curve: A New Approach to Accelerate the Shift toward a More Sustainable Diet. Sustainability 2021, 13, 4477. [Google Scholar] [CrossRef]
- Alae-Carew, C.; Green, R.; Stewart, C.; Cook, B.; Dangour, A.D.; Scheelbeek, P.F.D. The role of plant-based alternative foods in sustainable and healthy food systems: Consumption trends in the UK. Sci. Total Environ. 2022, 807, 151041. [Google Scholar] [CrossRef]
- Perez-Cueto, F.J.A. Sustainability, health and consumer insights for plantbased food innovation. Int. J. Food Des. 2020, 5, 139–148. [Google Scholar] [CrossRef]
- Plant-Based Meat for a Growing World. Available online: https://gfi.org/resource/environmental-impact-of-meat-vs-plant-based-meat/) (accessed on 1 September 2022).
- Menta, R.; Rosso, G.; Canzoneri, F. Plant-Based: A Perspective on Nutritional and Technological Issues. Are We Ready for “Precision Processing”? Front. Nutr. 2022, 9, 878926. [Google Scholar] [CrossRef]
- Caporale, F.; Mateo-Martín, J.; Usman, M.F.; Smith-Hall, C. Plant-Based Sustainable Development—The Expansion and Anatomy of the Medicinal Plant Secondary Processing Sector in Nepal. Sustainability 2020, 12, 5575. [Google Scholar] [CrossRef]
- Paul, J.; Criado, A.R. The art of writing literature review: What do we know and what do we need to know? Int. Bus. Rev. 2020, 29, 101717. [Google Scholar] [CrossRef]
- Storz, M.A. What makes a plant-based diet? A review of current concepts and proposal for a standardized plant-based dietary intervention checklist. Eur. J. Clin. Nutr. 2022, 76, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Kent, G.; Kehoe, L.; Flynn, A.; Walton, J. Plant-based diets: A review of the definitions and nutritional role in the adult diet. Proc. Nutr. Soc. 2022, 81, 62–74. [Google Scholar] [CrossRef]
- Dai, Z. A literature review on plant-based foods and dietary quality in knee osteoarthritis. Eur. J. Rheumatol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Selinger, E.; Neuenschwander, M.; Koller, A.; Gojda, J.; Kühn, T.; Schwingshackl, L.; Barbaresko, J.; Schlesinger, S. Evidence of a vegan diet for health benefits and risks—An umbrella review of meta-analyses of observational and clinical studies. Crit. Rev. Food Sci. Nutr. 2022, 1–11. [Google Scholar] [CrossRef]
- Fehér, A.; Gazdecki, M.; Véha, M.; Szakály, M.; Szakály, Z. A Comprehensive Review of the Benefits of and the Barriers to the Switch to a Plant-Based Diet. Sustainability 2020, 12, 4136. [Google Scholar] [CrossRef]
- Rinaldi, S.; Campbell, E.E.; Fournier, J.; O’Connor, C.; Madill, J. A Comprehensive Review of the Literature Supporting Recommendations from the Canadian Diabetes Association for the Use of a Plant-Based Diet for Management of Type 2 Diabetes. Can. J. Diabetes 2016, 40, 471–477. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Gantriis, R.F.; Fraga, P.; Perez-Cueto, F.J.A. Plant-based food and protein trend from a business perspective: Markets, consumers, and the challenges and opportunities in the future. Crit. Rev. Food Sci. Nutr. 2021, 61, 3119–3128. [Google Scholar] [CrossRef]
- Van der Weele, C.; Driessen, C. How Normal Meat Becomes Stranger as Cultured Meat Becomes More Normal; Ambivalence and Ambiguity Below the Surface of Behavior. Front. Sustain. Food Syst. 2019, 3, 69. [Google Scholar] [CrossRef]
- He, J.; Evans, N.M.; Liu, H.; Shao, S. A review of research on plant-based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2639–2656. [Google Scholar] [CrossRef]
- Balaji, A.; Vellayappan, M.V.; John, A.A.; Subramanian, A.P.; Jaganathan, S.K.; SelvaKumar, M.; Faudzi, A.A.B.; Supriyanto, E.; Yusof, M. Biomaterials based nano-applications of Aloe vera and its perspective: A review. RSC Adv. 2015, 5, 86199–86213. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Allkanjari, O.; Vitalone, A.; Busetto, G.M.; Cai, T.; Larganà, G.; Russo, G.I.; Magri, V.; Perletti, G.; della Cuna, F.S.R.; et al. Nutraceutical treatment and prevention of benign prostatic hyperplasia and prostate cancer. Arch. Ital. Di Urol. E Androl. 2019, 91, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Taneja, N.; Alam, A.; Patnaik, R.S.; Taneja, T. Unmasking the potential role of plant-based medicine “Plumbagin” in oral cancer—A Novel Paradigm. Oral Sci. Int. 2021, 19, 3–18. [Google Scholar] [CrossRef]
- Pouvreau, B.; Vanhercke, T.; Singh, S. From plant metabolic engineering to plant synthetic biology: The evolution of the design/build/test/learn cycle. Plant Sci. 2018, 273, 3–12. [Google Scholar] [CrossRef]
- Wilson, A.D. Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 2013, 13, 2295–2348. [Google Scholar] [CrossRef] [Green Version]
- Sainsbury, F. Innovation in plant-based transient protein expression for infectious disease prevention and preparedness. Curr. Opin. Biotechnol. 2020, 61, 110–115. [Google Scholar] [CrossRef]
- Jacobs, D.M.; van den Berg, M.A.; Hall, R.D. Towards superior plant-based foods using metabolomics. Curr. Opin. Biotechnol. 2021, 70, 23–28. [Google Scholar] [CrossRef]
- Heidemann, M.S.; Molento, C.F.M.; Reis, G.G.; Phillips, C.J.C. Uncoupling Meat from Animal Slaughter and Its Impacts on Human-Animal Relationships. Front. Psychol. 2020, 11, 1824. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Zhang, Z.; Gu, Z.; Zhong, H.; Zha, Q.; Yang, L.; Zhu, C.; Chen, E. A bibliometric analysis using VOSviewer of publications on COVID-19. Ann. Transl. Med. 2020, 8, 816. [Google Scholar] [CrossRef]
- Webster, J.; Watson, R. Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Q. 2002, 26, xiii–xxiii. [Google Scholar]
- Khan, I. Waste to biogas through anaerobic digestion: Hydrogen production potential in the developing world—A case of Bangladesh. Int. J. Hydrog. Energ. 2020, 45, 15951–15962. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eck, N.J.; Waltman, L. Text mining and visualization using VOSviewer. arXiv 2011. [Google Scholar] [CrossRef]
- Duriau, V.J.; Reger, R.K.; Pfarrer, M.D. A Content Analysis of the Content Analysis Literature in Organization Studies: Research Themes, Data Sources, and Methodological Refinements. Organ. Res. Methods 2016, 10, 5–34. [Google Scholar] [CrossRef] [Green Version]
- Seuring, S.; Wilding, R.; Gold, S. Conducting content-analysis based literature reviews in supply chain management. Supply Chain. Manag. Int. J. 2012, 17, 544–555. [Google Scholar] [CrossRef]
- Wolfswinkel, J.F.; Furtmueller, E.; Wilderom, C.P.M. Using grounded theory as a method for rigorously reviewing literature. Eur. J. Inf. Syst. 2013, 22, 45–55. [Google Scholar] [CrossRef]
- Piwowar-Sulej, K. Sustainable development and national cultures: A quantitative and qualitative analysis of the research field. Environ. Dev. Sustain. 2021, 1–29. [Google Scholar] [CrossRef]
- Bleicher, A. Technological change in revitalization—Phytoremediation and the role of nonknowledge. J. Environ. Manag. 2016, 184, 78–84. [Google Scholar] [CrossRef]
- Stanovych, A.; Balloy, M.; Olszewski, T.K.; Petit, E.; Grison, C. Depollution of mining effluents: Innovative mobilization of plant resources. Environ. Sci. Pollut. Res. 2019, 26, 19327–19334. [Google Scholar] [CrossRef]
- Frisio, D.G.; Ventura, V. Exploring the patent landscape of RNAi-based innovation for plant breeding. Recent Pat. Biotechnol. 2019, 13, 207–216. [Google Scholar] [CrossRef]
- Anonymous. White Paper: Surfactant enhanced in situ chemical oxidation (S-ISCO) technology. Poll Eng. 2011, 43, 1–4. [Google Scholar]
- Batlle-Bayer, L.; Bala, A.; Roca, M.; Lemaire, E.; Aldaco, R.; Fullana-i-Palmer, P. Nutritional and environmental co-benefits of shifting to “Planetary Health” Spanish tapas. J. Clean. Prod. 2020, 271, 122561. [Google Scholar] [CrossRef]
- Piemonte, V. Wood Residues as Raw Material for Biorefinery Systems: LCA Case Study on Bioethanol and Electricity Production. J. Polym. Environ. 2012, 20, 299–304. [Google Scholar] [CrossRef]
- De Montis, A.; Zoppi, C. Contingent Valuation of renewable energy innovations: Vegetal biomass in Italy. Int. J. Environ. Technol. Manag. 2009, 11, 218–233. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Fukushi, K. Development of an innovative decentralized treatment system for the reclamation and reuse of strong wastewater from rural community: Effects of elevated CO2 concentrations. J. Environ. Manag. 2016, 180, 401–408. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Ma, H.; Bai, J.; Jiang, Y.; Yu, H. Potential usage, vertical value chain and challenge of biomass resource: Evidence from China’s crop residues. Appl. Energy 2014, 114, 717–723. [Google Scholar] [CrossRef]
- Vicente-Vicente, J.L.; Piorr, A. Can a shift to regional and organic diets reduce greenhouse gas emissions from the food system? A case study from Qatar. Carbon Balance Manag. 2021, 16, 2. [Google Scholar] [CrossRef]
- Zech, K.M.; Schneider, U.A. Technical biofuel production and GHG mitigation potentials through healthy diets in the EU. Agric. Syst. 2019, 168, 27–35. [Google Scholar] [CrossRef]
- Broekema, R.; Tyszler, M.; van‘t Veer, P.; Kok, F.J.; Martin, A.; Lluch, A.; Blonk, H.T.J. Future-proof and sustainable healthy diets based on current eating patterns in the Netherlands. Am. J. Clin. Nutr. 2020, 112, 1338–1347. [Google Scholar] [CrossRef]
- Chaudhary, A.; Tremorin, D. Nutritional and environmental sustainability of lentil reformulated beef burger. Sustainability 2020, 12, 6712. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, F.; Zhang, Z.; Pan, Y.; Ou, J.; Liu, H. Research progress and prospect of artificial seafood. J. Fish China 2021, 45, 306–316. [Google Scholar] [CrossRef]
- Fischer, R.; Schillberg, S.; Buyel, J.F.; Twyman, R.M. Commercial aspects of pharmaceutical protein production in plants. Curr. Pharm. Des. 2013, 19, 5471–5477. [Google Scholar] [CrossRef] [PubMed]
- Curtain, F.; Grafenauer, S. Plant-based meat substitutes in the flexitarian age: An audit of products on supermarket shelves. Nutrients 2019, 11, 2603. [Google Scholar] [CrossRef] [Green Version]
- Rabl, V.A.; Basso, F. When Bad Becomes Worse: Unethical Corporate Behavior May Hamper Consumer Acceptance of Cultured Meat. Sustainability 2021, 13, 6770. [Google Scholar] [CrossRef]
- Bueno, D.B.; da Silva Júnior, S.I.; Seriani Chiarotto, A.B.; Cardoso, T.M.; Neto, J.A.; Lopes dos Reis, G.C.; Glória, M.B.A.; Tavano, O.L. The germination of soybeans increases the water-soluble components and could generate innovations in soy-based foods. LWT 2020, 117, 108599. [Google Scholar] [CrossRef]
- Bintari, S.H.; Widyastiti, N.S.; Putriningtyas, N.D.; Hapsari, R.; Nugraheni, K. Development and properties of tegurt, a yogurt-like tempe product. Pak. J. Nutr. 2017, 16, 221–226. [Google Scholar] [CrossRef]
- Pam Ismail, B.; Senaratne-Lenagala, L.; Stube, A.; Brackenridge, A. Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Anim. Front. 2020, 10, 53–63. [Google Scholar] [CrossRef]
- Turrini, F.; Boggia, R.; Donno, D.; Zunin, P.; Beccaro, G.L.; Pittaluga, A.; Beruto, M. Bud-derivates from woody ornamental trees and shrubs: The FINNOVER project. Acta Hortic. 2021, 1331, 215–222. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, U.; Darnton-Hill, I. Assessment and control of vitamin A deficiency disorders. J. Nutr. 2002, 132, 2947s–2953s. [Google Scholar] [CrossRef] [Green Version]
- Oduro, A.F.; Saalia, F.K.; Adjei, M.Y.B. Sensory Acceptability and Proximate Composition of 3-Blend Plant-Based Dairy Alternatives. Foods 2021, 10, 482. [Google Scholar] [CrossRef] [PubMed]
- Oduro, A.F.; Saalia, F.K.; Adjei, M.Y.B. Using Relative Preference mapping (RPM) to identify innovative flavours for 3-blend plant-based milk alternatives in different test locations. Food Qual. Prefer. 2021, 93, 104271. [Google Scholar] [CrossRef]
- Drewnowski, A.; Henry, C.J.; Dwyer, J.T. Proposed Nutrient Standards for Plant-Based Beverages Intended as Milk Alternatives. Front. Nutr. 2021, 8, 761442. [Google Scholar] [CrossRef] [PubMed]
- Sogari, G.; Li, J.; Wang, Q.; Lefebvre, M.; Gómez, M.I.; Mora, C. Factors influencing the intention to purchase meat-mushroom blended burgers among college students. Food Qual. Prefer. 2021, 90, 104169. [Google Scholar] [CrossRef]
- Kunz, S.; Florack, A.; Campuzano, I.; Alves, H. The sustainability liability revisited: Positive versus negative differentiation of novel products by sustainability attributes. Appetite 2021, 167, 105637. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.M.; Ang, F.; Van Der Fels-Klerx, H.J. Consumer willingness to pay for plant-based foods produced using microbial applications to replace synthetic chemical inputs. PLoS ONE 2021, 16, e0260488. [Google Scholar] [CrossRef] [PubMed]
- Florack, A.; Koch, T.; Haasova, S.; Kunz, S.; Alves, H. The Differentiation Principle: Why Consumers Often Neglect Positive Attributes of Novel Food Products. J. Consum. Psychol. 2021, 31, 684–705. [Google Scholar] [CrossRef]
- Estell, M.; Hughes, J.; Grafenauer, S. Plant Protein and Plant-Based Meat Alternatives: Consumer and Nutrition Professional Attitudes and Perceptions. Sustainability 2021, 13, 1478. [Google Scholar] [CrossRef]
- Brückner-Gühmann, M.; Kratzsch, A.; Sozer, N.; Drusch, S. Oat protein as plant-derived gelling agent: Properties and potential of modification. Future Foods 2021, 4, 100053. [Google Scholar] [CrossRef]
- Flores, M.; Piornos, J.A. Fermented meat sausages and the challenge of their plant-based alternatives: A comparative review on aroma-related aspects. Meat Sci. 2021, 182, 108636. [Google Scholar] [CrossRef] [PubMed]
- Mouritsen, O.G.; Styrbæk, K. Design and ‘umamification’ of vegetable dishes for sustainable eating. Int. J. Food Des. 2020, 5, 9–42. [Google Scholar] [CrossRef]
- Onwezen, M.C.; Bouwman, E.P.; Reinders, M.J.; Dagevos, H. A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite 2021, 159, 105058. [Google Scholar] [CrossRef] [PubMed]
- Day, L.; Cakebread, J.A.; Loveday, S.M. Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends Food Sci. Technol. 2022, 119, 428–442. [Google Scholar] [CrossRef]
- Han, H.; Choi, J.K.; Park, J.; Im, H.C.; Han, J.H.; Huh, M.H.; Lee, Y.B. Recent innovations in processing technologies for improvement of nutritional quality of soymilk. Cyta J. Food 2021, 19, 287–303. [Google Scholar] [CrossRef]
- Krentz, A.; Garcia-Cano, I.; Ortega-Anaya, J.; Jimenez-Flores, R. Use of casein micelles to improve the solubility of hydrophobic pea proteins in aqueous solutions via low-temperature homogenization. J. Dairy Sci. 2022, 105, 22–31. [Google Scholar] [CrossRef]
- Bodur, T.; Afonso, J.M.; Montero, D.; Navarro, A. Assessment of effective dose of new herbal anesthetics in two marine aquaculture species: Dicentrarchus labrax and Argyrosomus regius. Aquaculture 2018, 482, 78–82. [Google Scholar] [CrossRef]
- Heinzelmann, E. The innovation from Innsbruck: Plant-based allergen recombinantly produced in green alga. Chimia 2016, 70, 818–820. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.D. “Put It in Your Shoe It Will Make You Limp”: British Men’s Online Responses to a Male Pill. J. Mens Stud. 2018, 26, 247–265. [Google Scholar] [CrossRef]
- Ramírez-Amador, V.; Patton, L.L.; Naglik, J.R.; Nittayananta, W. Innovations for prevention and care of oral candidiasis in HIV-infected individuals: Are they available?—A workshop report. Oral Dis. 2020, 26, 91–102. [Google Scholar] [CrossRef]
- da Rocha, D.R.; Marin, V.A. Trangenics—Plant-Based Drugs (PBD). Cienc. Saude Coletiva 2011, 16, 3339–3347. [Google Scholar] [CrossRef] [Green Version]
- De Smet, P.A.G.M. The role of plant-derived drugs and herbal medicines in healthcare. Drugs 1997, 54, 801–840. [Google Scholar] [CrossRef] [PubMed]
- Linck, V.M.; Ganzella, M.; Herrmann, A.P.; Okunji, C.O.; Souza, D.O.; Antonelli, M.C.; Elisabetsky, E. Original mechanisms of antipsychotic action by the indole alkaloid alstonine (Picralima nitida). Phytomedicine 2015, 22, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Fedoung, E.F.; Zra, T.; Biyegue, C.F.N.; Bissoue, A.N.; Baraye, S.; Tsabang, N. Herbal cosmetics knowledge of Arab-choa and Kotoko ethnic groups in the semi-arid areas of far North Cameroon: Ethnobotanical assessment and phytochemical review. Cosmetics 2018, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Richards, R.J. Bogar AG—Veterinary phytomedicines. Chimia 2000, 54, 161–162. [Google Scholar]
- César, F.C.S.; Neto, F.C.; Porto, G.S.; Campos, P.M.B.G.M. Patent analysis: A look at the innovative nature of plant-based cosmetics. Quim. Nova 2017, 40, 840–847. [Google Scholar] [CrossRef]
- Hao, F. Ecological study on genetic diversity of palmitic plants based on RAPD analysis marker technique. Tech. Bull. 2017, 55, 50–55. [Google Scholar]
- Anonymous. Product developments and innovations. Perform. Appar. Mark. 2014, 1, 10–20. [Google Scholar]
- Lo, C.H.H. Degumming silk by CO2 supercritical fluid and their dyeing ability with plant indigo. Int. J. Cloth Sci. Technol. 2021, 33, 465–476. [Google Scholar] [CrossRef]
- Hughes, M. Breathing and cleaning. Ind. Eng. 2011, 43, 56–57. [Google Scholar]
- Naitove, M. Betting on biopolymers. Plast. Technol. 2015, 61, 18–22. [Google Scholar]
- Madhan, S.K.; Gaspar, P.D.; Silva, P.D. Future trends on innovative green packaging of the food products to deplastification. In Proceedings of the 6th IIR Conference on Sustainability and the Cold Chain (ICCC 2020), Nantes, France, 26–28 August 2020; pp. 435–442. [Google Scholar]
- Rickard, B.J.; Richards, T.J.; Yan, J. University licensing of patents for varietal innovations in agriculture. Agric. Econ. 2016, 47, 3–14. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, K.S.; Parker, M.; Ameerally, A.; Drake, S.L.; Drake, M.A. Drivers of choice for fluid milk versus plant-based alternatives: What are consumer perceptions of fluid milk? J. Dairy Sci. 2017, 100, 6125–6138. [Google Scholar] [CrossRef] [PubMed]
- Graça, J.; Cardoso, S.G.; Augusto, F.R.; Nunes, N.C. Green Light for Climate-friendly Food Transitions? Communicating Legal Innovation Increases Consumer Support for Meat Curtailment Policies. Environ. Commun. 2020, 14, 1047–1060. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Peschel, A.O. How circular will you eat? The sustainability challenge in food and consumer reaction to either waste-to-value or yet underused novel ingredients in food. Food Qual. Prefer. 2019, 77, 15–20. [Google Scholar] [CrossRef]
- Broad, G.M. Making Meat, Better: The Metaphors of Plant-Based and Cell-Based Meat Innovation. Environ. Commun. 2020, 14, 919–932. [Google Scholar] [CrossRef]
- Blanco-Gutiérrez, I.; Varela-Ortega, C.; Manners, R. Evaluating animal-based foods and plant-based alternatives using multi-criteria and SWOT analyses. Int. J. Environ. Res. Public Health 2020, 17, 7969. [Google Scholar] [CrossRef]
- Tziva, M.; Negro, S.O.; Kalfagianni, A.; Hekkert, M.P. Understanding the protein transition: The rise of plant-based meat substitutes. Environ. Innov. Soc. Transit. 2020, 35, 217–231. [Google Scholar] [CrossRef]
- Hansen, L. The Weak Sustainability of the Salmon Feed Transition in Norway—A Bioeconomic Case Study. Front. Mar. Sci. 2019, 6, 764. [Google Scholar] [CrossRef] [Green Version]
- Gravely, E.; Fraser, E. Transitions on the shopping floor: Investigating the role of Canadian supermarkets in alternative protein consumption. Appetite 2018, 130, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Mylan, J.; Morris, C.; Beech, E.; Geels, F.W. Rage against the regime: Niche-regime interactions in the societal embedding of plant-based milk. Environ. Innov. Soc. Transit. 2019, 31, 233–247. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.B. Blood biofuels. Duke Environ. Law Policy Forum 2017, 27, 265–315. [Google Scholar]
- Schwark, N.; Tiberius, V.; Fabro, M. How will we dine? Prospective shifts in international haute cuisine and innovation beyond kitchen and plate. Foods 2020, 9, 1369. [Google Scholar] [CrossRef] [PubMed]
- Tambo, J.A. Recognizing farmer-generated innovations through contests: Insights from four African countries. Food Secur. 2018, 10, 1237–1250. [Google Scholar] [CrossRef]
- Luan, D.X. Motivation and barriers to access to formal credit of primary cinnamon producers from the perspective of value chain development in Northwestern Vietnam. J. Agribus. Dev. Emerg. 2020, 10, 117–138. [Google Scholar] [CrossRef]
- Cusworth, G.; Garnett, T.; Lorimer, J. Agroecological break out: Legumes, crop diversification and the regenerative futures of UK agriculture. J. Rural Stud. 2021, 88, 126–137. [Google Scholar] [CrossRef]
- Varela-Ortega, C.; Blanco-Gutierrez, I.; Manners, R.; Detzel, A. Life cycle assessment of animal-based foods and plant-based protein-rich alternatives: A socio-economic perspective. J. Sci. Food Agr. 2021, 102, 5111–5120. [Google Scholar] [CrossRef] [PubMed]
- Schram, A.; Townsend, B. International Trade and Investment and Food Systems: What We Know, What We Don’t Know, and What We Don’t Know We Don’t Know. Int. J. Health Policy 2020, 10, 886. [Google Scholar] [CrossRef]
- Lahteenmaki-Uutela, A.; Rahikainen, M.; Lonkila, A.; Yang, B.R. Alternative proteins and EU food law. Food Control 2021, 130, 108336. [Google Scholar] [CrossRef]
- Youtie, J.; Ward, R.; Shapira, P.; Schillo, R.S.; Louise Earl, E. Exploring New approaches to understanding innovation ecosystems. Technol Anal. Strateg Manag. 2021, 1–15. [Google Scholar] [CrossRef]
- Tziva, M.; Negro, S.O.; Kalfagianni, A.; Hekkert, M.P. Alliances as system builders: On the conditions of network formation and system building in sustainability transitions. J. Clean Prod. 2021, 318, 128616. [Google Scholar] [CrossRef]
- Saari, U.A.; Herstatt, C.; Tiwari, R.; Dedehayir, O.; Mäkinen, S.J. The vegan trend and the microfoundations of institutional change: A commentary on food producers’ sustainable innovation journeys in Europe. Trends Food Sci. Technol. 2021, 107, 161–167. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Rizou, M.; Aldawoud, T.M.S.; Ucak, I.; Rowan, N.J. Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era. Trends Food Sci. Technol. 2021, 110, 193–200. [Google Scholar] [CrossRef]
- Sebo, J. The Ethics and Politics of Plant-Based and Cultured Meat. Ateliers Ethique 2018, 13, 159–183. [Google Scholar] [CrossRef] [Green Version]
- Ayyam, V.; Palanivel, S.; Chandrakasan, S. Biosaline Agriculture. In Coastal Ecosystems of the Tropics—Adaptive Management; Springer: Singapore, 2019; pp. 493–510. [Google Scholar]
- Duarte, L.O.; Kohan, L.; Pinheiro, L.; Fonseca, H.; Baruque-Ramos, J. Textile natural fibers production regarding the agroforestry approach. SN Appl. Sci. 2019, 1, 914. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, R.F.; Carneiro, C.N.; de Sousa, C.B.d.C.; Gomez, F.J.; Espino, M.; Boiteux, J.; Fernández, M.d.l.Á.; Silva, M.F.; Dias, F.d.S. Sustainable extraction bioactive compounds procedures in medicinal plants based on the principles of green analytical chemistry: A review. Microchem. J. 2022, 175, 107184. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Peschel, A.O. Consumer perception of plant-based proteins: The value of source transparency for alternative protein ingredients. Food Hydrocoll. 2019, 96, 20–28. [Google Scholar] [CrossRef]
- Frehner, A.; Cardinaals, R.P.M.; de Boer, I.J.M.; Muller, A.; Schader, C.; van Selm, B.; van Hal, O.; Pestoni, G.; Rohrmann, S.; Herrero, M.; et al. The compatibility of circularity and national dietary recommendations for animal products in five European countries: A modelling analysis on nutritional feasibility, climate impact, and land use. Lancet Planet. Health 2022, 6, e475–e483. [Google Scholar] [CrossRef]
- Coucke, N.; Vermeir, I.; Slabbinck, H.; Geuens, M.; Choueiki, Z. How to reduce agri-environmental impacts on ecosystem services: The role of nudging techniques to increase purchase of plant-based meat substitutes. Ecosyst. Serv. 2022, 56, 101444. [Google Scholar] [CrossRef]
- Tulloch, A.I.T.; Oh, R.R.Y.; Gallegos, D. Environmental and public health co-benefits of consumer switches to immunity-supporting food. Ambio 2022, 51, 1658–1672. [Google Scholar] [CrossRef] [PubMed]
- Weinrich, R. Opportunities for the adoption of health-based sustainable dietary patterns: A review on consumer research of meat substitutes. Sustainability 2019, 11, 4028. [Google Scholar] [CrossRef] [Green Version]
- Bruno, G. The World needs protein. Agro Food Ind. Hi Tech 2015, 26, 4–7. [Google Scholar]
- Bastian, G.E.; Buro, D.; Palmer-Keenan, D.M. Recommendations for Integrating Evidence-Based, Sustainable Diet Information into Nutrition Education. Nutrients 2021, 13, 4170. [Google Scholar] [CrossRef] [PubMed]
- Bocken, N.; Morales, L.S.; Lehner, M. Suffciency business strategies in the food industry—The case of oatly. Sustainability 2020, 12, 824. [Google Scholar] [CrossRef] [Green Version]
- Leialohilani, A.; de Boer, A. EU food legislation impacts innovation in the area of plant-based dairy alternatives. Trends Food Sci. Technol. 2020, 104, 262–267. [Google Scholar] [CrossRef]
- De Groene, E.M.; Dötsch-Klerk, M. From individual nutrients to sustainable nutrition. In Hidden Hunger and the Transformation of Food Systems How to Combat the Double Burden of Malnutrition? Biesalski, H.K., Ed.; Karger: Basel, Switzerland, 2020; Volume 121, pp. 73–80. [Google Scholar] [CrossRef]
- Ritota, M.; Manzi, P. Natural preservatives from plant in cheese making. Animals 2020, 10, 749. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, L.; McClements, D.J. The science of plant-based foods: Approaches to create nutritious and sustainable plant-based cheese analogs. Trends Food Sci. Technol. 2021, 118, 207–229. [Google Scholar] [CrossRef]
- Gupta, S.; Abu-Ghannam, N. Probiotic fermentation of plant based products: Possibilities and opportunities. Crit. Rev. Food Sci. Nutr. 2012, 52, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Agyemang, P.; Kwofie, E.M.; Baum, J.I. Transitioning to sustainable healthy diets: A model-based and conceptual system thinking approach to optimized sustainable diet concepts in the United States. Front. Nutr. 2022, 9, 874721. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chaudhary, A.; Mathys, A. Dietary Change and Global Sustainable Development Goals. Front. Sustain. Food Syst. 2022, 6, 771041. [Google Scholar] [CrossRef]
- Torrico, B.C.H.; Villazón, R.C. The implementation of mixture design and design thinking for the development of a bolivian native plants based liquor. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Sao Paulo, Brazil, 6–8 April 2021; pp. 1034–1045. [Google Scholar]
Steps | Criterion | Effect | |
---|---|---|---|
Parameters | Keywords: Time horizon: Database: | ((‘plant-based’ or ‘plant-based’) AND innovation) 1995–2022 (including all articles published up to 31 January 2022) Scopus and ISI Web of Knowledge | |
Identification | Records identified through database searching | Scopus: n = 189 ISI WOK: n = 124 | Sum of records to be screened: n = 313 |
Screening | Exclusion: 1. Unpublished articles, books, book chapters, notes, tutorials, conference papers, short surveys, no abstract, errata 2. Not within the time frame 1995–2020 3. Language other than English | Records excluded Scopus: n = 66 ISI WOK: n = 23 | Records screened SCOPUS: n = 122 (86 art., 36 rev.) ISI WOK: n = 101 (66 art., 35 rev.) |
Duplicated records were screened for duplicates n = 223 | Records excluded n = 83 | No duplicates n = 140 | |
Eligibility | Full-text articles excluded (n = 16) | Exclusion reasons (not related to the topic) n = 16 | Full-text articles were assessed for eligibility n = 124 |
Content analysis of the findings of the bibliometric analysis (meta-literature review) | Studies included in a qualitative synthesis | VOSviewer analysis | n = 124 |
Studies included in the quantitative synthesis (meta-analysis) | Content analysis | Research papers n = 86 Review papers n = 38 | |
Findings and contributions | 1. Identification of research domains 2. Identification of the most influential aspects: countries, institutions, authors, journals, articles and topics 3. Identification of future research trends and limitations |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzywonos, M.; Piwowar-Sulej, K. Plant-Based Innovations for the Transition to Sustainability: A Bibliometric and in-Depth Content Analysis. Foods 2022, 11, 3137. https://doi.org/10.3390/foods11193137
Krzywonos M, Piwowar-Sulej K. Plant-Based Innovations for the Transition to Sustainability: A Bibliometric and in-Depth Content Analysis. Foods. 2022; 11(19):3137. https://doi.org/10.3390/foods11193137
Chicago/Turabian StyleKrzywonos, Małgorzata, and Katarzyna Piwowar-Sulej. 2022. "Plant-Based Innovations for the Transition to Sustainability: A Bibliometric and in-Depth Content Analysis" Foods 11, no. 19: 3137. https://doi.org/10.3390/foods11193137
APA StyleKrzywonos, M., & Piwowar-Sulej, K. (2022). Plant-Based Innovations for the Transition to Sustainability: A Bibliometric and in-Depth Content Analysis. Foods, 11(19), 3137. https://doi.org/10.3390/foods11193137