Impact of Pulsed Electric Fields and pH on Enzyme Inactivation and Bioactivities of Peptic Hydrolysates Produced from Bovine and Porcine Hemoglobin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Configuration of PEF System
2.3. Experimental Protocol
2.4. Determination of the DH
2.5. Peptide Identification and Quantification by RP-UPLC-MS/MS
2.6. Determination of the Protein Content of the Hydrolysates
2.7. Determination of the Antimicrobial Activity
2.7.1. Agar-Well Diffusion Assay
2.7.2. Determination of MIC, MBC, and MFC
2.8. Determination of Antioxidant Activity
2.8.1. DPPH Free-Radical-Scavenging Capacity
2.8.2. Oxygen-Radical Antioxidant Capacity (ORAC) Assay
2.9. Statistical Analysis
3. Results and Discussion
3.1. Degree of Hydrolysis of Hydrolysates
3.2. RP-UPLC-MS/MS Characterization of Hydrolysates
Peptide Profiles of Hydrolysates
3.3. Determination of Antimicrobial Activity
3.3.1. Antibacterial Activity
3.3.2. Antifungal and Anti-Yeast Activity
3.4. Determination of Antioxidant Activity
3.4.1. DPPH Free-Radical-Scavenging Capacity
3.4.2. ORAC Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bah, C.S.; Bekhit, A.E.; Carne, A.; McConnell, M.A. Slaughterhouse blood: An emerging source of bioactive compounds. Compr. Rev. Food. Sci. F. 2013, 12, 314–331. [Google Scholar] [CrossRef]
- Toldrà, M.; Lynch, S.A.; Couture, R.; Álvarez, C. Blood proteins as functional ingredients. In Sustainable Meat Production and Processing; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 85–101. [Google Scholar]
- Deng, H.; Zheng, J.; Zhang, F.; Wang, Y.; Kan, J. Isolation of angiotensin I-converting enzyme inhibitor from pepsin hydrolysate of porcine hemoglobin. Eur. Food Res. Technol. 2014, 239, 933–940. [Google Scholar] [CrossRef]
- Adje, E.Y.; Balti, R.; kouach, M.; Guillochon, D.; Nedjar-Arroume, N. α 67-106 of bovine hemoglobin: A new family of antimicrobial and angiotensin I-converting enzyme inhibitory peptides. Eur. Food Res. Technol. 2011, 232, 637–646. [Google Scholar] [CrossRef]
- Nyberg, F.; Sanderson, K.; Glämsta, E.-L. The hemorphins: A new class of opioid peptides derived from the blood protein hemoglobin. Pept. Sci. 1997, 43, 147–156. [Google Scholar] [CrossRef]
- Yu, Y.; Hu, J.; Bai, X.; Du, Y.; Lin, B. Preparation and function of oligopeptide-enriched hydrolysate from globin by pepsin. Process Biochem. 2006, 41, 1589–1593. [Google Scholar] [CrossRef]
- Przybylski, R.; Firdaous, L.; Châtaigné, G.; Dhulster, P.; Nedjar, N. Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative. Food Chem. 2016, 211, 306–313. [Google Scholar] [CrossRef]
- Hedhili, K.; Vauchel, P.; Dimitrov, K.; Kriaa, K.; Chataigné, G.; Hani, K.; Dhulster, P.; Nedjar-Arroume, N. Mechanism and kinetics modeling of the enzymatic hydrolysis of α1–32 antibacterial peptide. Bioproc. Biosyst. Eng. 2014, 37, 1315–1323. [Google Scholar] [CrossRef]
- Catiau, L.; Traisnel, J.; Chihib, N.-E.; Le Flem, G.; Blanpain, A.; Melnyk, O.; Guillochon, D.; Nedjar-Arroume, N. RYH: A minimal peptidic sequence obtained from beta-chain hemoglobin exhibiting an antimicrobial activity. Peptides 2011, 32, 1463–1468. [Google Scholar] [CrossRef]
- Catiau, L.; Traisnel, J.; Delval-Dubois, V.; Chihib, N.-E.; Guillochon, D.; Nedjar-Arroume, N. Minimal antimicrobial peptidic sequence from hemoglobin alpha-chain: KYR. Peptides 2011, 32, 633–638. [Google Scholar] [CrossRef]
- Adje, E.Y.; Balti, R.; Kouach, M.; Dhulster, P.; Guillochon, D.; Nedjar-Arroume, N. Obtaining antimicrobial peptides by controlled peptic hydrolysis of bovine hemoglobin. Int. J. Biol. Macromol. 2011, 49, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Xu, M.; Hang, B.; Wang, L.; Wang, Q.; Chen, J.; Song, T.; Fu, D.; Wang, Z.; Wang, S.; et al. Isolation and characterization of an antimicrobial peptide from bovine hemoglobin α-subunit. World J. Microb. Biot. 2011, 27, 767–771. [Google Scholar] [CrossRef]
- Sun, Q.; Shen, H.; Luo, Y. Antioxidant activity of hydrolysates and peptide fractions derived from porcine hemoglobin. J. Food Sci. Tech. 2011, 48, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nedjar-Arroume, N.; Dubois-Delval, V.; Adje, E.Y.; Traisnel, J.; Krier, F.; Mary, P.; Kouach, M.; Briand, G.; Guillochon, D. Bovine hemoglobin: An attractive source of antibacterial peptides. Peptides 2008, 29, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Nedjar-Arroume, N.; Dubois-Delval, V.; Miloudi, K.; Daoud, R.; Krier, F.; Kouach, M.; Briand, G.; Guillochon, D. Isolation and characterization of four antibacterial peptides from bovine hemoglobin. Peptides 2006, 27, 2082–2089. [Google Scholar] [CrossRef] [PubMed]
- Adje, E.Y.; Balti, R.; Lecouturier, D.; Kouach, M.; Dhulster, P.; Guillochon, D.; Nedjar-Arroume, N. Controlled Enzymatic Hydrolysis: A New Strategy for the Discovery of Antimicrobial Peptides. Probiotics Antimicro. 2013, 5, 176–186. [Google Scholar] [CrossRef]
- Sanchez-Reinoso, Z.; Cournoyer, A.; Thibodeau, J.; Said, L.B.; Fliss, I.; Bazinet, L.; Mikhaylin, S. Effect of pH on the antimicrobial activity and peptide population of pepsin hydrolysates derived from bovine and porcine hemoglobins. ACS Food Sci. Technol. 2021, 1, 1687–1701. [Google Scholar] [CrossRef]
- Zouari, O.; Przybylski, R.; Hannioui, M.; Sion, L.; Dhulster, P.; Nedjar-Arroume, N. High added-value co-product: The porcine cruor is an attractive source of active peptides. J. Nutr. Health Food Sci. 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Sun, Q.; Luo, Y.; Shen, H.; Li, X.; Yao, L. Purification and characterisation of a novel antioxidant peptide from porcine haemoglobin hydrolysate. Int. J. Food Sci. Tech. 2012, 47, 148–154. [Google Scholar] [CrossRef]
- Sun, Q.; Luo, Y. Porcine Hemoglobin Hydrolysate Prepared with Pepsin: Antioxidant Activities and Their Mechanisms. Int. J. Food Prop. 2011, 14, 840–853. [Google Scholar] [CrossRef]
- Sun, Q.; Luo, Y.; Shen, H.; Hu, X. Effects of pH, temperature and enzyme to substrate ratio on the antioxidant activity of porcine hemoglobin hydrolysate prepared with pepsin. J. Food Biochem. 2011, 35, 44–61. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Wu, K.-C.; Chiang, S.-H. Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates. Food Chem. 2007, 100, 1537–1543. [Google Scholar] [CrossRef]
- Abou-Diab, M.; Thibodeau, J.; Deracinois, B.; Flahaut, C.; Fliss, I.; Dhulster, P.; Bazinet, L.; Nedjar, N. Bovine hemoglobin enzymatic hydrolysis by a new eco-efficient process -part II: Production of bioactive peptides. Membranes 2020, 10, 268. [Google Scholar] [CrossRef] [PubMed]
- Abou-Diab, M.; Thibodeau, J.; Fliss, I.; Dhulster, P.; Nedjar, N.; Bazinet, L. Eco-Circular Production of Demineralized Bioactive Peptides from Bovine Hemoglobin by Performing the Necessary Steps Simultaneously Using Bipolar Membrane Electrodialysis. ACS Sustain. Chem. Eng. 2021, 9, 16905–16917. [Google Scholar] [CrossRef]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef]
- Puértolas, E.; Barba, F.J. Electrotechnologies applied to valorization of by-products from food industry: Main findings, energy and economic cost of their industrialization. Food Bioprod. Process. 2016, 100, 172–184. [Google Scholar] [CrossRef]
- Puértolas, E.; Koubaa, M.; Barba, F.J. An overview of the impact of electrotechnologies for the recovery of oil and high-value compounds from vegetable oil industry: Energy and economic cost implications. Food Res. Int. 2016, 80, 19–26. [Google Scholar] [CrossRef]
- Giteru, S.G.; Oey, I.; Ali, M.A. Feasibility of using pulsed electric fields to modify biomacromolecules: A review. Trends Food. Sci. Tech. 2018, 72, 91–113. [Google Scholar] [CrossRef]
- Vorobiev, E.; Lebovka, N. Electrotechnologies for Extraction from Food Plants and Biomaterials; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5996. [Google Scholar]
- Rocha, C.M.R.; Genisheva, Z.; Ferreira-Santos, P.; Rodrigues, R.; Vicente, A.A.; Teixeira, J.A.; Pereira, R.N. Electric field-based technologies for valorization of bioresources. Bioresour. Technol. 2018, 254, 325–339. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, L.; Ju, H.; Bao, Z.; Zeng, X.-a.; Lin, S. Research advances and application of pulsed electric field on proteins and peptides in food. Food Res. Int. 2021, 139, 109914. [Google Scholar] [CrossRef]
- Zhong, K.; Hu, X.; Zhao, G.; Chen, F.; Liao, X. Inactivation and conformational change of horseradish peroxidase induced by pulsed electric field. Food Chem. 2005, 92, 473–479. [Google Scholar] [CrossRef]
- Ohshima, T.; Tamura, T.; Sato, M. Influence of pulsed electric field on various enzyme activities. J. Electrostat. 2007, 65, 156–161. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Odriozola-Serrano, I.; Quintão-Teixeira, L.J.; Martín-Belloso, O. Inactivation of tomato juice peroxidase by high-intensity pulsed electric fields as affected by process conditions. Food Chem. 2008, 107, 949–955. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Effects of High-Intensity Pulsed Electric Fields on Lipoxygenase and Hydroperoxide Lyase Activities in Tomato Juice. J. Food Sci. 2009, 74, C595–C601. [Google Scholar] [CrossRef] [PubMed]
- Aguiló-Aguayo, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Impact of high-intensity pulsed electric field variables affecting peroxidase and lipoxygenase activities of watermelon juice. LWT-Food Sci. Technol. 2010, 43, 897–902. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Chen, Q.; Liu, X.-H.; Chen, Z.-X. Inactivation of soybean lipoxygenase in soymilk by pulsed electric fields. Food Chem. 2008, 109, 408–414. [Google Scholar] [CrossRef]
- Shamsi, K.; Versteeg, C.; Sherkat, F.; Wan, J. Alkaline phosphatase and microbial inactivation by pulsed electric field in bovine milk. Innov. Food Sci. Emerg. 2008, 9, 217–223. [Google Scholar] [CrossRef]
- Sharma, P.; Oey, I.; Bremer, P.; Everett, D.W. Reduction of bacterial counts and inactivation of enzymes in bovine whole milk using pulsed electric fields. Int. Dairy J. 2014, 39, 146–156. [Google Scholar] [CrossRef]
- Meza-Jiménez, M.d.L.; Pokhrel, P.-R.; Robles de la Torre, R.R.; Barbosa-Canovas, G.V.; Hernández-Sánchez, H. Effect of pulsed electric fields on the activity of food-grade papain in a continuous system. LWT-Food Sci. Technol. 2019, 109, 336–341. [Google Scholar] [CrossRef]
- Yeom, H.W.; Zhang, Q.H.; Dunne, C.P. Inactivation of papain by pulsed electric fields in a continuous system. Food Chem. 1999, 67, 53–59. [Google Scholar] [CrossRef]
- Yang, R.; Li, S.-Q.; Zhang, Q.H. Effects of Pulsed Electric Fields on the Activity and Structure of Pepsin. J. Agric. Food Chem. 2004, 52, 7400–7406. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, R. Effect of high-intensity pulsed electric fields on the activity, conformation and self-aggregation of pepsin. Food Chem. 2009, 114, 777–781. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Lin, S.; Zhao, P.; Jones, G.; Trang, H.; Liu, J.; Ye, H. Improvement of antioxidant activity of peptides with molecular weights ranging from 1 to 10kDa by PEF technology. Int. J. Biol. Macromol. 2012, 51, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, J.; Zhao, P.; Lin, S.; Liu, B.; Liu, J.; Jones, G.; Huang, H.-C. Optimized PEF treatment for antioxidant polypeptides with MW 10–30kDa and preliminary analysis of structure change. Int. J. Biol. Macromol. 2012, 51, 819–825. [Google Scholar] [CrossRef]
- Liang, R.; Zhang, Z.; Lin, S. Effects of pulsed electric field on intracellular antioxidant activity and antioxidant enzyme regulating capacities of pine nut (Pinus koraiensis) peptide QDHCH in HepG2 cells. Food Chem. 2017, 237, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, Y.; Lin, S.; Liu, X.; Yang, S.; Jones, G.S. Analysis of DPPH inhibition and structure change of corn peptides treated by pulsed electric field technology. J. Food Sci. Tech. 2015, 52, 4342–4350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Liang, R.; Yang, Y.; Lin, S. The mechanism of pulsed electric field (PEF) targeting location on the spatial conformation of pine nut peptide. J. Theor. Biol. 2020, 492, 110195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Qi, L.; Li, D.; Zhong, L.; Wu, D.; Lin, S. The regulatory mechanism of pulsed electric field (PEF) targeting at C-terminal glutamine of shrimp antioxidant peptide QMDDQ based on MD simulation. LWT-Food Sci. Technol. 2021, 141, 110930. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, S.; Liu, J.; Zou, Y.; Liao, S. Antioxidant Activity and Stability Study of Peptides from Enzymatically Hydrolyzed Male Silkmoth. J. Food Process. Pres. 2017, 41, e13081. [Google Scholar] [CrossRef]
- Sigma-Aldrich. Enzymatic Assay of Pepsin (3.4.23.1). Available online: https://www.sigmaaldrich.com/technical-documents/protocols/biology/enzymatic-assay-of-pepsin.html (accessed on 25 May 2021).
- Church, F.C.; Swaisgood, H.E.; Porter, D.H.; Catignani, G.L. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 1983, 66, 1219–1227. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Enzymic Hydrolysis of Food Proteins; Elsevier Applied Science Publishers: London, UK, 1986. [Google Scholar]
- Kosters, H.A.; Wierenga, P.A.; de Vries, R.; Gruppen, H. Characteristics and effects of specific peptides on heat-induced aggregation of β-lactoglobulin. Biomacromolecules 2011, 12, 2159–2170. [Google Scholar] [CrossRef]
- Kuipers, B.J.H.; Gruppen, H. Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography−mass spectrometry analysis. J. Agric. Food Chem. 2007, 55, 5445–5451. [Google Scholar] [CrossRef] [PubMed]
- Simonne, A.H.; Simonne, E.H.; Eitenmiller, R.R.; Mills, H.A.; Cresman III, C.P. Could the dumas method replace the kjeldahl digestion for nitrogen and crude protein determinations in foods? J. Sci. Food Agric. 1997, 73, 39–45. [Google Scholar] [CrossRef]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage; Springer: Berlin/Heidelberg, Germany, 2009; Volume 519. [Google Scholar]
- Vimont, A.; Fernandez, B.; Ahmed, G.; Fortin, H.-P.; Fliss, I. Quantitative antifungal activity of reuterin against food isolates of yeasts and moulds and its potential application in yogurt. Int. J. Food Microbiol. 2019, 289, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, A.; Corcuff, R.; Goulet, C.; Godefroy, S.B.; Doyen, A.; Beaulieu, L. Valorization of snow crab (Chionoecetes opilio) cooking effluents for food applications. J. Sci. Food Agric. 2020, 100, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.J.; Li, S.Q.; Zhang, Q.H. Effects of Pulsed Electric Fields on the Activity of Enzymes in Aqueous Solution. J. Food Sci. 2004, 69, FCT241–FCT248. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Morales-de la Peña, M.; Rojas-Graü, M.A.; Martín-Belloso, O. Microbial and enzymatic stability of fruit juice-milk beverages treated by high intensity pulsed electric fields or heat during refrigerated storage. Food Control 2011, 22, 1639–1646. [Google Scholar] [CrossRef]
- Dubois, V.; Nedjar-Arroume, N.; Guillochon, D. Influence of pH on the Appearance of Active Peptides in the Course of Peptic Hydrolysis of Bovine Haemoglobin. Prep. Biochem. Biotech. 2005, 35, 85–102. [Google Scholar] [CrossRef]
- Théolier, J.; Hammami, R.; Labelle, P.; Fliss, I.; Jean, J. Isolation and identification of antimicrobial peptides derived by peptic cleavage of whey protein isolate. J. Funct. Foods 2013, 5, 706–714. [Google Scholar] [CrossRef]
- Demers-Mathieu, V.; Gauthier, S.F.; Britten, M.; Fliss, I.; Robitaille, G.; Jean, J. Antibacterial activity of peptides extracted from tryptic hydrolyzate of whey protein by nanofiltration. Int. Dairy J. 2013, 28, 94–101. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Sheehan, D.J.; Rex, J.H. Determination of Fungicidal Activities against Yeasts and Molds: Lessons Learned from Bactericidal Testing and the Need for Standardization. Clin. Microbiol. Rev. 2004, 17, 268–280. [Google Scholar] [CrossRef]
- Rötzschke, O.; Lau, J.M.; Hofstätter, M.; Falk, K.; Strominger, J.L. A pH-sensitive histidine residue as control element for ligand release from HLA-DR molecules. P. Natl. Acad. Sci. 2002, 99, 16946–16950. [Google Scholar] [CrossRef] [Green Version]
- Chedea, V.S.; Pop, R.M. Total Polyphenols Content and Antioxidant DPPH Assays on Biological Samples. In Polyphenols in Plants, 2nd ed.; Watson, R.R., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 169–183. [Google Scholar]
- Nagarajan, J.; Ramanan, R.N.; Raghunandan, M.E.; Galanakis, C.M.; Krishnamurthy, N.P. Carotenoids. In Nutraceutical and Functional Food Components; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 259–296. [Google Scholar]
- Álvarez, C.; Rendueles, M.; Díaz, M. Production of porcine hemoglobin peptides at moderate temperature and medium pressure under a nitrogen stream. Functional and antioxidant properties. J. Agric. Food Chem. 2012, 60, 5636–5643. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, X. pH Effect and Chemical Mechanisms of Antioxidant Higenamine. Molecules 2018, 23, 2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pękal, A.; Pyrzynska, K. Effect of pH and metal ions on DPPH radical scavenging activity of tea. Int. J. Food Sci. Nutr. 2015, 66, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Bah, C.S.F.; Carne, A.; McConnell, M.A.; Mros, S.; Bekhit, A.E.-D.A. Production of bioactive peptide hydrolysates from deer, sheep, pig and cattle red blood cell fractions using plant and fungal protease preparations. Food Chem. 2016, 202, 458–466. [Google Scholar] [CrossRef]
- Olsen, T.H.; Yesiltas, B.; Marin, F.I.; Pertseva, M.; García-Moreno, P.J.; Gregersen, S.; Overgaard, M.T.; Jacobsen, C.; Lund, O.; Hansen, E.B.; et al. AnOxPePred: Using deep learning for the prediction of antioxidative properties of peptides. Sci. Rep. 2020, 10, 21471. [Google Scholar] [CrossRef]
- Litescu, S.C.; Eremia, S.A.V.; Tache, A.; Vasilescu, I.; Radu, G.-L. The Use of Oxygen Radical Absorbance Capacity (ORAC) and Trolox Equivalent Antioxidant Capacity (TEAC) Assays in the Assessment of Beverages’ Antioxidant Properties. In Processing and Impact on Antioxidants in Beverages; Preedy, V., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 245–251. [Google Scholar]
- Zhang, S.; Zhang, M.; Xing, J.; Lin, S. A possible mechanism for enhancing the antioxidant activity by pulsed electric field on pine nut peptide Glutamine-Tryptophan-Phenylalanine-Histidine. J. Food Biochem. 2019, 43, e12714. [Google Scholar] [CrossRef]
Treatment | Diameter of Growth Inhibition (mm) | |||||||
---|---|---|---|---|---|---|---|---|
Hb-B | Hb-P | |||||||
E. coli MP 4100 | L. ivanovii HP B28 | M. racemosus LMA-722 | R. mucilaginosa 27,173 | E. coli MP 4100 | L. ivanovii HP B28 | M. racemosus LMA-722 | R. mucilaginosa 27,173 | |
PEF-pH 3 | - | 7.7 ± 0.6 b | - | 9.7 ± 1.2 d | - | 7.7 ± 0.6 c | - | 17.3 ± 0.6 b |
PEF-pH 7 | - | 8.3 ± 1.5 b | 9.7 ± 0.6 cd | 15.3 ± 0.6 b | - | 10.7 ± 0.6 b | 10.3 ± 0.6 bc | 20.7 ± 1.2 a |
PEF-pH 10 | - | 8.3 ± 0.6 b | 11.7 ± 0.6 ab | 15.3 ± 0.6 b | - | 10.7 ± 0.6 b | 14.3 ± 0.6 a | 21.7 ± 0.6 a |
C-pH 3 | - | 7.3 ± 0.6 b | - | 15.3 ± 0.6 b | - | 7.7 ± 0.6 c | - | 21.0 ± 1.0 a |
C-pH 7 | - | 7.7 ± 0.6 b | 10.7 ± 0.6 bc | 17 ± 0.0 ab | - | 10.7 ± 0.6 b | 12.0 ± 0.0 b | 21.7 ± 0.6 a |
C-pH 10 | - | 8.3 ± 0.6 b | 12.7 ± 0.6 a | 17.7 ± 0.6 a | - | 10.7 ± 0.6 b | 15.3 ± 0.6 a | 22.0 ± 0.0 a |
Hb pH3 | - | - | - | 12 ± 0.0 c | - | - | - | 11.0 ± 0.0 c |
Hb pH7 | - | - | - | - | - | - | - | - |
Hb pH10 | - | - | - | - | - | - | - | - |
Solution pH3 | - | - | - | - | - | - | - | - |
Solution pH7 | - | - | - | - | - | - | - | - |
Solution pH10 | - | - | - | - | - | - | - | - |
Ampicillin | 22.3 ± 0.8 | 27.7 ± 0.6 a | - | - | 21.5 ± 1 | 27.5 ± 0.5 a | - | - |
Natamycin | - | - | 9.2 ± 0.8 d | 9.8 ± 0.8 d | - | - | 8.8 ± 1.2 d | 10.5 ± 0.5 c |
Source | Treatment | E. coli MP 4100 | L. ivanovii HP B28 | M. racemosus LMA-722 | R. mucilaginosa 27,173 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC (mg/mL) | MBC (mg/mL) | MBC/MIC | MIC (mg/mL) | MBC (mg/mL) | MBC/MIC | MIC (mg/mL) | MFC (mg/mL) | MFC/MIC | MIC (mg/mL) | MFC (mg/mL) | MFC/MIC | ||
Hb-B | PEF-pH 3 | - | - | - | 5.00 ± 0.00 a | 20.00 ± 0.00 b | 4.00 ± 0.00 | - | - | - | 10.00 ± 0.00 b | 20.00 ± 0.00 b | 2.00 ± 0.00 |
PEF-pH 7 | - | - | - | 5.00 ± 0.00 a | >20.00 ± 0.00 a | >8.00 ± 0.00 | 5.00 ± 0.00 b | 5.00 ± 0.00 b | 1.00 ± 0.00 | 1.25 ± 0.00 e | 2.50 ± 0.00 e | 2.00 ± 0.00 | |
PEF-pH 10 | - | - | - | 5.00 ± 0.00 a | >20.00 ± 0.00 a | >8.00 ± 0.00 | >20.00 ± 0.00 a | >20.00 ± 0.00 a | 1.00 ± 0.00 | 0.63 ± 0.00 f | 1.25 ± 0.00 f | 2.00 ± 0.00 | |
C-pH 3 | - | - | - | 5.00 ± 0.00 a | 20.00 ± 0.00 b | 4.00 ± 0.00 | - | - | - | 2.50 ± 0.00 d | 5.00 ± 0.00 d | 2.00 ± 0.00 | |
C-pH 7 | - | - | - | 5.00 ± 0.00 a | >20.00 ± 0.00 a | >8.00 ± 0.00 | 5.00 ± 0.00 b | 5.00 ± 0.00 b | 1.00 ± 0.00 | 1.25 ± 0.00 e | 2.50 ± 0.00 e | 2.00 ± 0.00 | |
C-pH 10 | - | - | - | 5.00 ± 0.00 a | >20.00 ± 0.00 a | >8.00 ± 0.00 | >20.00 ± 0.00 a | >20.00 ± 0.00 a | 1.00 ± 0.00 | 0.63 ± 0.00 f | 0.63 ± 0.00 g | 1.00 ± 0.00 | |
Hb-pH3 | - | - | - | - | - | - | - | - | - | 5.00 ± 0.00 c | 5.00 ± 0.00 d | 1.00 ± 0.00 | |
Hb-pH7 | - | - | - | - | - | - | - | - | - | - | - | - | |
Hb-pH10 | - | - | - | - | - | - | - | - | - | - | - | - | |
Hb-P | PEF-pH 3 | - | - | - | 2.50 ± 0.00 b | 20.00 ± 0.00b | 8.00 ± 0.00 | - | - | - | 5.00 ± 0.00 c | 10.00 ± 0.00 c | 2.00 ± 0.00 |
PEF-pH 7 | - | - | - | 2.50 ± 0.00 b | >20.00 ± 0.00a | >16.00 ± 0.00 | 1.25.00 ± 0.00 c | 1.25.00 ± 0.00 c | 1.00 ± 0.00 | 0.62 ± 0.00 f | 0.62 ± 0.00 g | 1.00 ± 0.00 | |
PEF-pH 10 | - | - | - | 2.50 ± 0.00 b | >20.00 ± 0.00a | >16.00 ± 0.00 | 1.25.00 ± 0.00 c | 1.25.00 ± 0.00 c | 1.00 ± 0.00 | 0.63 ± 0.00 f | 0.63 ± 0.00 g | 1.00 ± 0.00 | |
C-pH 3 | - | - | - | 2.50 ± 0.00 b | 20.00 ± 0.00b | 8.00 ± 0.00 | - | - | - | 0.63 ± 0.00 f | 0.63 ± 0.00 g | 1.00 ± 0.00 | |
C-pH 7 | - | - | - | 2.50 ± 0.00 b | >20.00 ± 0.00a | >16.00 ± 0.00 | 1.25.00 ± 0.00 c | 1.25.00 ± 0.00 c | 1.00 ± 0.00 | 0.63 ± 0.00 f | 0.63 ± 0.00 g | 1.00 ± 0.00 | |
C-pH 10 | - | - | - | 2.50 ± 0.00 b | >20.00 ± 0.00a | >16.00 ± 0.00 | 1.25.00 ± 0.00 c | 1.25.00 ± 0.00 c | 1.00 ± 0.00 | 0.31 ± 0.00 g | 0.62 ± 0.00 g | 2.00 ± 0.00 | |
Hb pH3 | - | - | - | - | - | - | - | - | - | 5.00 ± 0.00 c | 5.00 ± 0.00 d | 1.00 ± 0.00 | |
Hb pH7 | - | - | - | - | - | - | - | - | - | - | - | - | |
Hb pH10 | - | - | - | - | - | - | - | - | - | 20.00 ± 0.00 a | >20.00 ± 0.00 a | 2.00 ± 0.00 | |
Ampicillin | Antibiotic (C+) | 0.016 ± 0.000 | 0.032 ± 0.000 | 0.002 ± 0.000 | 0.004 ± 0.000 c | 0.016 ± 0.000 c | 0.004 ± 0.000 | - | - | - | - | - | - |
Natamycin | Antifungal (C+) | - | - | - | - | - | - | 0.004 ± 0.000 d | 0.004 ± 0.000 d | 0.001 ± 0.000 | 0.004 ± 0.000 h | 0.008 ± 0.000 h | 0.002 ± 0.000 |
Hb-B Hydrolysates | Hb-P Hydrolysates | Query Cover (%) | Identity (%) | ||||
---|---|---|---|---|---|---|---|
Location | Sequence | FRS Score | Location | Sequence | FRS Score | ||
β(31–40) | LVVYPWTQRF | 0.574 | β(33–42) | LVVYPWTQRF | 0.574 | 100 | 100 |
β(32–40) | VVYPWTQRF | 0.571 | β(34–42) | VVYPWTQRF | 0.571 | 100 | 100 |
β(32–37) | VVYPWT | 0.569 | β(34–39) | VVYPWT | 0.569 | 100 | 100 |
β(140–145) | LAHRYH | 0.565 | β(142–147) | LAHKYH | 0.541 | 100 | 83.3 |
β(138–145) | NALAHRYH | 0.523 | β(140–147) | NALAHKYH | 0.493 | 100 | 87.5 |
α(37–46) | PTTKTYFPHF | 0.512 | α(37–46) | PTTKTYFPHF | 0.512 | 100 | 100 |
α(34–46) | LSFPTTKTYFPHF | 0.433 | α(34–46) | LGFPTTKTYFPHF | 0.459 | 100 | 92.3 |
α(110–125) | ASHLPSDFTPAVHASL | 0.431 | α(110–125) | AAHHPDDFNPSVHASL | 0.428 | 100 | 68.8 |
α(138–141) | SKYR | 0.429 | α(138–141) | SKYR | 0.429 | 100 | 100 |
β(135–145) | GVANALAHRYH | 0.428 | β(137–147) | GVANALAHKYH | 0.432 | 100 | 90.9 |
α(47–53) | DLSHGSA | 0.413 | α(47–53) | NLSHGSD | 0.434 | 85 | 83.3 |
β(96–102) | HVDPENF | 0.426 | β(98–104) | HVDPENF | 0.426 | 100 | 100 |
β(27–29) | LGR | 0.416 | α(34–36) | LGF | 0.425 | nd | nd |
β(130–145) | QKVVAGVANALAHRYH | 0.427 | β(132–147) | QKVVAGVANALAHKYH | 0.416 | 100 | 93.8 |
α(66–80) | LTKAVEHLDDLPGAL | 0.398 | α(66–80) | LTKAVGHLDDLPGAL | 0.412 | 100 | 93.3 |
β(96–101) | HVDPEN | 0.411 | β(98–103) | HVDPEN | 0.411 | 100 | 100 |
α(65–80) | ALTKAVEHLDDLPGAL | 0.411 | α(65–80) | ALTKAVGHLDDLPGAL | 0.425 | 100 | 93.8 |
α(109–125) | LASHLPSDFTPAVHASL | 0.393 | α(109–125) | LAAHHPDDFNPSVHASL | 0.405 | 100 | 70.6 |
α(84–98) | SDLHAHKLRVDPVNF | 0.388 | α(84–98) | SDLHAHKLRVDPVNF | 0.388 | 100 | 100 |
α(137–141) | TSKYR | 0.384 | α(137–141) | TSKYR | 0.384 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Reinoso, Z.; Todeschini, S.; Thibodeau, J.; Ben Said, L.; Fliss, I.; Bazinet, L.; Mikhaylin, S. Impact of Pulsed Electric Fields and pH on Enzyme Inactivation and Bioactivities of Peptic Hydrolysates Produced from Bovine and Porcine Hemoglobin. Foods 2022, 11, 3313. https://doi.org/10.3390/foods11213313
Sanchez-Reinoso Z, Todeschini S, Thibodeau J, Ben Said L, Fliss I, Bazinet L, Mikhaylin S. Impact of Pulsed Electric Fields and pH on Enzyme Inactivation and Bioactivities of Peptic Hydrolysates Produced from Bovine and Porcine Hemoglobin. Foods. 2022; 11(21):3313. https://doi.org/10.3390/foods11213313
Chicago/Turabian StyleSanchez-Reinoso, Zain, Sarah Todeschini, Jacinthe Thibodeau, Laila Ben Said, Ismail Fliss, Laurent Bazinet, and Sergey Mikhaylin. 2022. "Impact of Pulsed Electric Fields and pH on Enzyme Inactivation and Bioactivities of Peptic Hydrolysates Produced from Bovine and Porcine Hemoglobin" Foods 11, no. 21: 3313. https://doi.org/10.3390/foods11213313
APA StyleSanchez-Reinoso, Z., Todeschini, S., Thibodeau, J., Ben Said, L., Fliss, I., Bazinet, L., & Mikhaylin, S. (2022). Impact of Pulsed Electric Fields and pH on Enzyme Inactivation and Bioactivities of Peptic Hydrolysates Produced from Bovine and Porcine Hemoglobin. Foods, 11(21), 3313. https://doi.org/10.3390/foods11213313