Can In-Line Iodine Value Predictions (NitFomTM) Be Used for Early Classification of Pork Belly Firmness?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Carcass and NitFomTM Predicted IV Measurements
2.2. Belly Bend Angle and Dimensional Measurements
2.3. Calculated IV Measurement
2.4. Statistical Analysis
3. Results and Discussion
3.1. Prediction of Belly Firmness
3.2. Classification of Belly Firmness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soladoye, O.P.; Uttaro, B.; Zawadski, S.; Dugan, M.E.R.; Gariépy, C.; Aalhus, J.L.; Shand, P.; Juárez, M. Compositional and dimensional factors influencing pork belly firmness. Meat Sci. 2017, 129, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.; Robertson, W.; Johns, M.; Landry, S. Sources of variation in belly softness in pigs. In Proceedings of the 48th ICoMST, Rome, Italy, 25–30 August 2002; Volume 48, pp. 270–271. [Google Scholar]
- Teye, G.; Sheard, P.; Whittington, F.; Nute, G.; Stewart, A.; Wood, J.J. Influence of dietary oils and protein level on pork quality. 1. Effects on muscle fatty acid composition, carcass, meat and eating quality. Meat Sci. 2006, 73, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Waylan, A.T.; O’Quinn, P.R.; Unruh, J.A.; Nelssen, J.L.; Goodband, R.D.; Woodworth, J.C.; Tokach, M.D.; Koo, S.I. Effects of modified tall oil and vitamin E on growth performance, carcass characteristics, and meat quality of growing-finishing pigs. J. Anim. Sci. 2002, 80, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Soladoye, O.P.; Prieto, N.; Lopez-Campos, O.; Aalhus, J.L.; Uttaro, B.; Roberts, J.C.; Larsen, I.; Shand, P.; Gariépy, C.; Juárez, M. Potential of near infrared (NIR) spectroscopy and dual energy x-ray absorptiometry (DXA) in predicting pork belly softness. Meat Sci. 2018, 142, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Uttaro, B.; Zawadski, S.; Juárez, M. An approach for objective and automated identification of pork belly firmness. Meat Sci. 2020, 169, 108221. [Google Scholar] [CrossRef] [PubMed]
- Hobson, A.; Goehring, B.; Tapian, A.; Unruh, J.; Gerlach, B.; McCoy, G.; Matney, M.; Mohrhauser, D.; Gonzalez, J.; O’Quinn, T.; et al. Fresh pork belly characteristics and bacon quality based on 3 iodine value categories. Meat Muscle Biol. 2017, 1, 101. [Google Scholar] [CrossRef]
- Lam, S.; Soladoye, O.P.; Prieto, N.; Uttaro, B.; Aalhus, J.L.; Larsen, I.; Shand, P.; Gariépy, C.; Juárez, M. Performance of near-infrared spectroscopy in pork shoulder as a predictor for pork belly softness. Can. J. Anim. Sci. 2020, 101, 386–389. [Google Scholar] [CrossRef]
- Vautier, A.; Pieper, T.; Lhommeau, T.; Petersen, H.; Christensen, M. Prediction of drip loss and ultimate pH in pork semimembranosus by the NitFom. In Proceedings of the 63rd ICoMST, Cork, Ireland, 13–18 August 2017; pp. 184–185. [Google Scholar]
- Sørensen, K.M.; Engelsen, S.B. The spatial composition of porcine adipose tissue investigated by multivariate curve resolution of near infrared spectra: Relationships between fat, the degree of unsaturation and water. J. Near Infrared Spectrosc. 2017, 25, 45–53. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Wormsbecher, L.; Roehrig, C.; Smetanin, M.; Bohrer, B.M. The relationship of iodine value with pork carcass weight and composition. Can. J. Anim. Sci. 2020, 101, 395–399. [Google Scholar] [CrossRef]
- North American Meat Processors Association. The Meat Buyers Guide; John Whiley & Sons, Inc.: Washington, DC, USA, 2014. [Google Scholar]
- Jenkins, T.C. Technical note: Common analytical errors yielding inaccurate results during analysis of fatty acids in feed and digesta samples. J. Dairy Sci. 2010, 93, 1170–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collison, M.W.; American Oil Chemists Society. Official Methods and Recommended Practices of the Aocs, 7th ed.; American Oil Chemists Society: Urbana, IL, USA, 2017. [Google Scholar]
- Sørensen, K.M.; Petersen, H.; Engelsen, S.B. An on-line near-infrared (NIR) transmission method for determining depth profiles of fatty acid composition and iodine value in porcine adipose fat tissue. Appl. Spectrosc. 2012, 66, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Crespo, A.; Morgado, N.; Mazuyer, D.; Cayer-Barrioz, J. Effect of unsaturation on the adsorption and the mechanical behavior of fatty acid layers. Langmuir 2018, 34, 4560–4567. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.; Johnston, M.; Scheller, K.; Sosnicki, A.; Wilson, E. Relationship between Dietary Fatty Acid Profile and Body Fat Composition in Growing Pigs; PIC USA T&D Technical Memo: Franklin, TN, USA, 1997; Volume 135. [Google Scholar]
- Madsen, A.; Jakobsen, K.; Mortensen, H.P. Influence of dietary fat on carcass fat quality in pigs. A review. Anim. Sci. 1992, 42, 220–225. [Google Scholar] [CrossRef]
Mean | SD | Minimum | Maximum | |
---|---|---|---|---|
Belly bend and iodine value (IV) | ||||
Belly bend angle (°) | 161 | 8.58 | 134 | 177 |
NitFom™ predicted IV i | 67.0 | 8.64 | 53.9 | 99.7 |
Belly fat calculated IV ii | 52.5 | 4.51 | 41.0 | 67.8 |
Dimensional measurements | ||||
Length (cm) | 70.9 | 3.48 | 56.0 | 79.0 |
Side lean (mm) | 31.3 | 5.25 | 19.0 | 44.0 |
Side fat (mm) | 26.4 | 7.49 | 8.00 | 46.0 |
Side thickness without ribs (mm) | 40.9 | 7.56 | 20.0 | 66.0 |
Side thickness with ribs (mm) | 54.8 | 7.96 | 25.0 | 79.0 |
Total thickness (mm) | 56.6 | 8.02 | 41.0 | 84.0 |
Partial R2 Value | Model R2 Value | C(p) | F-Value | p-Value | |
---|---|---|---|---|---|
Predicted IV and dimensional measurements | |||||
NitFom™ predicted IV i | 0.40 | 0.40 | 51.0 | 135 | <0.001 |
Length (cm) | 0.07 | 0.46 | 25.4 | 24.9 | <0.001 |
Side lean (mm) | 0.02 | 0.49 | 17.5 | 9.23 | 0.003 |
Total thickness (mm) | 0.01 | 0.50 | 15.5 | 3.83 | 0.051 |
Calculated IV and dimensional measurements | |||||
Belly fat calculated IV ii | 0.52 | 0.52 | 33.5 | 223 | <0.001 |
Side fat (mm) | 0.03 | 0.56 | 19.4 | 14.9 | 0.002 |
Length (cm) | 0.02 | 0.57 | 13.2 | 7.84 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lam, S.; Uttaro, B.; Bohrer, B.M.; Duarte, M.; Juárez, M. Can In-Line Iodine Value Predictions (NitFomTM) Be Used for Early Classification of Pork Belly Firmness? Foods 2022, 11, 148. https://doi.org/10.3390/foods11020148
Lam S, Uttaro B, Bohrer BM, Duarte M, Juárez M. Can In-Line Iodine Value Predictions (NitFomTM) Be Used for Early Classification of Pork Belly Firmness? Foods. 2022; 11(2):148. https://doi.org/10.3390/foods11020148
Chicago/Turabian StyleLam, Stephanie, Bethany Uttaro, Benjamin M. Bohrer, Marcio Duarte, and Manuel Juárez. 2022. "Can In-Line Iodine Value Predictions (NitFomTM) Be Used for Early Classification of Pork Belly Firmness?" Foods 11, no. 2: 148. https://doi.org/10.3390/foods11020148
APA StyleLam, S., Uttaro, B., Bohrer, B. M., Duarte, M., & Juárez, M. (2022). Can In-Line Iodine Value Predictions (NitFomTM) Be Used for Early Classification of Pork Belly Firmness? Foods, 11(2), 148. https://doi.org/10.3390/foods11020148