A Rapid Procedure for the Simultaneous Determination of Eugenol, Linalool and Fatty Acid Composition in Basil Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Sample Preparation: Extraction and Transmethylation
2.3. Lipid Fraction Extraction and Transmethylation
2.4. Gas Chromatography Analysis
2.5. Quantification and Method Validation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Simultaneous Determination of Linalool and Eugenol Content and FAs Profile in Basil Leaves
3.2. Analytes Identification by GC-MS
3.3. Application of the Method to the Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patel, M.; Lee, R.; Merchant, E.V.; Rodolfo Juliani, H.; Simon, J.E.; Tepper, B.J. Descriptive aroma profiles of fresh sweet basil cultivars (Ocimum spp.): Relationship to volatile chemical composition. J. Food. Sci. 2021, 86, 3228–3239. [Google Scholar] [CrossRef] [PubMed]
- Fischer, R.; Nitzan, N.; Chaimovitsh, D.; Rubin, B.; Dudai, N. Variation in Essential Oil Composition within Individual Leaves of Sweet Basil (Ocimum basilicum L.) Is More Affected by Leaf Position than by Leaf Age. J. Agric. Food Chem. 2011, 59, 4913–4922. [Google Scholar] [CrossRef] [PubMed]
- Vieira, R.F.; Simon, J.E. Chemical Characterization of basil (Ocimum Spp.) found in the markets and used in traditional me icine in Brazil. Econ. Bot. 2000, 54, 207–216. [Google Scholar] [CrossRef]
- Pandey, A.K.; Singh, P.; Tripathi, N.N. Chemistry and bioactivities of essential oils of some Ocimum species; A, overview. Asian Pac. J. Trop. Biomed. 2014, 4, 682–694. [Google Scholar] [CrossRef] [Green Version]
- Filip, S.; Vidović, S.; Vladivić, J.; Pavlić, B.; Adamović, D.; Zeković, Z. Chemical composition and antioxidant properties of Ocimum basilicum L. extract obtained by supercritical carbon dioxinde extraction: Drug exhausting method. J. Supercrit. Fluids 2016, 109, 20–25. [Google Scholar] [CrossRef]
- Chávez-González, M.L.; Rodrìgueza-Herrera, R.; Aguilar, C.N. Essential Oils: A Natural Alternative to Combat Antibiotics Resistance. In Antibiotic Resistance: Mechanism and New Antimicrobial Approaches; Kon, K., Rai, M., Eds.; Elsevier: Amsterdam, The Netherland, 2016; pp. 227–237. [Google Scholar]
- Izadiyan, P.; Hemmateenejad, B. Multi-response optimization of factors affecting ultrasonic assisted extraction from Iranian basil using central composite design. Food Chem. 2015, 190, 864–870. [Google Scholar] [CrossRef]
- Gang, D.R.; Wang, J.; Dudareva, N.; Hee Nam, H.; Simon, J.E.; Lewinsohn, E.; Pichersky, E. An Investigation of the Storage and Biosynthesis of Phenylpropenes in Sweet Basil. Plant Physiol. 2001, 125, 539–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, Q.; Ren, J.N.; Li, X.; Fan, G.; Qu, S.S.; Song, Y.; Li, Y.; Pan, S. Recent updates on bioactive properties of linalool. Food Funct. 2021, 12, 10370. [Google Scholar] [CrossRef]
- Taleuzzaman, M.; Jain, P.; Verma, R.; Iqbal, Z.; Mirza, M. Eugenol as a Potential Drug Candidate: A Review. Curr. Top. Med. Chem. 2021, 21, 1804–1815. [Google Scholar] [CrossRef]
- Tarchoune, I.; Baatour, O.; Harrathyi, J.; Hamdaoui, G.; Lachaal, M.; Ouerghi, Z.; Marzouk, B. Effects of two sodium salts on fatty acid and essential oil composition of basil (Ocimum basilicum L.) leaves. Acta Physiol. Plants 2013, 35, 2365–2372. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Untea, A.E.; Turcu, R.P.; Saracila, M.; Panaite, T.D.; Cornescu, G.M. Nutricional Composition and Bioactive Compounds of Basil, Thyme and Sage Plant Additives and Their Functionality on Broiler Thigh Meat Quality. Foods 2022, 11, 1105. [Google Scholar] [CrossRef] [PubMed]
- Torre, R.; Duarte Pereira, A.D.; Nascimento, R.V.; Ferreira Guedes, T.; de Souza Faria, P.R.; de Souza Alves, M.; Alves de Souza, M.A. Agroecological approach to seed protection using basil essential oil. Ind. Crops Prod. 2021, 171, 113932. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Abbas, A.; Anwar, F.; Ahmad, N. Variation in Physico-chemical Composition and Biological Attributes of Common Basil Essential Oils Produced by Hydro-distillation and Super Critical Fluid Extraction. J. Essent. Oil Bear. Plants 2017, 20, 95–109. [Google Scholar] [CrossRef]
- Shah, R.; Al Ismaili, S.H.; Al-Siaby, S.S.; Al Nasiri, A.M.; Al Maskari, T.H.; Jamal AlSabahi, J.; Al-Ruqaishi, H. Determination of Chemical Composition of Essential Oils Extracted from Conventional and Organically grown Basil (Ocimum Basilicum) from Different Geographical Regions. Sarhad J. Agric. 2022, 38, 388–758. [Google Scholar] [CrossRef]
- Gutbrod, P.; Yang, W.; Grujicic, G.V.; Peisker, H.; Gutbrod, K.; Fang Du, L.; Dörmann, P. Phytol derived from chlorophyll hydrolysis in plant is metabolized via phytenal. J. Biol. Chem. 2021, 296, 100530. [Google Scholar] [CrossRef]
- Schulz, H.; Schrader, B.; Quilitzsch, R.; Pfeffer, S.; Kruger, H. Rapid classification of basil chemotypes by various vibrational spectroscopy methods. J. Agric. Food Chem. 2003, 51, 2475–2481. [Google Scholar] [CrossRef]
- Said-Al Ahl, H.A.H.; Meawad, A.A.; Abou-Zeid, A.N.; Ali, M.S. Evaluation of Volatile Oil and Its Chemical Constituents of Some Basil Varieties in Egypt. Int. J. Plant Sci. 2015, 1, 103–106. [Google Scholar]
- Wogiatzi, E.; Papachatzi, A.; Kalorizou, H.; Chouliaria, A.; Chouliaras, N. Evaluation of Essential Oil Yield and Chemical Components of Selected Basil Cultivars. Biotechnol. Biotechnol. Equip. 2011, 25, 2525–2527. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Maroto, M.; Sánchez Palomo, E.; Catro, L.; González Viñas, M.A.; Pérez-Coello, M.S. Changes produced in the aroma components and structural integrity of basil (Ocimum basilicum L.) during drying. J. Sci. Food Agric. 2004, 84, 2070–2076. [Google Scholar] [CrossRef]
- Leaf, A.; Kang, J.X.; Xiao, Y.; Billman, G.E. Clinical Prevention of Sudden Cardiac Death by n-3 Polyunsaturated Fatty Acids and Mechanism of Prevention of Arrhythmias by n-3 Fish Oils. Circulation 2003, 107, 2646–2653. [Google Scholar] [CrossRef] [PubMed]
- de Lorgeril, M.; Renaud, S.; Salen, P.; Monjaud, I.; Mamelle, N.; Martin, J.L.; Guidollet, J.; Touboul, P.; Delaye, J. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 1994, 343, 1454–1459. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effect of dietary fatty acids and carbohydrate on the ration of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 602 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef] [Green Version]
- Choque, B.; Catheline, D.; Rioux, V.; Legrand, P. Linoleic acid: Between doubts and certainties. Biochimie 2014, 96, 14–21. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: Nutritional implications for chronic diseases. Biomed. Pharmacother. 2006, 60, 502–507. [Google Scholar] [CrossRef]
- Kobayashi, N.; Barnard, R.J.; Henning, S.M. Effect of altering dietary v-6/v-3 fatty acid ratios on prostate cancer membrane composition, cyclooxygenase-2, and prostaglandin E2. Clin. Cancer Res. 2006, 12, 4662–4670. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomec. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
Linearity (µL L−1) | LOD (µL L−1) | LOQ (µL L−1) | LOD (g kg−1) | LOQ (g kg−1) | R2 | Recovery (%) | |
---|---|---|---|---|---|---|---|
linalool | 20–400 | 9.2 | 30.6 | 0.05 | 0.18 | 0.9995 | 105 |
eugenol | 11.2 | 37.3 | 0.07 | 0.22 | 0.9995 | 97 |
Match Quality (%) | % Area | ||
---|---|---|---|
Volatile components | 43.4 | % area (in total volatile components) | |
eucalyptol | 99 | 1.2 | 2.6 |
linalool | 86 | 9.4 | 21.4 |
α-terpineol | 87 | 0.5 | 1.1 |
α-bergamotene | 89 | 1.4 | 3.2 |
germacrene D | 94 | 0.3 | 0.6 |
γ-cadinene | 96 | 0.4 | 0.8 |
eugenol | 98 | 27.3 | 63.1 |
(+)-epi-bicyclosesquiphellandrene | 76 | 1.2 | 2.9 |
phytol | 93 | 1.7 | 3.9 |
FAMEs | 56.6 | % area (in total FAMEs) | |
palmitic acid, methyl ester (C16:0) | 98 | 14.9 | 26.3 |
palmitoleic acid, methyl ester (C16:1) | 98 | 2.6 | 4.5 |
stearic acid, methyl ester (C18:0) | 99 | 2.5 | 4.4 |
oleic acid, methyl ester(C18:1n9) | 99 | 2.5 | 4.4 |
linoleic acid, methyl ester (C18:2n6) | 99 | 5.4 | 9.5 |
linolenic acid, methyl ester (C18:3n3) | 98 | 28.1 | 49.7 |
arachidic acid, methyl ester (C20:0) | 97 | 0.6 | 1.1 |
Range | Mean ± sd | ||
---|---|---|---|
Eugenol | g kg−1 (dry weight) | 2.50–2.99 | 2.80 ± 0.15 |
Linalool | 0.94–1.10 | 1.01 ± 0.04 | |
Ratio Eugenol/Linalool | 2.43–2.97 | 2.73 ± 0.13 |
Hexane Extraction | Folch Extraction | |||||
---|---|---|---|---|---|---|
% Range | Mean | sd | % Range | Mean | sd | |
C16:0 | 19.3–22.4 | 20.6 | 0.8 | 19.1–23.9 | 21.2 | 1.8 |
C16:1 | 3.6–4.3 | 3.8 | 0.2 | 3.7–4.7 | 4.0 | 0.4 |
C18:0 | 3.4–4.5 | 3.7 | 0.3 | 1.7–2.7 *** | 2.5 | 0.3 |
C18:1n9 | 4.7–7.3 | 5.6 | 0.8 | 2.2–3.3 *** | 2.9 | 0.3 |
C18:2n6 | 9.6–11.3 | 10.4 | 0.4 | 5.7–6.6 *** | 6.2 | 0.2 |
C18:3n3 | 52.1–56.1 | 54.7 | 1.7 | 59.8–64.9 *** | 62.7 | 2.0 |
C20:0 | 0.8–1.8 | 1.2 | 0.3 | 0.3–0.6 *** | 0.4 | 0.1 |
SFA | 24.0–27.6 | 25.7 | 1.1 | 22.2–26.7 * | 24.2 | 1.6 |
MUFA | 8.5–9.6 | 9.1 | 0.7 | 5.9–7.9 *** | 6.9 | 0.6 |
PUFA | 62.9–67.5 | 65.1 | 1.6 | 65.8–71.1 *** | 68.9 | 2.0 |
Ratio n6/n3 PUFA | 0.17–0.20 | 0.19 | 0.0 | 0.09–0.11 *** | 0.10 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenti, L.; Rigano, D.; Woo, S.L.; Nartea, A.; Pacetti, D.; Maggi, F.; Fiorini, D. A Rapid Procedure for the Simultaneous Determination of Eugenol, Linalool and Fatty Acid Composition in Basil Leaves. Foods 2022, 11, 3315. https://doi.org/10.3390/foods11213315
Lenti L, Rigano D, Woo SL, Nartea A, Pacetti D, Maggi F, Fiorini D. A Rapid Procedure for the Simultaneous Determination of Eugenol, Linalool and Fatty Acid Composition in Basil Leaves. Foods. 2022; 11(21):3315. https://doi.org/10.3390/foods11213315
Chicago/Turabian StyleLenti, Lucia, Daniela Rigano, Sheridan L. Woo, Ancuta Nartea, Deborah Pacetti, Filippo Maggi, and Dennis Fiorini. 2022. "A Rapid Procedure for the Simultaneous Determination of Eugenol, Linalool and Fatty Acid Composition in Basil Leaves" Foods 11, no. 21: 3315. https://doi.org/10.3390/foods11213315
APA StyleLenti, L., Rigano, D., Woo, S. L., Nartea, A., Pacetti, D., Maggi, F., & Fiorini, D. (2022). A Rapid Procedure for the Simultaneous Determination of Eugenol, Linalool and Fatty Acid Composition in Basil Leaves. Foods, 11(21), 3315. https://doi.org/10.3390/foods11213315