Comparative Study of the Nutritional Composition and Antioxidant Ability of Soups Made from Wild and Farmed Snakehead Fish (Channa Argus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Snakehead Fish Soup
2.3. Proximate Composition
2.4. Total Amino Acid Composition Analysis
2.5. Fatty Acid Composition Analysis
2.6. Mineral Element Composition Analysis
2.7. Measurement of Antioxidant Ability
2.7.1. DPPH Radical-Scavenging Ability
2.7.2. Fe2+ Chelating Ability
2.7.3. Hydroxyl Radical-Scavenging Ability
2.8. Statistical Analysis
3. Results
3.1. Proximate Composition
3.2. Total Amino Acid Composition
3.3. Fatty Acid Composition
3.4. Mineral Composition
3.5. Antioxidant Ability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lam, T.J. Fish culture in southeast Asia. Can. J. Fish. Aquat. Sci. 1982, 39, 138–142. [Google Scholar] [CrossRef]
- Li, M.-D. Chinese Economic Fish Ecology, 2nd ed.; Tianjin Science and Technology Press: Tianjin, China, 2012. [Google Scholar]
- Ministry of Agriculture and Rural Affairs; Fisheries and Fisheries Administration; National Aquatic Technology Promotion Station; China Fisheries Society. 2022 China Fisheries Statistical Yearbook; China Agricultural Press: Beijing, China, 2022. [Google Scholar]
- Zhang, J.; Li, M.; Zhang, G.; Tian, Y.; Kong, F.; Xiong, S.; Zhao, S.; Jia, D.; Manyande, A.; Du, H. Identification of novel antioxidant peptides from snakehead (Channa argus) soup generated during gastrointestinal digestion and insights into the anti-oxidation mechanisms. Food Chem. 2021, 337, 127921. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, A.; Fernández-Segovia, I.; Serra, J.A.; Barat, J.M. Comparison of wild and cultured sea bass (Dicentrarchus labrax) quality. Food Chem. 2010, 119, 1514–1518. [Google Scholar] [CrossRef]
- O’Neill, B.; Le Roux, A.; Hoffman, L.C. Comparative study of the nutritional composition of wild versus farmed yellowtail (Seriola lalandi). Aquaculture 2015, 448, 169–175. [Google Scholar] [CrossRef]
- Cahu, C.; Salen, P.; de Lorgeril, M. Farmed and wild fish in the prevention of cardiovascular diseases: Assessing possible differences in lipid nutritional values. Nutr. Metab. Cardiovasc. Dis. 2004, 14, 34–41. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X.; Zhang, C. Nutritional composition and nutritional value evaluation of snakehead muscle. Food Res. Dev. 2020, 41, 192–197. [Google Scholar]
- Zou, Y.; Wen, Z.; Qin, C.; Li, H.; Wu, J.; Xie, B. Analysis of Muscle Nutritional Components of Snakehead Snails at Different Ages. J. Nutr. 2017, 39, 616–618. [Google Scholar] [CrossRef]
- Zhou, C.; Lei, L.; Deng, X.; Zheng, Z.; Zheng, Y.; Wu, J.; Su, J.; Fan, W.; Cao, G.; Li, Y. Analysis and Evaluation of Muscle Nutritional Components of Snakehead and White Snakehead. Freshw. Fish. 2018, 48, 83–89. [Google Scholar] [CrossRef]
- Deng, X.; Lei, L.; Yang, H.; He, Y.; Wu, J.; Su, J.; Cao, G.; Li, Y.; Lu, G.; Zhou, C. Effects of different storage temperature and time on muscle quality and nutritional components of white snakehead snakehead. Food Ferment. Ind. 2019, 45, 170–176. [Google Scholar] [CrossRef]
- Sahid, N.A.; Hayati, F.; Rao, C.V.; Ramely, R.; Sani, I.; Dzulkarnaen, A.; Zakaria, Z.; Hassan, S.; Zahari, A.; Ali, A.A. Snakehead Consumption Enhances Wound Healing? From Tradition to Modern Clinical Practice: A Prospective Randomized Controlled Trial. Evid. Based Complement. Altern. Med. 2018, 2018, 3032790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, S.; Huo, J.; Cai, Z. Experimental study on the anti-fatigue and muscle-building effects of snakehead and moon snakehead in mice. Youjiang Med. 2005, 33, 109–111. [Google Scholar]
- Periago, M.J.; Ayala, M.D.; López-Albors, O.; Abdel, I.; Martínez, C.; García-Alcázar, A.; Ros, G.; Gil, F. Muscle cellularity and flesh quality of wild and farmed sea bass, Dicentrarchus labrax L. Aquaculture 2005, 249, 175–188. [Google Scholar] [CrossRef]
- Zhang, J.; Du, H.; Zhang, G.; Kong, F.; Hu, Y.; Xiong, S.; Zhao, S. Identification and characterization of novel antioxidant peptides from crucian carp (Carassius auratus) cooking juice released in simulated gastrointestinal digestion by UPLC-MS/MS and in silico analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1136, 121893. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Shi, L.; Xiong, S.; Hu, Y.; You, J.; Huang, Q.; Yin, T. Gelling properties of vacuum-freeze dried surimi powder as influenced by heating method and microbial transglutaminase. LWT 2019, 99, 105–111. [Google Scholar] [CrossRef]
- ISO-1442:1997; Meat and Meat Products—Determination of moisture Content. International Organization for Standardization: Geneva, Switzerland, 1997.
- ISO-5983:1997; Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content-Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 1997.
- SO-5984:2002; Animal Feeding Stuffs—Determination of Crude Ash. International Organization for Standardization: Geneva, Switzerland, 2002.
- Bukhanko, N.; Attard, T.; Arshadi, M.; Eriksson, D.; Budarin, V.; Hunt, A.J.; Geladi, P.; Bergsten, U.; Clark, J. Extraction of cones, branches, needles and bark from Norway spruce (Picea abies) by supercritical carbon dioxide and soxhlet extractions techniques. Ind. Crops Prod. 2020, 145, 112096. [Google Scholar] [CrossRef]
- Bordons, A. Automated determination of lysine by colorimetric method with ninhydrin. Biotechnol. Lett. 1986, 8, 411–414. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Jaimakreu, M.; Benjakul, S. Physicochemical properties and tenderness of meat samples using proteolytic extract from Calotropis procera latex. Food Chem. 2013, 136, 909–916. [Google Scholar] [CrossRef]
- Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Zhang, G.; Zheng, S.; Feng, Y.; Shen, G.; Xiong, S.; Du, H. Changes in Nutrient Profile and Antioxidant Activities of Different Fish Soups, Before and After Simulated Gastrointestinal Digestion. Molecules 2018, 23, 1965. [Google Scholar] [CrossRef] [Green Version]
- Leme, A.B.P.; Bianchi, S.R.; Carneiro, R.L.; Nogueira, A.R.A. Optimization of Sample Preparation in the Determination of Minerals and Trace Elements in Honey by ICP-MS. Food Anal. Methods 2013, 7, 1009–1015. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, L.; Yuan, M.; Bai, C.; Jiang, Y.; Zhao, L. Effects of processing methods on nutritional components of mullet soup. Chin. Condiments 2017, 42, 61–64+72. [Google Scholar]
- Xu, H. Study on the Effect of Thermal Processing on the Quality of Bighead Carp Soup. Master’s Thesis, Jiangnan University, Wuxi, China, 2008. [Google Scholar]
- Xia, Q.; Xu, H. Production technology and nutritional analysis of crucian carp soup. Yangzhou Univ. Culin. J. 2005, 22, 25–27. [Google Scholar] [CrossRef]
- Yin, H.; Sun, Z.; Sun, D.; Qiu, L. Comparative analysis of nutritional components in muscle of 6 species of cultured sturgeon. J. Dalian Fish. Inst. 2004, 19, 92–96. [Google Scholar] [CrossRef]
- Bendiksen, E.Å.; Berg, O.K.; Jobling, M.; Arnesen, A.M.; Måsøval, K. Digestibility, growth and nutrient utilisation of Atlantic salmon parr (Salmo salar L.) in relation to temperature, feed fat content and oil source. Aquaculture 2003, 224, 283–299. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, M.; Xing, S. Characterization of the key odorants of crucian carp soup and flavour improvement by modulated temperature mode in electrical stewpot. Flavour Fragr. J. 2021, 36, 637–651. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, J.; Zhao, C.; Bai, Q.; Bi, Y.; Wang, H. Component analysis and nutritional evaluation of wild and cultured snakehead muscle. Mod. Food Technol. 2015, 31, 244–249. [Google Scholar] [CrossRef]
- Matthews, D.E. Review of Lysine Metabolism with a Focus on Humans. J. Nutr. 2020, 150, 2548S–2555S. [Google Scholar] [CrossRef]
- Ljubojević, D.; Radosavljević, V.; Puvača, N.; Živkov Baloš, M.; Đorđević, V.; Jovanović, R.; Ćirković, M. Interactive effects of dietary protein level and oil source on proximate composition and fatty acid composition in common carp (Cyprinus carpio L.). J. Food Compos. Anal. 2015, 37, 44–50. [Google Scholar] [CrossRef]
- Ljubojević, D.; Ćirković, M.; Novakov, N.; Jovanović, R.; Janković, S.; Đorđević, V.; Mašić, Z. Productivity and Meat Nutrient in Fish: The Diet Effect. Kafkas Univ. Vet. Fak. Derg. 2013, 19, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Esquinas, E.; Ortola, R.; Banegas, J.R.; Lopez-Garcia, E.; Rodriguez-Artalejo, F. Dietary n-3 polyunsaturated fatty acids, fish intake and healthy ageing. Int. J. Epidemiol. 2019, 48, 1914–1924. [Google Scholar] [CrossRef] [PubMed]
- Yates, C.M.; Calder, P.C.; Ed Rainger, G. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol. Ther. 2014, 141, 272–282. [Google Scholar] [CrossRef]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health implications of high dietary omega-6 polyunsaturated Fatty acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-6/Omega-3 Essential Fatty Acid Ratio and Chronic Diseases. Food Rev. Int. 2004, 20, 77–90. [Google Scholar] [CrossRef]
- Song, L. Calcium and Bone Metabolism Indices. Adv. Clin. Chem. 2017, 82, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Gregory, P.J.; Wahbi, A.; Adu-Gyamfi, J.; Heiling, M.; Gruber, R.; Joy, E.J.M.; Broadley, M.R. Approaches to reduce zinc and iron deficits in food systems. Glob. Food Secur. 2017, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Chen, J.; Li, G.; Zhu, L.; Dai, Y. Effects of Processing Methods on Nutritional Components of Fish Soup. Food Ind. Technol. 2008, 29, 248–251. [Google Scholar] [CrossRef]
- Deng, L.; Du, C.; Song, P.; Chen, T.; Rui, S.; Armstrong, D.G.; Deng, W. The Role of Oxidative Stress and Antioxidants in Diabetic Wound Healing. Oxid. Med. Cell. Longev. 2021, 2021, 8852759. [Google Scholar] [CrossRef] [PubMed]
- Schafer, M.; Werner, S. Oxidative stress in normal and impaired wound repair. Pharm. Res. 2008, 58, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-H.; Doan, C.T.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.-L. Reclamation of Fishery Processing Waste: A Mini-Review. Molecules 2019, 24, 2234. [Google Scholar] [CrossRef] [Green Version]
- Orsini Delgado, M.C.; Nardo, A.; Pavlovic, M.; Rogniaux, H.; Anon, M.C.; Tironi, V.A. Identification and characterization of antioxidant peptides obtained by gastrointestinal digestion of amaranth proteins. Food Chem. 2016, 197 (Pt B), 1160–1167. [Google Scholar] [CrossRef]
- Hwang, E.-S. Bioactive Compounds and Antioxidant Activity of Cauliflower According to Heat Treatment Method (P06-074-19). Curr. Dev. Nutr. 2019, 3 (Suppl. 1), 586. [Google Scholar] [CrossRef]
- Feed A Consists of Imported Fish Meal, Starch, Soybean Meal, Fish Oil, Calcium Dihydrogen Phosphate, Vitamins, Multivitamins and Organic Trace Elements. The ingredients refer to the nutrient composition table of snakehead feed, which comes from Zhejiang Dongyu Biotechnology Co., Ltd. Available online: http://www.zjdjsw.com/ (accessed on 1 September 2022).
- Feed B Consists of Imported High-Quality Fish Meal, Flour, Soybean Meal, Yeast Powder, Organic Chelated Minerals, Multiple Vitamins, Trace Elements, etc. The Ingredients Refer to the Nutrient Composition Table of Snakehead Feed, which Comes from Jiangmen Hengsheng Industrial Co., Ltd. Available online: http://www.hengshengfeed.com/ (accessed on 1 September 2022).
- Zhejiang Lianxing Feed Technology Co., Ltd. An Extruded Compound Feed for Blackfish: CN201510830228.8.2016-03-30. Available online: http://lianxingsiliao.cn.tonbao.com/ (accessed on 1 September 2022).
- Wang, Y.H.; Ding, W.; Chen, J.; Wang, H.C.; Luo, G.L.; Xing, J.; Xin, J.Q. Effects of feeding compound feed and chilled trash fish on the growth rate and feed cost of turbot. Jiangsu Agric. Sci. 2016, 44, 282–285. [Google Scholar]
- Li, J.Q.; Lin, J.B.; Zhu, Q.G.; Li, C.L. A comparative experiment on the effect of artificial compound feed and small trash fish on raising red-spotted grouper. Taiwan Strait 2004, 2, 167–173. [Google Scholar]
- Huang, Z.C.; Chen, D.H.; Lin, J.B.; Lin, K.B.; Zhu, Q.G.; Liang, P.; Zheng, L.Y.; Qiu, F.Y. Effects of compound feed and small trash fish on the growth performance of grouper oblique. Feed. Res. 2012, 9, 1–4. [Google Scholar]
- Chen, D.H.; Zheng, L.Y.; Lin, J.B.; Zhu, Q.G.; Liang, P.; Lin, K.B.; Huang, Z.C.; Qiu, M.L. Study on the effects of different feeds and small trash fish on the growth and immunity of grouper serrata. J. Fujian Agric. 2013, 28, 309–314. [Google Scholar]
- Cui, J.; Meng, C.; Liu, B.L.; Li, W.D. Nutrient content and evaluation of five main species of freshwater shrimp in Anhui Province. Health Res. 2020, 49, 962–968. [Google Scholar]
- Zhuang, P.; Song, C.; Zhang, L.Z. Nutrient composition comparison between white shrimp and Macrobrachium japonicus in the Yangtze Estuary. J. Zool. 2008, 4, 822–829. [Google Scholar]
- He, X.R.; Wang, X.Q.; Fan, W.J.; Zhou, X.W. Biological characteristics and nutritional composition analysis of Sangzhi toe ditch frog. J. Hunan Agric. Univ. 2008, 4, 482–484. [Google Scholar]
- Ouyang, F.; Chen, Z.; Shi, L.; Chen, X.H. Analysis of the nutritional components of the anal frog of Taihang longa. J. Tianjin Norm. Univ. 2015, 35, 128–129+136. [Google Scholar]
Composition | Farmed Snakehead Fish Soup | Wild Snakehead Fish Soup | ||
---|---|---|---|---|
Wet Base | Dry Base | Wet Base | Dry Base | |
Moisture | 95.01 ± 0.32 a | - | 95.96 ± 0.90 a | - |
Crude fat | 0.89 ± 0.09 a | 17.86 ± 1.82 a | 0.79 ± 0.03 a | 19.65 ± 2.42 a |
Crude protein | 2.55 ± 0.08 a | 51.20 ± 1.62 a | 1.90 ± 0.01 b | 47.03 ± 0.36 a |
Crude ash | 0.92 ± 0.12 a | 18.41 ± 2.47 a | 0.71 ± 0.11 a | 17.66 ± 2.80 a |
Free amino acids | 0.47 ± 0.05 a | 9.49 ± 0.99 a | 0.30 ± 0.03 b | 7.30 ± 0.74 a |
Soluble peptide | 0.62 ± 0.04 a | 12.47 ± 0.74 a | 0.47 ± 0.08 a | 11.69 ± 1.93 a |
Amino Acids | Farmed Snakehead Fish Soup | Wild Snakehead Fish Soup | ||
---|---|---|---|---|
mg/g | % | mg/g | % | |
Aspartic acid | 17.20 ± 6.34 a | 4.41 | 19.50 ± 5.49 a | 5.43 |
Glutamic acid | 36.20 ± 10.03 a | 9.28 | 36.80 ± 8.06 a | 10.25 |
Serine | 14.25 ± 1.68 a | 3.65 | 13.61 ± 1.18 a | 3.79 |
Glycine | 82.56 ± 1.53 a | 21.16 | 76.41 ± 1.44 b | 21.29 |
Histidine | 7.48 ± 0.97 a | 1.92 | 6.78 ± 0.86 a | 1.89 |
Arginine | 42.79 ± 7.10 a | 10.97 | 33.77 ± 2.66 a | 9.41 |
Threonine * | 14.59 ± 0.96 a | 3.74 | 13.93 ± 0.56 a | 3.88 |
Alanine | 39.13 ± 0.45 a | 10.03 | 34.74 ± 0.21 b | 9.68 |
Proline | 39.05 ± 3.04 a | 10.01 | 34.30 ± 3.01 a | 9.55 |
Tyrosine * | 3.81 ± 0.02 a | 0.98 | 3.64 ± 0.05 b | 1.01 |
Valine * | 10.98 ± 0.15 a | 2.81 | 10.07 ± 0.14 b | 2.80 |
Methionine * | 7.92 ± 0.32 a | 2.03 | 7.58 ± 0.30 a | 2.11 |
Cysteine | - | - | - | - |
Isoleucine * | 8.68 ± 0.40 a | 2.22 | 7.98 ± 0.11 a | 2.22 |
Leucine * | 19.36 ± 0.74 a | 4.96 | 18.28 ± 0.09 a | 5.09 |
Phenylalanine * | 15.95 ± 0.82 a | 4.09 | 14.35 ± 0.40 a | 4.00 |
Lysine * | 30.15 ± 0.97 a | 7.73 | 27.23 ± 0.60 b | 7.59 |
TAA | 390.11 ± 10.38 a | 100% | 358.97 ± 15.92 a | 100% |
EAA | 107.63 ± 3.71 a | 27.59% | 99.42 ± 0.32 a | 27.70% |
NEAA | 282.48 ± 14.08 a | 72.41% | 259.55 ± 15.92 a | 72.30% |
E/N | 38.10% | 38.31% |
Amino Acid | FAO/WHO Amino Acid Scoring Standard Model/% | Whole Egg Protein Scoring Mode/% | Farmed Snakehead Fish Soup | Wild Snakehead Fish Soup | ||
---|---|---|---|---|---|---|
AAS | CS | AAS | CS | |||
Threonine | 4.00 | 4.98 | 0.94 ± 0.09 a | 0.75 ± 0.07 a | 0.97 ± 0.08 a | 0.78 ± 0.06 a |
Valine | 5.00 | 7.42 | 0.56 ± 0.02 a | 0.38 ± 0.01 a | 0.56 ± 0.02 a | 0.38 ± 0.01 a |
Isoleucine | 4.00 | 6.60 | 0.56 ± 0.04 a | 0.34 ± 0.02 a | 0.56 ± 0.03 a | 0.34 ± 0.02 a |
Leucine | 7.00 | 8.80 | 0.71 ± 0.04 a | 0.56 ± 0.04 a | 0.73 ± 0.03 a | 0.58 ± 0.02 a |
Lysine | 5.50 | 6.40 | 1.41 ± 0.08 a | 1.21 ± 0.07 a | 1.38 ± 0.04 a | 1.19 ± 0.03 a |
Methionine + Cysteine | 3.50 | 5.48 | 0.58 ± 0.01 b | 0.37 ± 0.01 b | 0.60 ± 0.00 a | 0.39 ± 0.00 a |
Phenylalanine + Tyrosine | 6.00 | 10.08 | 0.85 ± 0.06 a | 0.50 ± 0.03 a | 0.84 ± 0.05 a | 0.50 ± 0.03 a |
Tryptophan | 1.00 | 1.70 | - | - | - | - |
Total | 36.00 | 51.46 | ||||
EAAI | 53.25 | 53.76 |
Fatty Acids | Farmed Snakehead Fish Soup | Wild Snakehead Fish Soup | ||
---|---|---|---|---|
g/100 g | % | g/100 g | % | |
C8:0 | - | - | - | - |
C10:0 | - | - | - | - |
C11:0 | - | - | - | - |
C12:0 | - | - | - | - |
C13:0 | - | - | - | - |
C14:0 | 0.12 ± 0.02 a | 0.85 | 0.11 ± 0.09 a | 0.65 |
C14:1 | - | - | - | - |
C15:0 | 0.02 ± 0.00 a | 0.13 | 0.02 ± 0.01 a | 0.11 |
C15:1 | - | - | - | - |
C16:0 | 2.46 ± 0.13 a | 18.00 | 2.88 ± 0.38 a | 17.75 |
C16:1 | 0.23 ± 0.03 a | 1.66 | 0.22 ± 0.08 a | 1.38 |
C17:0 | 0.03 ± 0.01 a | 0.23 | 0.03 ± 0.01 a | 0.18 |
C17:1 | - | - | - | - |
C18:0 | 0.76 ± 0.01 b | 5.58 | 1.00 ± 0.05 a | 6.16 |
C18:1n9t | - | - | - | - |
C18:1n9c | 5.29 ± 0.15 b | 38.77 | 6.44 ± 0.10 a | 39.69 |
C18:2n6t | - | - | - | - |
C18:2n6c | 3.41 ± 0.18 a | 24.98 | 3.67 ± 0.28 a | 22.64 |
C20:0 | 0.16 ± 0.02 a | 1.16 | 0.19 ± 0.00 a | 1.17 |
C18:3n6 | 0.03 ± 0.00 a | 0.20 | 0.03 ± 0.01 a | 0.17 |
C18:3n3 | 0.15 ± 0.00 a | 1.07 | 0.07 ± 0.03 a | 0.42 |
C20:1 | 0.20 ± 0.02 a | 1.49 | 0.19 ± 0.04 a | 1.15 |
C21:0 | 0.01 ± 0.00 a | 0.04 | 0.01 ± 0.00 a | 0.03 |
C20:2 | 0.06 ± 0.00 a | 0.44 | 0.05 ± 0.01 a | 0.29 |
C22:0 | 0.23 ± 0.06 a | 1.69 | 0.30 ± 0.03 a | 1.83 |
C20:3n6 | 0.02 ± 0.00 b | 0.17 | 0.04 ± 0.00 a | 0.24 |
C20:3n3 | 0.019 ± 0.000 a | 0.14 | 0.003 ± 0.000 b | 0.02 |
C22:1n9 | 0.04 ± 0.01 a | 0.32 | 0.31 ± 0.18 a | 1.93 |
C20:4n6 | 0.04 ± 0.02 a | 0.32 | 0.13 ± 0.15 a | 0.80 |
C23:0 | 0.01 ± 0.00 a | 0.04 | 0.01 ± 0.00 a | 0.05 |
C22:2 | 0.01 ± 0.00 a | 0.07 | - | - |
C20:5n3 | 0.04 ± 0.01 a | 0.27 | 0.08 ± 0.10 a | 0.47 |
C24:0 | 0.11 ± 0.03 a | 0.80 | 0.14 ± 0.01 a | 0.87 |
C24:1 | 0.01 ± 0.00 a | 0.09 | 0.01 ± 0.00 b | 0.05 |
C22:6n3 | 0.21 ± 0.05 a | 1.50 | 0.31 ± 0.39 a | 1.93 |
Total fatty acid | 13.64 ± 0.04 b | 16.22 ± 0.73 a | ||
EPA+DHA | 0.24 ± 0.06 a | 1.77 | 0.39 ± 0.49 a | 2.39 |
∑SATD | 3.89 ± 0.01 a | 28.52 | 4.67 ± 0.49 a | 28.82 |
∑MUFA | 5.78 ± 0.14 b | 42.33 | 7.17 ± 0.16 a | 44.20 |
∑PUFAω6 | 3.50 ± 0.16 a | 25.67 | 3.87 ± 0.13 a | 23.85 |
∑PUFAω3 | 0.41 ± 0.05 a | 2.98 | 0.46 ± 0.52 a | 2.84 |
Minerals | Farmed Snakehead Fish Soup | Wild Snakehead Fish Soup |
---|---|---|
Cu * (mg/kg) | 0.55 ± 0.00 a | 0.43 ± 0.02 b |
Fe * (mg/kg) | 13.00 ± 0.08 a | 11.00 ± 0.57 b |
Zn *(mg/kg) | 9.04 ± 0.14 b | 12.57 ± 0.53 a |
Mn *(mg/kg) | 0.66 ± 0.00 a | 0.32 ± 0.02 b |
Ca (mg/g) | 1.13 ± 0.03 a | 0.83 ± 0.02 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, M.; Yin, T.; You, J.; Liu, R.; Huang, Q.; Xiong, S. Comparative Study of the Nutritional Composition and Antioxidant Ability of Soups Made from Wild and Farmed Snakehead Fish (Channa Argus). Foods 2022, 11, 3294. https://doi.org/10.3390/foods11203294
Ren M, Yin T, You J, Liu R, Huang Q, Xiong S. Comparative Study of the Nutritional Composition and Antioxidant Ability of Soups Made from Wild and Farmed Snakehead Fish (Channa Argus). Foods. 2022; 11(20):3294. https://doi.org/10.3390/foods11203294
Chicago/Turabian StyleRen, Mengting, Tao Yin, Juan You, Ru Liu, Qilin Huang, and Shanbai Xiong. 2022. "Comparative Study of the Nutritional Composition and Antioxidant Ability of Soups Made from Wild and Farmed Snakehead Fish (Channa Argus)" Foods 11, no. 20: 3294. https://doi.org/10.3390/foods11203294
APA StyleRen, M., Yin, T., You, J., Liu, R., Huang, Q., & Xiong, S. (2022). Comparative Study of the Nutritional Composition and Antioxidant Ability of Soups Made from Wild and Farmed Snakehead Fish (Channa Argus). Foods, 11(20), 3294. https://doi.org/10.3390/foods11203294