A Study on the Effects of Calcium Lactate on the Gelling Properties of Large Yellow Croaker (Pseudosciaena crocea) Surimi by Low-Field Nuclear Magnetic Resonance and Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cooking Loss
2.3. Preparation of Surimi Gels
2.4. Color Evaluation
2.5. Gel Strength
2.6. Water-Holding Capacity of Surimi Gels
2.7. LF-NMR Measurement of Surimi Gels
2.8. Raman Spectroscopy of Surimi Gels
2.9. Statistical Analysis
3. Results and Discussion
3.1. CL of Surimi
3.2. Whiteness of Surimi Gels
3.3. Strength of Surimi Gels
3.4. WHC of Surimi Gels
3.5. Water Distribution of Surimi Gels
3.6. Raman Spectroscopy of Proteins in Surimi Gels
3.6.1. Changes in the Secondary Structure of Protein
3.6.2. Local Environments of Protein Networks in the Surimi Gels
3.7. Correlations Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
CL | Cooking loss |
LF-NMR | Low-field nuclear magnetic resonance |
WHC | Water-holding capacity |
GS | Gel strength |
References
- Liang, P.; Cheng, X.; Xu, Y.; Cheng, W.; Chen, L. Determination of fatty acid composition and phospholipid molecular species of large yellow croaker (Pseudosciaena crocea) roe from China. J. Aquat. Food Prod. Technol. 2017, 26, 1259–1265. [Google Scholar] [CrossRef]
- Yuan, J.; Lin, H.-D.; Wu, L.; Zhuang, X.; Ma, J.; Kang, B.; Ding, S. Resource status and effect of long-term stock enhancement of large yellow croaker in china. Front. Mar. Sci. 2021, 8, 743836. [Google Scholar] [CrossRef]
- China Society of Fisheries. China Fishery Statistical Yearbook of 2020; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- da Silva Oliveira, M.E.; Goncalves, A.A. The effect of different food grade additives on the quality of Pacific white shrimp (Litopenaeus vannamei) after two freeze-thaw cycles. LWT 2019, 113, 108301. [Google Scholar] [CrossRef]
- Julavittayanukul, O.; Benjakul, S.; Visessanguan, W. Effect of phosphate compounds on gel-forming ability of surimi from bigeye snapper (Priacanthus tayenus). Food Hydrocoll. 2006, 20, 1153–1163. [Google Scholar] [CrossRef]
- Panseri, S.; Arioli, F.; Biolatti, C.; Mosconi, G.; Pavlovic, R.; Chiesa, L.M. Detection of polyphosphates in seafood and its relevance toward food safety. Food Chem. 2020, 332, 127397. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, J.A.; Uresti, R.M.; Velazquez, G.; Vázquez, M. Food hydrocolloids as additives to improve the mechanical and functional properties of fish products: A review. Food Hydrocoll. 2011, 25, 1842–1852. [Google Scholar] [CrossRef]
- Wijayanti, I.; Singh, A.; Prodpran, T.; Sookchoo, P.; Benjakul, S. Effect of asian sea bass (Lates calcarifer) bio-calcium in combination with different calcium salts on gel properties of threadfin bream surimi. J. Aquat. Food Prod. Technol. 2021, 30, 1173–1188. [Google Scholar] [CrossRef]
- Lee, N.; Park, J.W. Calcium compounds to improve gel functionality of pacific whiting and alaska pollock surimi. J. Food Sci. 2006, 63, 969–974. [Google Scholar] [CrossRef]
- Yin, T.; Park, J.W. Optimum processing conditions for slowly heated surimi seafood using protease-laden Pacific whiting surimi. LWT-Food Sci. Technol. 2015, 63, 490–496. [Google Scholar] [CrossRef]
- Chitrakar, B.; Zhang, M.; Bhandari, B. Novel Intelligent Detection of Safer Water Activity by LF-NMR Spectra for Selected Fruits and Vegetables during Drying. Food Bioprocess Technol. 2019, 12, 1093–1101. [Google Scholar] [CrossRef]
- Sadat, A.; Joye, I.J. Peak fitting applied to fourier transform infrared and raman spectroscopic analysis of proteins. Appl. Sci. 2020, 10, 5918. [Google Scholar] [CrossRef]
- Wang, J.; Su, Y.; Gu, L.; Chang, C.; Xu, L.; Yang, Y.; Li, J. The inhibition of cell-free supernatants of several lactic acid bacteria on the selected psychrophilic spoilage bacteria in liquid whole egg. Food Control 2021, 123, 107753. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, W.; Wang, H.; Ye, Q. Effects of a highly resistant rice starch and pre-incubation temperatures on the physicochemical properties of surimi gel from grass carp (Ctenopharyn Odon Idellus). Food Chem. 2014, 145, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhao, L.; Huang, Q.; Xiong, S.; Yin, T.; Liu, Z. Water migration, ice crystal formation, and freeze-thaw stability of silver carp surimi as affected by inulin under different additive amounts and polymerization degrees. Food Hydrocoll. 2022, 124, 107267. [Google Scholar] [CrossRef]
- Abe, S.; Asada, T.; Kajiwara, K. Effects of freeze-thaw cycles on Gel-Forming ability and protein denaturation in alaska pollock frozen surimi. J. Food Qual. 2019, 2019, 3760368. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-González, I.; Carmona, P.; Moreno, P.; Borderías, J.; Sánchez-Alonso, I.; Rodríguez-Casado, A.; Careche, M. Protein and water structural changes in fish surimi during gelation as revealed by isotopic H/D exchange and Raman spectroscopy. Food Chem. 2008, 106, 56–64. [Google Scholar] [CrossRef]
- Priyadarshini, M.B.; Balange, A.K.; Xavier, K.A.M.; Reddy, R.; Nayak, B.B.; Sanath Kumar, H. The Effect of Lyophilized Coconut Mesocarp—Aqueous and Ethanol Phenolic Extracts on the Gel Quality of Tilapia Surimi. J. Aquat. Food Prod. Technol. 2021, 30, 1330–1343. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Jongjareonrak, A.; Benjakul, S.; Chaijan, M. Discoloration and lipid deterioration of farmed giant catfish (Pangasianodon gigas) muscle during refrigerated storage. J. Food Sci. 2008, 73, C179–C184. [Google Scholar] [CrossRef]
- Yongsawatdigul, J.; Worratao, A.; Park, J.W. Effect of endogenous transglutaminase on threadfin bream surimi gelation. J. Food Sci. 2002, 67, 3258–3263. [Google Scholar] [CrossRef]
- da Silva Carneiro, C.; Mársico, E.T.; Ribeiro, R.D.O.R.; Júnior, C.A.C.; Álvares, T.S.; de Jesus, E.F.O. Studies of the effect of sodium tripolyphosphate on frozen shrimp by physicochemical analytical methods and Low Field Nuclear Magnetic Resonance (LF 1H NMR). LWT-Food Sci. Technol. 2013, 50, 401–407. [Google Scholar] [CrossRef]
- Lan, W.; Liu, J.; Hu, X.; Xiao, L.; Sun, X.; Xie, J. Evaluation of quality changes in big-eye tuna (Thunnus obesus) based on near-infrared reflectance spectroscopy (NIRS) and low field nuclear magnetic resonance (LF-NMR). J. Food Process Eng. 2021, 44, e13613. [Google Scholar] [CrossRef]
- Elkordy, A.A.; Forbes, R.T.; Barry, B.W. Study of protein conformational stability and integrity using calorimetry and FT-Raman spectroscopy correlated with enzymatic activity. Eur. J. Pharm. Sci. 2008, 33, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Phongpa-Ngan, P.; Aggrey, S.E.; Mulligan, J.H.; Wicker, L. Raman spectroscopy to assess water holding capacity in muscle from fast and slow growing broilers. LWT-Food Sci. Technol. 2014, 57, 696–700. [Google Scholar] [CrossRef]
- Thawornchinsombut, S.; Park, J.W.; Meng, G.; Li-Chan, E.C.Y. Raman spectroscopy determines structural changes associated with gelation properties of fish proteins recovered at alkaline pH. J. Agric. Food Chem. 2006, 54, 2178–2187. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Han, M. Raman spectroscopic study of the effects of microbial transglutaminase on heat-induced gelation of pork myofibrillar proteins and its relationship with textural characteristics. Food Res. Int. 2011, 44, 1514–1520. [Google Scholar] [CrossRef]
- Herrero, A.M.; Carmona, P.; Cofrades, S.; Jiménez-Colmenero, F. Raman spectroscopic determination of structural changes in meat batters upon soy protein addition and heat treatment. Food Res. Int. 2008, 41, 765–772. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, Q.; Zhao, M.; Yang, B.; Cui, C.; Ren, J. Structural evaluation of myofibrillar proteins during processing of cantonese sausage by raman spectroscopy. J. Agric. Food Chem. 2011, 59, 11070–11077. [Google Scholar] [CrossRef]
- Herrero, A.M.; Cambero, M.I.; Ordóñez, J.A.; De La Hoz, L.; Carmona, P. Raman spectroscopy study of the structural effect of microbial transglutaminase on meat systems and its relationship with textural characteristics. Food Chem. 2008, 109, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.-L.; Han, M.-Y.; Fei, Y.; Zhou, G.-H. Raman spectroscopic study of heat-induced gelation of pork myofibrillar proteins and its relationship with textural characteristic. Meat Sci. 2011, 87, 159–164. [Google Scholar] [CrossRef]
- Li-Chan, E.C.Y. The applications of Raman spectroscopy in food science. Ternds Food Sci. Technol. 1996, 7, 361–370. [Google Scholar] [CrossRef]
- Stangierski, J.; Baranowska, H.M.; Rezler, R.; Kijowski, J. Enzymatic modification of protein preparation obtained from water-washed mechanically recovered poultry meat. Food Hydrocoll. 2008, 22, 1629–1636. [Google Scholar] [CrossRef]
- Han, M.; Wang, P.; Xu, X.; Zhou, G. Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics. Food Res. Int. 2014, 62, 1175–1182. [Google Scholar] [CrossRef]
Calcium Lactate (%) | Cooking Loss (%) | Water-Holding Capacity (%) | Whiteness | L* | a* | b* |
---|---|---|---|---|---|---|
0 | 12.13 ± 0.007 c | 77.86 ± 0.01 bc | 74.87 ± 0.64 a | 75.31 ± 0.62 a | −2.75 ± 0.09 d | 3.71 ± 0.54 d |
0.5 | 19.85 ± 0.003 e | 78.72 ± 0.03 c | 75.07 ± 0.43 b | 75.47 ± 0.41 a | −2.55 ± 0.13 e | 3.67 ± 0.39 d |
1.5 | 20.17 ± 0.010 e | 78.89 ± 0.01 c | 75.92 ± 0.63 b | 76.43 ± 0.66 ab | −2.67 ± 0.12 c | 3.86 ± 0.46 e |
2.5 | 16.67 ± 0.005 d | 74.01 ± 0.04 b | 76.84 ± 0.56 c | 77.21 ± 0.55 c | −2.92 ± 0.13 b | 2.82 ± 0.49 c |
3.5 | 10.02 ± 0.003 b | 71.68 ± 0.04 a | 77.48 ± 0.54 d | 77.91 ± 0.56 d | −3.06 ± 0.10 a | 1.86 ± 0.13 a |
4.5 | 8.47 ± 0.002 a | 71.12 ± 0.02 a | 77.58 ± 0.36 d | 77.71 ± 0.35 d | −2.95 ± 0.15 b | 1.97 ± 0.37 bc |
T | WHC | CL | GS | Whiteness | RC21 | RC22 | RC23 | T21 | T22 | T23 | α-Helix | Coil | β-Sheet | β-Turn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | 1 | −0.9342 | −0.6099 | 0.9661 | 0.9809 | −0.6562 | 0.5863 | −0.5630 | −0.9644 | 0.9637 | 0.9533 | ||||
WHC | −− | 1 | 0.7836 | −0.8720 | −0.9397 | 0.5192 | −0.7559 | 0.7325 | −0.6870 | 0.8558 | −0.8831 | −0.8408 | |||
CL | − | ++ | 1 | −0.5739 | −0.9883 | 0.9877 | −0.8512 | −0.9535 | 0.5410 | −0.5770 | −0.5432 | ||||
GS | ++ | −− | 1 | 0.9376 | −0.7355 | 0.5088 | −0.5886 | −0.9896 | 0.9926 | 0.9643 | |||||
Whiteness | ++ | −− | − | ++ | 1 | −0.705 | 0.5357 | −0.5104 | −0.5007 | −0.9128 | 0.9212 | 0.8819 | |||
RC21 | − | + | − | − | 1 | 0.9114 | 0.5796 | 0.6519 | −0.6492 | −0.6200 | |||||
RC22 | + | −− | −− | + | + | 1 | −0.9991 | 0.8543 | 0.9335 | −0.5550 | 0.5943 | 0.5529 | |||
RC23 | − | + | ++ | − | −− | 1 | −0.8685 | −0.9327 | 0.5324 | −0.5705 | −0.5308 | ||||
T21 | − | − | ++ | 1 | 0.6230 | 0.5213 | −0.5047 | −0.5506 | |||||||
T22 | −− | + | ++ | −− | + | 1 | 0.9149 | −0.5993 | |||||||
T23 | − | −− | ++ | −− | ++ | 1 | −0.6059 | ||||||||
α-helix | −− | ++ | + | −− | −− | + | − | + | + | 1 | −0.9956 | −0.9859 | |||
Coil | − | − | 1 | ||||||||||||
β-sheet | ++ | −− | − | ++ | ++ | − | + | − | − | −− | 1 | 0.9730 | |||
β-turn | ++ | −− | − | ++ | ++ | − | + | − | − | −− | ++ | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, S.; Chen, X.; Qin, Y.; Tong, L.; Ou, C. A Study on the Effects of Calcium Lactate on the Gelling Properties of Large Yellow Croaker (Pseudosciaena crocea) Surimi by Low-Field Nuclear Magnetic Resonance and Raman Spectroscopy. Foods 2022, 11, 3197. https://doi.org/10.3390/foods11203197
Sang S, Chen X, Qin Y, Tong L, Ou C. A Study on the Effects of Calcium Lactate on the Gelling Properties of Large Yellow Croaker (Pseudosciaena crocea) Surimi by Low-Field Nuclear Magnetic Resonance and Raman Spectroscopy. Foods. 2022; 11(20):3197. https://doi.org/10.3390/foods11203197
Chicago/Turabian StyleSang, Shangyuan, Xiaoyun Chen, Ying Qin, Li Tong, and Changrong Ou. 2022. "A Study on the Effects of Calcium Lactate on the Gelling Properties of Large Yellow Croaker (Pseudosciaena crocea) Surimi by Low-Field Nuclear Magnetic Resonance and Raman Spectroscopy" Foods 11, no. 20: 3197. https://doi.org/10.3390/foods11203197
APA StyleSang, S., Chen, X., Qin, Y., Tong, L., & Ou, C. (2022). A Study on the Effects of Calcium Lactate on the Gelling Properties of Large Yellow Croaker (Pseudosciaena crocea) Surimi by Low-Field Nuclear Magnetic Resonance and Raman Spectroscopy. Foods, 11(20), 3197. https://doi.org/10.3390/foods11203197