The Impact of Rearing Salinity on Flesh Texture, Taste, and Fatty Acid Composition in Largemouth Bass Micropterus salmoides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Ethics Approval
2.2. Fish and Experimental Conditions
2.3. Sample Collection
2.4. Muscle Texture Analysis
2.4.1. Drip Loss
2.4.2. Cooking Loss
2.4.3. Centrifugal Loss
2.4.4. Shear Value
2.4.5. Texture Profile Analysis
2.4.6. Morphology Analysis
2.4.7. Collagen Content Determination
2.5. Identification and Quantification Taste Substances
2.5.1. Fatty Acid Analysis
2.5.2. Nucleotide Analysis
2.5.3. Free Amino Acids Analysis
2.5.4. Electronic Tongue
2.6. Statistics, Calculations, and Statistical Analysis
3. Results and Discussion
3.1. Muscle Texture Analysis
3.2. Muscle Taste Analysis
3.3. Fatty Acids Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Y.; Zhao, J.; Ayisi, C.L.; Cao, X. Effects of Salinity and Alkalinity on Fatty Acids, Free Amino Acids and Related Substance Anabolic Metabolism of Nile Tilapia. Aquac. Fish. 2022, 7, 389–395. [Google Scholar] [CrossRef]
- Ekonomou, S.I.; Parlapani, F.F.; Kyritsi, M.; Hadjichristodoulou, C.; Boziaris, I.S. Preservation Status and Microbial Communities of Vacuum-Packed Hot Smoked Rainbow Trout Fillets. Food Microbiol. 2022, 103, 103959. [Google Scholar] [CrossRef]
- Codabaccus, M.B.; Bridle, A.R.; Nichols, P.D.; Carter, C.G. Effect of Feeding Atlantic Salmon (Salmo Salar L.) a Diet Enriched with Stearidonic Acid from Parr to Smolt on Growth and n-3 Long-Chain PUFA Biosynthesis. Br. J. Nutr. 2011, 105, 1772–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.; Xue, W.; Hua, J.; Hang, Y.; Sun, L.; Miao, S.; Wei, W.; Wu, X.; Du, X. Effects of Dietary Betaine in Allogynogenetic Gibel Carp (Carassius Auratus Gibelio): Enhanced Growth, Reduced Lipid Deposition and Depressed Lipogenic Gene Expression. Aquac. Res. 2018, 49, 1967–1972. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Ji, P.; Sun, L.; Miao, S.; Lei, Y.; Du, X. Seawater Culture Increases Omega-3 Long-Chain Polyunsaturated Fatty Acids (N-3 LC-PUFA) Levels in Japanese Sea Bass (Lateolabrax Japonicus), Probably by Upregulating Elovl5. Animals 2020, 10, 1681. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Li, E.; Gan, L.; Wang, X.; Xu, C.; Lin, H.; Qin, J.G.; Chen, L. Growth and Lipid Metabolism of the Pacific White Shrimp Litopenaeus Vannamei at Different Salinities. J. Shellfish Res. 2014, 33, 825–832. [Google Scholar] [CrossRef]
- Li, E.; Wang, X.; Chen, K.; Xu, C.; Qin, J.G.; Chen, L. Physiological Change and Nutritional Requirement of Pacific White Shrimp Litopenaeus Vannamei at Low Salinity. Rev. Aquac. 2017, 9, 57–75. [Google Scholar] [CrossRef]
- İbrahim Haliloǧlu, H.; Bayır, A.; Necdet Sirkecioǧlu, A.; Mevlüt Aras, N.; Atamanalp, M. Comparison of Fatty Acid Composition in Some Tissues of Rainbow Trout (Oncorhynchus Mykiss) Living in Seawater and Freshwater. Food Chem. 2004, 86, 55–59. [Google Scholar] [CrossRef]
- Xu, J.; Yan, B.; Teng, Y.; Lou, G.; Lu, Z. Analysis of Nutrient Composition and Fatty Acid Profiles of Japanese Sea Bass Lateolabrax Japonicus (Cuvier) Reared in Seawater and Freshwater. J. Food Compos. Anal. 2010, 23, 401–405. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Hu, C.-B.; Zheng, Y.-J.; Xia, X.-A.; Xu, W.-J.; Wang, S.-Q.; Chen, W.-Z.; Sun, Z.-W.; Huang, J.-H. The Effects of Dietary Fatty Acids on Liver Fatty Acid Composition and Delta(6)-Desaturase Expression Differ with Ambient Salinities in Siganus Canaliculatus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 151, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Monroig, Ó.; Zhou, Q.; Tocher, D.R.; Yuan, Y.; Zhu, T.; Lu, J.; Song, D.; Jiao, L.; Jin, M. Environmental Salinity and Dietary Lipid Nutrition Strategy: Effects on Flesh Quality of the Marine Euryhaline Crab Scylla Paramamosain. Food Chem. 2021, 361, 130160. [Google Scholar] [CrossRef] [PubMed]
- de Huidobro, F.R.; Miguel, E.; Blázquez, B.; Onega, E. A Comparison between Two Methods (Warner-Bratzler and Texture Profile Analysis) for Testing Either Raw Meat or Cooked Meat. Meat Sci. 2005, 69, 527–536. [Google Scholar] [CrossRef]
- Liu, D.; Li, S.; Wang, N.; Deng, Y.; Sha, L.; Gai, S.; Liu, H.; Xu, X. Evolution of Taste Compounds of Dezhou-Braised Chicken During Cooking Evaluated by Chemical Analysis and an Electronic Tongue System. J. Food Sci. 2017, 82, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Otegbayo, B.; Aina, J.; Abbey, L.; Sakyi-Dawson, E.; Bokanga, M.; Asiedu, R. Texture Profile Analysis Applied to Pounded Yam. J. Texture Stud. 2007, 38, 355–372. [Google Scholar] [CrossRef]
- Surányi, J.; Zaukuu, J.-L.Z.; Friedrich, L.; Kovacs, Z.; Horváth, F.; Németh, C.; Kókai, Z. Electronic Tongue as a Correlative Technique for Modeling Cattle Meat Quality and Classification of Breeds. Foods 2021, 10, 2283. [Google Scholar] [CrossRef] [PubMed]
- Xiao, N.; Huang, H.; Liu, J.; Jiang, X.; Chen, Q.; Chen, Q.; Shi, W. Comparison of Different Edible Parts of Bighead Carp (Aristichthys Nobilis) Flavor. J. Food Biochem. 2021, 45, e13946. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Hu, W.; Xiong, S.; You, J.; Fan, Q. Depuration and Starvation Improves Flesh Quality of Grass Carp (Ctenopharyngodon Idella). Aquac. Res. 2018, 49, 3196–3206. [Google Scholar] [CrossRef]
- Rainer, F. Micropterus Salmoides (Lacepède, 1802) Largemouth Black Bass (On-Line). 2019. Available online: http://www.fishbase.se/summary/Micropterus-salmoides.html (accessed on 22 January 2016).
- Norris, A.J.; DeVries, D.R.; Wright, R.A. Coastal Estuaries as Habitat for a Freshwater Fish Species: Exploring Population-Level Effects of Salinity on Largemouth Bass. Trans. Am. Fish. Soc. 2010, 139, 610–625. [Google Scholar] [CrossRef]
- Glover, D.C.; DeVries, D.R.; Wright, R.A. Effects of Temperature, Salinity and Body Size on Routine Metabolism of Coastal Largemouth Bass Micropterus Salmoides. J. Fish Biol. 2012, 81, 1463–1478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xue, M.; Wang, J.; Wu, X.; Zheng, Y.; Han, F. Effects of Fish Meal Replacement by Plant Protein Blend on Growth and Flesh Quality of Japanese Seabass ( Lateolabrax japonicus) and Siberian Sturgeon (Acipenser baeri Brandt). Chin. J. Anim. Nutr. 2013, 25, 1260–1275. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2006. [Google Scholar]
- Chen, D.W.; Zhang, M. Non-Volatile Taste Active Compounds in the Meat of Chinese Mitten Crab (Eriocheir Sinensis). Food Chem. 2007, 104, 1200–1205. [Google Scholar] [CrossRef]
- Song, J.; Wang, H.; Wu, X.; Wang, X.; Shi, W. The Flavor of Gonad and Meat of Female Portunus Trituberculatus Cultured in Indoor and Outdoor. J. Food Biochem. 2019, 43, e12743. [Google Scholar] [CrossRef] [PubMed]
- Buratti, S.; Casiraghi, A.; Minghetti, P.; Giovanelli, G. The Joint Use of Electronic Nose and Electronic Tongue for the Evaluation of the Sensorial Properties of Green and Black Tea Infusions as Related to Their Chemical Composition. Food Nutr. Sci. 2013, 4, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Zhao, M.; Zhang, Z.; Wang, J.; Qin, W.; Du, X. Effects of water salinity on growth performance, muscle nutrient composition and liver antioxidant capacity in Micropterus salmoides. J. Yangzhou Univ. (Agric. Life Sci. Ed.) 2021, 42, 106–110. [Google Scholar] [CrossRef]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A Structural Approach to Understanding the Interactions between Colour, Water-Holding Capacity and Tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Song, D.; Yun, Y.; Mi, J.; Luo, J.; Jin, M.; Nie, G.; Zhou, Q. Effects of Faba Bean on Growth Performance and Fillet Texture of Yellow River Carp, Cyprinus Carpio haematopterus. Aquac. Rep. 2020, 17, 100379. [Google Scholar] [CrossRef]
- Sarower, M.G.; Hasanuzzaman, A.F.; Biswas, B.; Abe, H. Taste Producing Components in Fish and Fisheries Products: A Review. Int. J. Food Ferment. Technol. 2012, 2, 113–121. [Google Scholar]
- Cobb, B.F.; Conte, F.S.; Edwards, M.A. Free Amino Acids and Osmoregulation in Penaeid Shrimp. J. Agric. Food Chem. 1975, 23, 1172–1174. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, L.; Zhao, X.; Cheng, Y. Effects of Salinity Stress on Osmotic Pressure, Free Amino Acids, and Immune-Associated Parameters of the Juvenile Chinese Mitten Crab, Eriocheir Sinensis. Aquaculture 2022, 549, 737776. [Google Scholar] [CrossRef]
- Koyama, H.; Mizusawa, N.; Hoashi, M.; Tan, E.; Yasumoto, K.; Jimbo, M.; Ikeda, D.; Yokoyama, T.; Asakawa, S.; Piyapattanakorn, S.; et al. Changes in Free Amino Acid Concentrations and Associated Gene Expression Profiles in the Abdominal Muscle of Kuruma Shrimp (Marsupenaeus Japonicus) Acclimated at Different Salinities. J. Exp. Biol. 2018, 221, jeb168997. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Qiu, W.; Zhang, M.; Ho Row, K.; Cheng, Y.; Jin, Y. Effects of Different Heating Methods on the Contents of Nucleotides and Related Compounds in Minced Pacific White Shrimp and Antarctic Krill. LWT 2018, 87, 142–150. [Google Scholar] [CrossRef]
- Gui, M.; Bin, Z.; Song, J.; Zhang, Z.; Hui, P.; Li, P. Biogenic Amines Formation, Nucleotide Degradation and TVB-N Accumulation of Vacuum-Packed Minced Sturgeon (Acipenser Schrencki) Stored at 4 °C and Their Relation to Microbiological Attributes. J. Sci. Food Agric. 2014, 94, 2057–2063. [Google Scholar] [CrossRef] [PubMed]
- Dashdorj, D.; Amna, T.; Hwang, I. Influence of Specific Taste-Active Components on Meat Flavor as Affected by Intrinsic and Extrinsic Factors: An Overview. Eur. Food Res. Technol. 2015, 241, 157–171. [Google Scholar] [CrossRef]
- Narukawa, M.; Morita, K.; Hayashi, Y. L-Theanine Elicits an Umami Taste with Inosine 5’-Monophosphate. Biosci. Biotechnol. Biochem. 2008, 72, 3015–3017. [Google Scholar] [CrossRef]
- Yan, J.; Liu, P.; Xu, L.; Huan, H.; Zhou, W.; Xu, X.; Shi, Z. Effects of Exogenous Inosine Monophosphate on Growth Performance, Flavor Compounds, Enzyme Activity, and Gene Expression of Muscle Tissues in Chicken. Poult. Sci. 2018, 97, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Lien, E.; Agostoni, C.; Böhles, H.; Campoy, C.; Cetin, I.; Decsi, T.; Dudenhausen, J.W.; Dupont, C.; Forsyth, S.; et al. The Roles of Long-Chain Polyunsaturated Fatty Acids in Pregnancy, Lactation and Infancy: Review of Current Knowledge and Consensus Recommendations. J. Perinat. Med. 2008, 36, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Shen, Y.; Bao, Y.; Wu, Z.; Yang, B.; Jiao, L.; Zhang, C.; Tocher, D.R.; Zhou, Q.; Jin, M. Physiological Responses and Adaptive Strategies to Acute Low-Salinity Environmental Stress of the Euryhaline Marine Fish Black Seabream (Acanthopagrus Schlegelii). Aquaculture 2022, 554, 738117. [Google Scholar] [CrossRef]
- Marrero, M.; Monroig, Ó.; Betancor, M.; Herrera, M.; Pérez, J.A.; Garrido, D.; Galindo, A.; Giráldez, I.; Rodríguez, C. Influence of Dietary Lipids and Environmental Salinity on the N-3 Long-Chain Polyunsaturated Fatty Acids Biosynthesis Capacity of the Marine Teleost Solea Senegalensis. Mar. Drugs 2021, 19, 254. [Google Scholar] [CrossRef] [PubMed]
Index | S0 | S3 | S9 |
---|---|---|---|
Drip loss, % | 5.12 ± 0.33 a | 3.96 ± 0.32 b | 3.40 ± 0.24 b |
Cooking loss, % | 22.24 ± 0.27 a | 18.66 ± 1.34 b | 19.07 ± 0.69 b |
Centrifugal loss, % | 17.73 ± 0.27 a | 15.28 ± 0.12 b | 14.17 ± 0.38 b |
Shear value, N | 4.74 ± 0.12 b | 5.28 ± 0.22 ab | 6.19 ± 0.34 a |
Fatty Acid 1 | S0 | S3 | S9 |
---|---|---|---|
C14:0 | 1.98 ± 0.10 | 1.59 ± 0.40 | 1.38 ± 0.15 |
C16:0 | 16.86 ± 0.97 | 20.12 ± 1.80 | 20.03 ± 0.99 |
C18:0 | 3.11 ± 0.21 b | 5.05 ± 1.39 ab | 7.32 ± 1.24 a |
∑SFA 2 | 21.95 ± 1.03 b | 26.75 ± 2.95 ab | 28.74 ± 1.50 a |
C16:1 | 4.71 ± 0.23 a | 2.63 ± 0.23 b | 1.90 ± 0.15 c |
C18:1 | 25.48 ± 0.89 a | 21.96 ± 2.31 a | 17.51 ± 1.42 b |
∑MUFA 3 | 30.19 ± 0.98 a | 24.59 ± 2.40 b | 19.40 ± 1.55 c |
C18:2n−6 | 32.13 ± 2.55 a | 25.77 ± 1.56 b | 25.70 ± 1.67 b |
C20:4n−6 | 0.89 ± 0.09 b | 1.26 ± 0.27 b | 2.01 ± 0.19 a |
∑n−6 PUFA 4 | 33.02 ± 2.57 a | 27.03 ± 1.40 b | 27.72 ± 1.82 b |
C18:3n−3 | 4.59 ± 0.39 a | 3.49 ± 0.46 b | 2.74 ± 0.09 b |
C20:5n−3 | 1.06 ± 0.13 b | 1.73 ± 0.13 a | 1.86 ± 0.19 a |
C22:6n−3 | 7.14 ± 1.52 b | 14.98 ± 2.0 a | 19.18 ± 1.71 a |
∑n−3 PUFA 5 | 12.80 ± 1.21 b | 20.20 ± 1.67 a | 23.78 ± 1.80 a |
∑n−3/∑n−6 PUFA | 0.39 ± 0.07 b | 0.75 ± 0.09 a | 0.86 ± 0.12 a |
∑n−3 LC-PUFA | 8.21 ± 0.10 b | 16.71 ± 2.12 a | 21.05 ± 1.89 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Zhang, W.; He, J.; Zhao, M.; Wang, J.; Dong, X.; Fu, Y.; Xie, X.; Miao, S. The Impact of Rearing Salinity on Flesh Texture, Taste, and Fatty Acid Composition in Largemouth Bass Micropterus salmoides. Foods 2022, 11, 3261. https://doi.org/10.3390/foods11203261
Du X, Zhang W, He J, Zhao M, Wang J, Dong X, Fu Y, Xie X, Miao S. The Impact of Rearing Salinity on Flesh Texture, Taste, and Fatty Acid Composition in Largemouth Bass Micropterus salmoides. Foods. 2022; 11(20):3261. https://doi.org/10.3390/foods11203261
Chicago/Turabian StyleDu, Xuedi, Weiwei Zhang, Jie He, Mengjie Zhao, Jianqiao Wang, Xiaojing Dong, Yuanyuan Fu, Xudong Xie, and Shuyan Miao. 2022. "The Impact of Rearing Salinity on Flesh Texture, Taste, and Fatty Acid Composition in Largemouth Bass Micropterus salmoides" Foods 11, no. 20: 3261. https://doi.org/10.3390/foods11203261
APA StyleDu, X., Zhang, W., He, J., Zhao, M., Wang, J., Dong, X., Fu, Y., Xie, X., & Miao, S. (2022). The Impact of Rearing Salinity on Flesh Texture, Taste, and Fatty Acid Composition in Largemouth Bass Micropterus salmoides. Foods, 11(20), 3261. https://doi.org/10.3390/foods11203261