Influence of Production Factors on Beef Primal Tissue Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Live Animals and Slaughter
2.2. Carcass Evaluation and Fabrication
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, T.; Alam, M.; Cho, C.; Lee, J.; Park, B.; Kim, S.; Koo, Y.; Roh, S. Genetic parameters for yearling weight, carcass traits, and primal-cut yields of Hanwoo cattle. J. Anim. Sci. 2015, 93, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Mrode, R.; Coffey, M. Genetic parameters of Visual Image Analysis primal cut carcass traits of commercial prime beef slaughter animals. Animal 2017, 11, 1653–1659. [Google Scholar] [CrossRef] [PubMed]
- Pabiou, T.; Fikse, W.; Näsholm, A.; Cromie, A.; Drennan, M.; Keane, M.; Berry, D. Genetic parameters for carcass cut weight in Irish beef cattle. J. Anim. Sci. 2009, 87, 3865–3876. [Google Scholar] [CrossRef] [Green Version]
- Sarti, F.; Pieramati, C.; Lubricchio, E.; Giontella, A.; Lasagna, E.; Panella, F. Genetic parameters for the weights and yields of carcass cuts in Chianina cattle. J. Anim. Sci. 2013, 91, 4099–4103. [Google Scholar] [CrossRef]
- Owen, F.N.; Gill, D.R.; Secrist, D.S.; Coleman, S. Review of some aspects of growth and development of feedlot cattle. J. Anim. Sci. 1995, 73, 3152–3172. [Google Scholar] [CrossRef]
- Australian Government-Department of Agriculture. AUS-MEAT Capability Assessment Review. Available online: https://www.agriculture.gov.au/sites/default/files/documents/aus-meat-capability-assessment.pdf (accessed on 21 December 2021).
- Gardner, G.E.; Anderson, F.; Smith, C.; Williams, A. Using dual energy X-ray absorptiometry to estimate commercial cut weights at abattoir chain-speed. Meat Sci. 2021, 173, 108400. [Google Scholar] [CrossRef]
- Brewer, P.; James, J.; Calkins, C.R.; Rasby, R.; Klopfenstein, T.J.; Anderson, R. Carcass traits and M. longissimus lumborum palatability attributes of calf-and yearling-finished steers. J. Anim. Sci. 2007, 85, 1239–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, W.; Klopfenstein, T.; Erickson, G.; Feuz, D.M.; MacDonald, J.C.; Jordon, D. Comparison of performance and economics of a long-yearling and calf-fed system. Prof. Anim. Sci. 2007, 23, 490–499. [Google Scholar] [CrossRef]
- López-Campos, O.; Basarab, J.; Baron, V.; Aalhus, J.; Juárez, M. Reduced age at slaughter in youthful beef cattle: Effects on carcass merit traits. Can. J. Anim. Sci. 2012, 92, 449–463. [Google Scholar] [CrossRef]
- López-Campos, Ó.; Aalhus, J.L.; Okine, E.K.; Baron, V.S.; Basarab, J.A. Effects of calf-and yearling-fed beef production systems and growth promotants on production and profitability. Can. J. Anim. Sci. 2013, 93, 171–184. [Google Scholar] [CrossRef]
- Small, R.; Mark, D.R.; Feuz, D.; Klopfenstein, T.J.; Griffin, W.; Adams, D.R. Profit variability for calf-fed and yearling production systems. In Nebraska Beef Cattle Reports; The Board of Regents of the University of Nebraska: Lincoln, NE, USA, 2009. [Google Scholar]
- Winterholler, S.; Lalman, D.; Hudson, M.; Ward, C.; Krehbiel, C.; Horn, G. Performance, carcass characteristics, and economic analysis of calf-fed and wheat pasture yearling systems in the southern great plains. Prof. Anim. Sci. 2008, 24, 232–238. [Google Scholar] [CrossRef]
- Apple, J.; Dikeman, M.; Simms, D.; Kuhl, G. Effects of synthetic hormone implants, singularly or in combinations, on performance, carcass traits, and longissimus muscle palatability of Holstein steers. J. Anim. Sci. 1991, 69, 4437–4448. [Google Scholar] [CrossRef] [PubMed]
- Packer, D.T.; Geesink, G.H.; Polkinghorne, R.; Thompson, J.M.; Ball, A.J. The impact of two different hormonal growth promotants (HGPs) on the eating quality of feedlot-finished steer carcasses. Anim. Prod. Sci. 2019, 59, 384–394. [Google Scholar] [CrossRef]
- Foutz, C.; Dolezal, H.; Gardner, T.; Gill, D.; Hensley, J.; Morgan, J. Anabolic implant effects on steer performance, carcass traits, subprimal yields, and longissimus muscle properties. J. Anim. Sci. 1997, 75, 1256–1265. [Google Scholar] [CrossRef]
- Reiling, B.; Johnson, D. Effects of implant regimens (trenbolone acetate-estradiol administered alone or in combination with zeranol) and vitamin D3 on fresh beef color and quality. J. Anim. Sci. 2003, 81, 135–142. [Google Scholar] [CrossRef]
- Roeber, D.; Cannell, R.; Belk, K.; Miller, R.; Tatum, J.; Smith, G. Implant strategies during feeding: Impact on carcass grades and consumer acceptability. J. Anim. Sci. 2000, 78, 1867–1874. [Google Scholar] [CrossRef]
- Smith, K.; Duckett, S.; Azain, M.; Sonon Jr, R.; Pringle, T. The effect of anabolic implants on intramuscular lipid deposition in finished beef cattle. J. Anim. Sci. 2007, 85, 430–440. [Google Scholar] [CrossRef]
- Juárez, M.; Basarab, J.; Baron, V.; Valera Córdoba, M.M.; Larsen, I.L. Quantifying the relative contribution of ante-and post-mortem factors to the variability in beef texture. Animal 2012, 6, 1878–1887. [Google Scholar] [CrossRef] [Green Version]
- López-Campos, Ó.; Aalhus, J.; Prieto, N.; Larsen, I.; Juárez, M.; Basarab, J. Effects of production system and growth promotants on the physiological maturity scores in steers. Can. J. Anim.Sci. 2014, 94, 607–617. [Google Scholar] [CrossRef]
- Canadian Council on Animal Care. CCAC Guidelines on the Care and Use of Farm Animals in Research, Teaching and Testing. Available online: https://ccac.ca/Documents/Standards/Guidelines/Farm_Animals.pdf (accessed on 21 December 2021).
- CanFax 2016 Annual Report. Available online: https://www.canfax.ca/Report/PDFReport.aspx?catalogue=AnnualReport&group=Annual&report=Canfax+2016+Annual+Report (accessed on 21 December 2021).
- United States Department of Agriculture. National Agricultural Statistics Services. Available online: https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Livestock_Slaughter/index.php (accessed on 21 December 2021).
- Basarab, J.; Colazo, M.; Ambrose, D.; Novak, S.; McCartney, D.; Baron, V. Residual feed intake adjusted for backfat thickness and feeding frequency is independent of fertility in beef heifers. Can. J. Anim. Sci. 2011, 91, 573–584. [Google Scholar] [CrossRef] [Green Version]
- Basarab, J.; McCartney, D.; Okine, E.; Baron, V. Relationships between progeny residual feed intake and dam productivity traits. Can. J. Anim. Sci. 2007, 87, 489–502. [Google Scholar] [CrossRef]
- Canadian Food Inspection Agency. Livestock and Poultry Carcass Grading Regulations, Office Consolidation. Available online: https://laws-lois.justice.gc.ca/eng/regulations/sor-92-541/20060322/P1TT3xt3.html (accessed on 21 December 2021).
- United States Department of Agriculture. United States Standards for Grades of Beef Carcasses. Available online: https://www.ams.usda.gov/sites/default/files/media/CarcassBeefStandard.pdf (accessed on 21 December 2021).
- Leffler, T.P.; Moser, C.R.; McManus, B.J.; Urh, J.J.; Keeton, J.T.; Adkins, K.; Claflin, A.; Davis, C.; Elliot, J.; Goin, P.; et al. Determination of moisture and fat in meats by microwave and nuclear magnetic resonance analysis: Collaborative study. J. AOAC Int. 2008, 91, 802–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Department of Agriculture. Institutional Meat Purchasing Specifications for Fresh Beef. Available online: https://www.ams.usda.gov/grades-standards/imps (accessed on 21 December 2021).
- Dakic, M.; Jovanovic, G.; Babic, L. Nitrites in meat products. Food Nutr. 1980, 21, 113–115. [Google Scholar]
- Vegan: Community Ecology Package; R Package Version, 2.5-7. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 10 February 2022).
- R Core Team. R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 21 December 2021).
- Caret: Classification and Regression Training; R Package Version 6.0-90. Available online: https://cran.r-project.org/web/packages/caret/index.html (accessed on 10 February 2022).
- Guenther, J.; Bushman, D.; Pope, L.; Morrison, R. Growth and development of the major carcass tissues in beef calves from weaning to slaughter weight, with reference to the effect of plane of nutrition. J. Anim. Sci. 1965, 24, 1184–1191. [Google Scholar] [CrossRef]
- Reinhardt, C. Growth-promotant implants: Managing the tools. Vet. Clin. N. Am. Food Anim. 2007, 23, 309–319. [Google Scholar] [CrossRef]
- Guiroy, P.J.; Tedeschi, L.O.; Fox, D.G.; Hutcheson, J.P. The effects of implant strategy on finished body weight of beef cattle. J. Anim. Sci. 2002, 80, 1791–1800. [Google Scholar] [CrossRef] [Green Version]
- Hutcheson, J. Growth Promotant Implants and Their Effects on Carcass Cutability and Quality. Available online: https://meatscience.org/docs/default-source/publications-resources/rmc/2008/hutcheson-paper.pdf?sfvrsn=0 (accessed on 10 February 2022).
- Block, H.; McKinnon, J.; Mustafa, A.; Christensen, D. Manipulation of cattle growth to target carcass quality. J. Anim. Sci. 2001, 79, 133–140. [Google Scholar] [CrossRef]
- Berg, R.; Butterfield, R. Growth patterns of bovine muscle, fat and bone. J. Anim. Sci. 1968, 27, 611–619. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Mirzaei, H.; Verbyla, A.P.; Pitchford, W.S. Prediction model of a joint analysis of beef growth and carcass quality traits. Genet. Mol. Res. 2011, 10, 448–458. [Google Scholar] [CrossRef]
CF | YF | Total | |
---|---|---|---|
IMP | 256 | 255 | 511 |
No IMP | 317 | 248 | 565 |
Total | 573 | 503 | 1076 |
CF | YF | p-Value | |||||
---|---|---|---|---|---|---|---|
No IMP | IMP | No IMP | IMP | PS | IMP | PS × IMP | |
Commercial Weight (kg) | 326 ± 10.8 | 347 ± 11.5 | 382 ± 12.7 | 409 ± 13.6 | <0.01 | <0.01 | 0.66 |
REA (cm2) 1 | 81.7 ± 1.76 | 86.8 ± 1.87 | 87.2 ± 1.89 | 90.2 ± 1.96 | <0.01 | <0.01 | 0.07 |
Grade fat (mm) | 11.4 ± 1.35 | 11.6 ± 1.39 | 13.2 ± 1.58 | 13.5 ± 1.62 | <0.01 | 0.29 | 0.94 |
Marbling 2 | 406 b ± 25.5 | 384 c ± 24.3 | 444 a ± 28.0 | 398 b ± 25.2 | <0.01 | <0.01 | 0.01 |
Muscle score | 2.40 ± 0.06 | 2.96 ± 0.05 | 2.92 ± 0.05 | 3.20 ± 0.04 | <0.01 | <0.01 | 0.10 |
Fat class | 4.50 ± 0.04 | 4.50 ± 0.04 | 5.40 ± 0.04 | 5.40 ± 0.04 | <0.01 | 0.61 | 0.72 |
Dressing (%) | 57.8 ± 0.37 | 58.4 ± 0.37 | 58.4 ± 0.37 | 58.8 ± 0.37 | <0.01 | <0.01 | 0.32 |
Estimated yield (%) | 57.1 ± 0.95 | 57.8 ± 0.96 | 56.3 ± 0.96 | 56.3 ± 0.97 | <0.01 | 0.11 | 0.13 |
Fat (%) 3 | 4.13 ± 0.64 | 3.51 ± 0.55 | 4.95 ± 0.76 | 3.88 ± 0.60 | <0.01 | <0.01 | 0.10 |
CF | YF | p-Value | |||||
---|---|---|---|---|---|---|---|
No IMP | IMP | No IMP | IMP | PS | IMP | PS × IMP | |
Round | 24.0 ± 0.65 | 24.1 ± 0.66 | 23.4 ± 0.64 | 23.5 ± 0.65 | <0.01 | 0.29 | 0.72 |
Loin | 14.7 a ± 0.14 | 14.8 a ± 0.14 | 14.5 b ± 0.14 | 14.8 a ± 0.14 | 0.10 | <0.01 | 0.02 |
Flank | 6.49 ± 0.72 | 6.29 ± 0.70 | 6.36 ± 0.71 | 6.28 ± 0.70 | 0.03 | <0.01 | 0.18 |
Chuck | 28.0 ± 0.27 | 28.2 ± 0.27 | 28.3 ± 0.27 | 28.7 ± 0.27 | <0.01 | <0.01 | 0.20 |
Rib | 10.3 a ± 0.37 | 10.4 a ± 0.37 | 10.4 a ± 0.37 | 10.2 b ± 0.36 | 0.12 | 0.29 | 0.03 |
Plate | 6.96 ± 0.53 | 6.80 ± 0.52 | 7.33 ± 0.55 | 7.17 ± 0.54 | <0.01 | <0.01 | 0.94 |
Brisket | 5.20 ± 0.31 | 5.26 ± 0.32 | 5.35 ± 0.32 | 5.27 ± 0.32 | 0.05 | 0.82 | 0.06 |
Shank | 3.83 ± 0.09 | 3.77 ± 0.09 | 3.71 ± 0.09 | 3.64 ± 0.09 | <0.01 | <0.01 | 0.92 |
CF | YF | p-Value | |||||
---|---|---|---|---|---|---|---|
No IMP | IMP | No IMP | IMP | PS | IMP | PS × IMP | |
Lean Component | |||||||
Round | 65.0 ± 0.94 | 65.9 ± 0.93 | 65.0 ± 0.94 | 65.6 ± 0.94 | 0.47 | <0.01 | 0.26 |
Loin | 56.8 ± 1.88 | 57.6 ± 1.87 | 56.6 ± 1.88 | 56.8 ± 1.88 | 0.02 | 0.02 | 0.15 |
Flank | 45.5 ± 3.60 | 47.2 ± 3.62 | 45.8 ± 3.60 | 47.0 ± 3.62 | 0.93 | <0.01 | 0.50 |
Chuck | 60.1 ± 1.33 | 62.1 ± 1.31 | 60.3 ± 1.33 | 61.9 ± 1.31 | 0.78 | <0.01 | 0.28 |
Rib | 49.0 ± 2.27 | 51.2 ± 2.27 | 48.8 ± 2.27 | 50.5 ± 2.27 | 0.09 | <0.01 | 0.27 |
Plate | 44.2 ± 2.62 | 46.9 ± 2.65 | 44.0 ± 2.62 | 46.3 ± 2.65 | 0.16 | <0.01 | 0.47 |
Brisket | 42.5 ± 1.61 | 44.8 ± 1.63 | 42.7 ± 1.61 | 44.5 ± 1.63 | 0.95 | <0.01 | 0.34 |
Shank | 43.4 ± 0.51 | 44.1 ± 0.52 | 44.6 ± 0.52 | 45.0 ± 0.52 | <0.01 | <0.01 | 0.24 |
Total | 56.1 ± 1.73 | 57.7 ± 1.72 | 56.0 ± 1.74 | 57.2 ± 1.73 | 0.17 | <0.01 | 0.33 |
Fat component | |||||||
Round | 18.5 ± 1.13 | 17.7 ± 1.09 | 18.8 ± 1.15 | 18.5 ± 1.13 | <0.01 | <0.01 | 0.12 |
Loin | 27.5 ± 2.13 | 26.4 ± 2.08 | 27.7 ± 2.14 | 27.3 ± 2.12 | 0.03 | <0.01 | 0.18 |
Flank | 53.6 ± 3.52 | 51.9 ± 3.54 | 53.3 ± 3.52 | 52.0 ± 3.54 | 0.88 | <0.01 | 0.52 |
Chuck | 26.0 ± 1.78 | 24.0 ± 1.69 | 26.0 ± 1.79 | 24.6 ± 1.72 | 0.11 | <0.01 | 0.19 |
Rib | 33.1 ± 3.42 | 31.0 ± 3.30 | 33.7 ± 3.45 | 32.2 ± 3.37 | <0.01 | <0.01 | 0.32 |
Plate | 43.6 ± 2.47 | 40.6 ± 2.43 | 43.8 ± 2.47 | 41.3 ± 2.44 | 0.24 | <0.01 | 0.54 |
Brisket | 43.6 ± 2.99 | 40.5 ± 2.94 | 43.8 ± 3.00 | 41.5 ± 2.96 | 0.05 | <0.01 | 0.13 |
Shank | 15.5 a ± 0.57 | 14.8 b ± 0.55 | 15.3 a ± 0.57 | 15.5 a ± 0.58 | 0.05 | 0.05 | <0.01 |
Total | 28.7 ± 2.21 | 26.9 ± 2.13 | 29.0 ± 2.22 | 27.8 ± 2.17 | 0.01 | <0.01 | 0.26 |
Primal Weight (%) | Lean Component | Fat Component | ||||
---|---|---|---|---|---|---|
CF | YF | CF | YF | CF | YF | |
Round | 0.35 | 0.58 | 0.24 | 0.76 | 0.27 | 0.55 |
Loin | 0.29 | 0.76 | 0.29 | 0.55 | 0.30 | 0.45 |
Flank | 0.43 | 0.57 | 0.31 | 0.36 | 0.31 | 0.37 |
Chuck | 0.32 | 0.62 | 0.30 | 0.61 | 0.29 | 0.45 |
Rib | 0.37 | 0.38 | 0.32 | 0.46 | 0.31 | 0.43 |
Plate | 0.32 | 0.31 | 0.26 | 0.42 | 0.28 | 0.40 |
Brisket | 0.14 | 0.32 | 0.22 | 0.32 | 0.29 | 0.37 |
Shank | 0.28 | 0.93 | 0.40 | 0.79 | 0.28 | 0.57 |
Total | - | - | 0.29 | 0.56 | 0.31 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sood, V.; Rodas-González, A.; Lam, S.; López-Campos, Ó.; Segura, J.; Schwinghamer, T.; Dugan, M.; Basarab, J.; Aalhus, J.; Juárez, M. Influence of Production Factors on Beef Primal Tissue Composition. Foods 2022, 11, 518. https://doi.org/10.3390/foods11040518
Sood V, Rodas-González A, Lam S, López-Campos Ó, Segura J, Schwinghamer T, Dugan M, Basarab J, Aalhus J, Juárez M. Influence of Production Factors on Beef Primal Tissue Composition. Foods. 2022; 11(4):518. https://doi.org/10.3390/foods11040518
Chicago/Turabian StyleSood, Vipasha, Argenis Rodas-González, Stephanie Lam, Óscar López-Campos, Jose Segura, Timothy Schwinghamer, Michael Dugan, John Basarab, Jennifer Aalhus, and Manuel Juárez. 2022. "Influence of Production Factors on Beef Primal Tissue Composition" Foods 11, no. 4: 518. https://doi.org/10.3390/foods11040518
APA StyleSood, V., Rodas-González, A., Lam, S., López-Campos, Ó., Segura, J., Schwinghamer, T., Dugan, M., Basarab, J., Aalhus, J., & Juárez, M. (2022). Influence of Production Factors on Beef Primal Tissue Composition. Foods, 11(4), 518. https://doi.org/10.3390/foods11040518