Lipid Profiles in Preliminary Germinated Brown Rice Beverages Compared to Non-Germinated Brown and White Rice Beverages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Material, Germination, Softening, Wet-Milling and Enzyme Processing
2.1.1. Lipid Characterization
2.1.2. Accelerated Solvent Extraction
2.1.3. Nonpolar Lipid Analysis
2.2. Data Analysis and Statistics
3. Results and Discussion
3.1. Total Lipid and Proximate Analysis
3.2. Total HPLC Lipids (and Oils) versus Summed Recovered Compounds
3.3. Free Fatty Acids (FFA): Saturated (SFA) and Unsaturated (USFA)
3.4. Triacylglycerols (TAG) and Diacylglycerols (DAG)
3.5. Phytosterol Esters (StE) and Nonpolar Lipids
3.6. Free Sterols
3.7. Oryzanol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Hanafiah, N.M.; Mispan, M.S.; Lim, P.E.; Baisakh, N.; Cheng, A. The 21st Century Agriculture: When Rice Research Draws Attention to Climate Variability and How Weedy Rice and Underutilized Grains Come in Handy. Plants 2020, 9, 365. [Google Scholar] [CrossRef] [Green Version]
- Champagne, E.T. Rice: Chemistry and Technology, 3rd ed.; American Association of Cereal Chemists, Inc.: St. Paul, MN, USA, 2004; 640p. [Google Scholar]
- Cho, D.H.; Lim, S.T. Germinated brown rice and its bio-functional compounds. Food Chem. 2016, 196, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Han, A.; Arijaje, E.O.; Jinn, J.R.; Mauromoustakos, A.; Wang, Y.J. Effects of germination duration on milling, physicochemical, and textural properties of medium- and long-grain rice. Cereal Chem. 2016, 93, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.Y.; Hwang, I.G.; Kim, T.M.; Woo, K.S.; Park, D.S.; Kim, J.H.; Kim, D.J.; Lee, J.; Lee, Y.R.; Jeong, H.S. Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination. Food Chem. 2012, 134, 288–293. [Google Scholar] [CrossRef]
- Wu, F.; Yang, N.; Toure, A.; Jin, Z.; Xu, X. Germinated brown rice and its role in human health. Crit. Rev. Food Sci. Nutr. 2013, 53, 451–463. [Google Scholar] [CrossRef]
- Moreau, R.A.; Nystrom, L.; Whitaker, B.D.; Winkler-Moser, J.K.; Baer, D.J.; Gebauer, S.K.; Hicks, K.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res. 2018, 70, 35–61. [Google Scholar] [CrossRef]
- Qureshi, A.A.; Mo, H.; Packer, L.; Peterson, D.M. Isolation and identification of novel tocotrienols from rice bran with hypocholesterolemic, antioxidant, and antitumor properties. J. Agric. Food Chem. 2000, 48, 3130–3140. [Google Scholar] [CrossRef]
- Xu, Z.; Hua, N.; Godber, J.S. Antioxidant activity of tocopherols, tocotrienols, and g-oryzanol components from rice bran against cholesterol oxidation accelerated by 2,2-Azobis(2-methylpropionamidine) dihydrochloride. J. Agric. Food Chem. 2001, 49, 2077–2081. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Whole grain phytochemicals and health. J. Cereal Sci. 2007, 46, 207–219. [Google Scholar] [CrossRef]
- Okarter, N.; Liu, C.S.; Sorrells, M.E.; Liu, R.H. Phytochemical content and antioxidant activity of six diverse varieties of whole wheat. Food Chem. 2010, 119, 249–257. [Google Scholar] [CrossRef]
- Luh, B.S. Rice Production; Van Nostrand Reinhold: New York, NY, USA, 1991. [Google Scholar]
- Rackis, J.J.; Sessa, D.J.; Honig, D.H. Flavor problems of vegetable food proteins. J. Am. Oil Chem. Soc. 1979, 56, 262–271. [Google Scholar] [CrossRef]
- Guraya, H.S.; Patindol, J.A. Storage stability of flour-blasted brown rice. Cereal Chem. 2011, 88, 56–63. [Google Scholar] [CrossRef]
- Mitchell, C.; Mitchell, P.R.; Nissenbaum, R. Nutritional Rice Milk Production. US Patent 4,744,992, 17 May 1988. [Google Scholar]
- Anonymous. Global Dairy Alternatives Market, Consumption Volume (by Source, Region & Application) and 20 Company Profile-Forecast to 2024. Res. Mark. 2018, 172. Available online: https://www.researchandmarkets.com/reports/4458877/global-dairy-alternatives-market-consumption#pos-1 (accessed on 12 June 2019).
- Grzebinski, T. The Surge of Plant-Based Foods; Information Resources Inc. IRI POS (Point-of-Sale), MURLOC (Multi Outlet plus Convenience Stores): Chicago, IL, USA, 2019. [Google Scholar]
- Pagand, J.; Heirbaut, P.; Pierre, A.; Pareyt, B. The magic and challenges of sprouted grains. Cereal Foods World 2017, 62, 221–226. [Google Scholar] [CrossRef]
- Moongngarm, A.; Saetung, N. Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chem. 2010, 122, 782–788. [Google Scholar] [CrossRef]
- Choi, I.; Suh, S.J.; Kim, J.H.; Kim, S.L. Effects of germination on fatty acid and free amino acid profiles of brown rice ‘Keunnun’. Food Sci. Biotechnol. 2009, 18, 799–802. [Google Scholar]
- Shu, X.L.; Frank, T.; Shu, Q.Y.; Engel, K.H. Metabolite profiling of germinating rice seeds. J. Agric. Food Chem. 2008, 56, 11612–11620. [Google Scholar] [CrossRef]
- Decloedt, A.I.; Van Landschoot, A.; Watson, H.; Vanderputten, D.; Vanhaecke, L. Plant-based beverages as good sources of free and glycosidic plant sterols. Nutrients 2018, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.C.; Reed, S.S.; Obando-Ulloa, J.M.; McClung, A.M. Green processing protocol for germinating and wet milling brown rice beverage formulations: Sprouting, milling and gelatinization effects. Food Sci. Nutr. 2020, 2020, 2445–2457. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.C.; Reed, S.S.; Obando-Ulloa, J.M.; Boue, S.M.; Cole, M.R. Green processing, germinating and wet milling brown rice (Oryza sativa) for beverages: Physicochemical effects. Foods 2020, 9, 1016. [Google Scholar] [CrossRef]
- Patindol, J.A.; Guraya, H.S.; Champagne, E.T.; McClung, A.M. Nutritionally important starch fractions of rice cultivars grown in southern united states. J. Food Sci. 2010, 75, H137–H144. [Google Scholar] [CrossRef]
- Johnston, D.B.; McAloon, A.J.; Moreau, R.A.; Hicks, K.B.; Singh, V. Composition and economic comparison of germ fractions from modified corn processing technologies. J. Am. Oil Chem. Soc. 2005, 82, 603–608. [Google Scholar] [CrossRef]
- Johnston, D.J.; Moreau, R.A. A comparison between corn and grain sorghum fermentation rates, distillers dried grains with solubles composition, and lipid profiles. Bioresour. Technol. 2017, 226, 118–124. [Google Scholar] [CrossRef]
- Angelino, D.; Rosi, A.; Vici, G.; Dello Russo, M.; Pellegrini, N. Nutritional quality of plant-based drinks sold in Italy: The food labelling of Italian products (FLIP) study. Foods 2020, 9, 682. [Google Scholar] [CrossRef]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef] [PubMed]
- Jayadeep, A.; Malleshi, N.G. Nutrients, composition of tocotrienols, tocopherols, and g-oryzanol, and antioxidant activity in brown rice before and after biotransformation. CyTA-J. Food 2011, 9, 82–87. [Google Scholar] [CrossRef]
- Moreau, R.A.; Harron, A.F.; Powell, M.J.; Hoyt, J.L. A comparison of the levels of oil, carotenoids, and lipolytic enzyme activities in modern lines and hybrids of grain sorghum. J. Am. Oil Chem. Soc. 2016, 93, 569–573. [Google Scholar] [CrossRef]
- Yoshida, H.; Tanigawa, T.; Kuriyama, I.; Yoshida, N.; Tomiyama, Y.; Mizushina, Y. Variation in fatty acid distribution of different acyl lipids in rice (Oryza sativa L.) brans. Nutrients 2011, 3, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Kwak, J.E.; Yoon, S.W.; Kim, D.J.; Yoon, M.R.; Lee, J.H.; Oh, S.K.; Kim, I.H.; Lee, J.S.; Lee, J.S.; Chang, J.K. Changes in nutraceutical lipid constituents of pre- and post-geminated brown rice oil. Korean J. Food Nutr. 2013, 26, 591–600. [Google Scholar] [CrossRef]
- Graham, I.A. Seed storage oil mobilization. Annu. Rev. Plant Biol. 2008, 59, 115–142. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.; Engel, K.H. Content of g-oryzanol and composition of steryl ferulates in brown rice (Oryza sativa L.) of European origin. J. Agric. Food Chem. 2006, 54, 8127–8133. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Kim, J.B.; Cho, S.M.; Cho, I.K.; Li, Q.X.; Jang, H.H.; Lee, S.H.; Lee, Y.M.; Hwang, K.A. Characterization and quantification of -oryzanol in grains of 16 Korean rice varieties. Int. J. Food Sci. Nutr. 2014, 66, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Goufo, P.; Trindade, H. Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, g-oryzanol, and phytic acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.Y.; Chen, Y.K.; Chen, H.H.; Lin, S.Y.; Fang, Y.T. Immunomodulatory effects of feruloylated oligosaccharides from rice bran. Food Chem. 2012, 134, 836–840. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.P.; Hicks, K.B. Isolation of barley hulls and straw constituents and study of emulsifying properties of their arabinoxylans. Carbohydr. Polym. 2015, 132, 529–536. [Google Scholar] [CrossRef]
- Mendez-Encinas, M.A.; Carvajal-Millan, E.; Rascon-Chu, A.; Astiazaran-Garcia, H.F.; Valencia-Rivera, D.E. Ferulated Arabinoxylans and Their Gels: Functional Properties and Potential Application as Antioxidant and Anticancer Agent. Oxid. Med. Cell. Longev. 2018, 2018, 2314759. [Google Scholar] [CrossRef] [Green Version]
- Nino-Medina, G.; Carvajal-Millan, E.; Rascon-Chu, A.; Marquez-Escalante, J.A.; Guerrero, V.; Salas-Munoz, E. Feruloylated arabinoxylans and arabinoxylan gels: Structure, sources and applications. Phytochem. Rev. 2010, 9, 111–120. [Google Scholar] [CrossRef]
Treatments | Total Lipid/Oil Weight % (dwb) | Palmitic and Stearic | Oleic | Linoleic | Linolenic |
---|---|---|---|---|---|
BRR (→ GBR)1 | 3.95 ± 0.72 z2 | 29.98 ± 5.64 z | 27.67 ± 10.45 z | 26.64 ± 4.46 z | 1.61 ± 0.56 z |
GBR (control) | 2.46 ± 0.18 yb | 24.69 ± 1.58 yb | 11.83 ± 5.69 yb | 9.44 ± 1.49 yb | 0.50 ± 0.14 yb |
BRR (control) | 2.78 ± 0.15 a | 21.59 ± 3.62 b | 15.74 ± 5.59 b | 13.18 ± 1.88 b | 0.71 ± 0.20 b |
WR (control) | 0.77 ± 0.09 c | 138.98 ± 29.41 a | 199.17 ± 36.27 a | 178.59 ± 35.77 a | 6.09 ± 1.42 a |
GBR, PWM | 1.98 ± 0.04 *B | 14.45 ± 1.72 *A | 5.37 ± 1.31 *A | 8.81 ± 1.30 A | 0.52 ± 0.05 A |
BRR, PWM | 2.17 ± 0.16 *A | 6.85 ± 1.07 *B | 1.18 ± 0.57 *B | 1.51 ± 0.34 *C | 0.16 ± 0.09 *B |
WR, PWM | 0.14 ± 0.02 *C | 5.93 ± 0.45 *B | 7.09 ± 0.37 *A | 5.57 ± 0.79 *B | 0.18 ± 0.05 *B |
GBR, PNZ | 0.62 ± 0.12 *t | 20.85 ± 2.02 *s | 6.72 ± 1.56 *s | 26.03 ± 3.69 *t | 1.40 ± 0.20 *t |
BRR, PNZ | 0.23 ± 0.02 *s | 5.61 ± 1.01 *r | 1.91 ± 0.42 *r | 7.40 ± 1.03 *s | 0.43 ± 0.08 s |
WR, PNZ | 0.14 ± 0.00 *s | 31.46 ± 0.51 *t | 13.87 ± 4.06 *t | 29.07 ± 4.56 *t | 1.33 ± 0.24 *t |
GBR, PWM-SL | 4.77 ± 0.41 *Z | 40.32 ± 3.36 *Z | 16.14 ± 2.02 *Z | 33.66 ± 3.02 *Z | 1.98 ± 0.10 *Z |
BRR, PWM-SL | 3.93 ± 0.16 *Y | 18.96 ± 1.39 Y | 3.92 ± 0.72 *Y | 5.90 ± 0.21 *Y | 0.42 ± 0.01 Y |
WR, PWM-SL | i.s.3 | i.s. | i.s. | i.s. | i.s. |
GBR, PNZ-SL | n.s.3 | n.s. | n.s. | n.s. | n.s. |
BRR, PNZ-SL | 3.26 ± 0.09 *T | 66.05 ± 3.01 *S | 24.05 ± 3.04 * S | 116.84 ± 1.71 *S | 5.83 ± 0.09 *S |
WR, PNZ-SL | 0.94 ± 0.10 S | 123.49 ± 28.11 T | 82.50 ± 19.97 * T | 170.52 ± 23.43 T | 7.35 ± 0.61 T |
CRF R7-150T | 0.33 ± 0.01 | 85.13 ± 7.78 | 72.91 ± 6.52 | 71.72 ± 7.83 | 2.05 ± 0.19 |
CRF RL-100 | 0.89 ± 0.01 | 189.2 ± 19.81 | 226.08 ± 24.10 | 223.24 ± 24.58 | 6.58 ± 0.32 |
Treatments | Unknown FFA | Total FFAs | TAG (Triacylglycerols) | 1,3-DAG (Diacylglycerols) | 1,2-DAG (Diacylglycerols) |
---|---|---|---|---|---|
BRR (→ GBR)1 | 2.04 ± 1.00 z 2 | 87.93 ± 19.59 z | 3163.52 ± 31.50 z | 24.04 ± 7.98 z | 116.62 ± 24.92 z |
GBR (control) | 1.33 ± 0.46 yb | 47.80 ± 6.86 yb | 1919.15 ± 6.86 yb | 9.97 ± 4.78 yb | 52.24 ± 9.66 yb |
BRR (control) | 1.94 ± 0.24 a | 53.15 ± 10.86 b | 2356.24 ± 205.96 a | 23.49 ± 6.48 a | 80.16 ± 15.93 a |
WR (control) | 0.23 ± 0.04 c | 523.06 ± 102.37 a | 167.89 ± 27.23 c | 13.39 ± 4.15 b | 3.40 ± 0.48 c |
GBR, PWM | 0.70 ± 0.12 *B | 29.85 ± 3.02 *A | 1583.44 ± 67.07 *B | 15.05 ± 3.00 *B | 64.48 ± 10.33 A |
BRR, PWM | 1.64 ± 0.17 A | 11.33 ± 2.00 *B | 1844.73 ± 104.49 *A | 32.03 ± 3.06 A | 43.49 ± 6.32 *B |
WR, PWM | 0.08 ± 0.01 *C | 18.85 ± 0.96 *B | 94.31 ± 15.93 C | 8.73 ± 2.74 C | 3.13 ± 0.81 C |
GBR, PNZ | 0.33 ± 0.06 *t | 55.33 ± 5.51 s | 438.85 ± 82.06 *t | 9.37 ± 1.33 t | 7.84 ± 1.60 *t |
BRR, PNZ | 0.20 ± 0.02 *s | 15.55 ± 2.44 *r | 171.39 ± 26.26 *s | 5.39 ± 1.19 *s | 2.24 ± 0.55 *s |
WR, PNZ | 0.22 ± 0.02 t,s | 75.95 ± 8.37 *t | 39.59 ± 12.53 *s | 3.64 ± 1.59 s | 1.71 ± 1.07 s |
GBR, PWM-SL | 3.66 ± 0.41 *Y | 101.53 ± 4.84 *Z | 3697.75 ± 403.22 *Z | 19.61 ± 3.58 *Y | 177.72 ± 11.82 *Z |
BRR, PWM-SL | 4.64 ± 0.28 *Z | 33.841.15 *Y | 2999.40 ± 4.47 *Y | 36.56 ± 5.95 *Z | 99.90 ± 16.28 Y |
WR, PWM-SL | i.s. 3 | i.s. | i.s. | i.s. | i.s. |
GBR, PNZ-SL | n.s. 3 | n.s. | n.s. | n.s. | n.s. |
BRR, PNZ-SL | 2.37 ± 0.18 *T | 215.15 ± 3.25 *S | 2578.79 ± 241.27 T | 107.36 ± 13.16 *T | 36.42 ± 8.67 *T |
WR, PNZ-SL | 0.82 ± 0.08 *S | 384.68 ± 70.68 T | 410.12 ± 83.03 *S | 46.63 ± 11.04 *S | 16.21 ± 2.43 *S |
CRF R7-150T | 0.89 ± 0.03 | 232.71 ± 22.06 | 18.32 ± 2.28 | 0.51 ± 0.13 | 0.56 ± 0.06 |
CRF RL-100 | 0.68 ± 0.14 | 645.80 ± 68.64 | 159.14 ± 16.45 | 6.38 ± 2.54 | 3.38 ± 0.43 |
Treatments | StE (Phytosterol Esters) | Free Sterol | Oryzanol | Sum Classes (Recovered) |
---|---|---|---|---|
BRR (→ GBR)1 | 138.50 ± 14.12 z 2 | 35.30 ± 4.84 z | 51.62 ± 11.84 z | 3617.52 ± 756.10 z |
GBR (control) | 97.29 ± 10.18 ya | 26.92 ± 2.52 ya | 25.10 ± 3.79 yb | 2178.45 ± 152.70 yb |
BRR (control) | 102.05 ± 14.97 a | 22.28 ± 1.75 b | 35.67 ± 4.35 a | 2673.07 ± 244.00 a |
WR (control) | 34.42 ± 1.81 b | 3.35 ± 0.21 c | 5.66 ± 0.96 c | 751.17 ± 135.59 c |
GBR, PWM | 81.72 ± 5.02 *A | 24.59 ± 0.42 A | 18.11 ± 1.42 *B | 1817.23 ± 77.78 *B |
BRR, PWM | 92.62 ± 9.91 A | 22.66 ± 1.83 A | 27.51 ± 1.39 A | 2074.40 ± 116.70 *A |
WR, PWM | 17.25 ± 3.05 *B | 2.40 ± 0.42 B | 1.01 ± 0.25 *C | 145.67 ± 21.34 *C |
GBR, PNZ | 29.02 ± 1.72 *t | 8.74 ± 1.54 *t | 5.84 ± 0.93 *t | 554.98 ± 92.22 *t |
BRR, PNZ | 20.36 ± 5.89 *s | 3.43 ± 0.53 *s | 1.15 ± 0.06 *s | 219.50 ± 36.39 *s |
WR, PNZ | 19.30 ± 0.82 *s | 2.03 ± 0.27 s | 0.36 ± 0.15 *s | 142.55 ± 6.43 *s |
GBR, PWM-SL | 238.55 ± 20.89 *Z | 50.84 ± 2.71 *Z | 165.86 ± 11.43 *Z | 4695.43 ± 448.29 *Z |
BRR, PWM-SL | 170.97 ± 16.21 *Y | 43.62 ± 4.88 *Y | 132.32 ± 12.56 *Y | 3516.60 ± 52.56 *Y |
WR, PWM-SL | i.s. 3 | i.s. | i.s. | i.s. |
GBR, PNZ-SL | n.s. 3 | n.s. | n.s. | n.s. |
BRR, PNZ-SL | 137.21 ± 10.44 *T | 41.91 ± 3.47 *T | 69.20 ± 6.45 *T | 3186.03 ± 254.20 *T |
WR, PNZ-SL | 33.42 ± 3.77 S | 17.23 ± 2.53 *S | 11.42 ± 1.07 *S | 919.70 ± 33.94 S |
CRF R7-150T | 17.97 ± 2.98 | 7.03 ± 0.13 | 1.22 ± 0.06 | 278.31 ± 2.98 |
CRF RL-100 | 36.40 ± 16.45 | 8.57 ± 2.54 | 3.28 ± 0.43 | 862.96 ± 2.08 |
Treatments | % FFAs | % TAG | % TAGs and DAGs | % StE (Phytosterol Esters) | % Free Sterols | % Oryzanol |
---|---|---|---|---|---|---|
BRR (→ GBR) 1 | 2.43 | 87.45 | 91.34 | 3.83 | 0.98 | 1.43 |
GBR (control) | 2.19 | 88.10 | 90.95 | 4.47 | 1.24 | 1.15 |
PWM | 1.64 | 87.13 | 91.51 | 4.50 | 1.35 | 1.00 |
PNZ | 9.97 | 79.07 | 82.17 | 5.23 | 1.58 | 1.05 |
PWM-SL | 2.20 | 83.90 | 88.10 | 5.08 | 1.08 | 3.53 |
PNZ-SL | n.s. 2 | n.s. | n.s. | n.s. | n.s. | n.s. |
BRR (control) | 1.99 | 88.15 | 92.03 | 3.82 | 0.83 | 1.33 |
PWM | 0.55 | 88.93 | 92.57 | 4.47 | 1.09 | 1.33 |
PNZ | 7.08 | 78.08 | 81.56 | 9.27 | 1.56 | 0.52 |
PWM-SL | 0.96 | 85.29 | 89.17 | 4.86 | 1.24 | 3.76 |
PNZ-SL | 6.75 | 80.94 | 85.45 | 4.31 | 1.32 | 2.17 |
WR (control) | 69.63 | 22.35 | 24.59 | 4.58 | 0.45 | 0.75 |
PWM | 12.94 | 64.74 | 72.88 | 11.84 | 1.65 | 0.70 |
PNZ | 53.27 | 27.77 | 31.52 | 13.54 | 1.43 | 0.25 |
PWM-SL | i.s. 2 | i.s. | i.s. | i.s. | i.s. | i.s. |
PNZ-SL | 41.83 | 44.59 | 51.43 | 3.63 | 1.87 | 1.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beaulieu, J.C.; Moreau, R.A.; Powell, M.J.; Obando-Ulloa, J.M. Lipid Profiles in Preliminary Germinated Brown Rice Beverages Compared to Non-Germinated Brown and White Rice Beverages. Foods 2022, 11, 220. https://doi.org/10.3390/foods11020220
Beaulieu JC, Moreau RA, Powell MJ, Obando-Ulloa JM. Lipid Profiles in Preliminary Germinated Brown Rice Beverages Compared to Non-Germinated Brown and White Rice Beverages. Foods. 2022; 11(2):220. https://doi.org/10.3390/foods11020220
Chicago/Turabian StyleBeaulieu, John C., Robert A. Moreau, Michael J. Powell, and Javier M. Obando-Ulloa. 2022. "Lipid Profiles in Preliminary Germinated Brown Rice Beverages Compared to Non-Germinated Brown and White Rice Beverages" Foods 11, no. 2: 220. https://doi.org/10.3390/foods11020220
APA StyleBeaulieu, J. C., Moreau, R. A., Powell, M. J., & Obando-Ulloa, J. M. (2022). Lipid Profiles in Preliminary Germinated Brown Rice Beverages Compared to Non-Germinated Brown and White Rice Beverages. Foods, 11(2), 220. https://doi.org/10.3390/foods11020220