Effects of Glucono-δ-Lactone and Transglutaminase on the Physicochemical and Textural Properties of Plant-Based Meat Patty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PBMPs
2.3. Visible Appearance
2.4. pH Measurements
2.5. Color Analysis
2.6. Cooking Loss (CL) and Water Holding Capacity (WHC)
2.7. Mechanical Properties
2.8. Microstructure
2.9. Sensory Evaluation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Visible Appearance
3.2. pH of GdL Solution and PBPs
3.3. Color
3.4. Cooking Loss (CL) and Water Holding Capacity (WHC)
3.5. Mechanical Properties
3.6. Microstructure
3.7. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dekkers, B.L.; Boom, R.M.; van der Goot, A.J. Structuring processes for meat analogues. Trends Food Sci. Technol. 2018, 81, 25–36. [Google Scholar] [CrossRef]
- Ismail, I.; Hwang, Y.H.; Joo, S.T. Meat analog as future food: A review. J. Anim. Sci. Technol. 2020, 62, 111–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohrer, B.M. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci. Hum. Wellness 2019, 8, 320–329. [Google Scholar] [CrossRef]
- Joshi, V.; Kumar, S. Meat Analogues: Plant based alternatives to meat products—A review. Int. J. Food Ferment. Technol. 2015, 5, 107. [Google Scholar] [CrossRef]
- Palanisamy, M.; Töpfl, S.; Aganovic, K.; Berger, R.G. Influence of iota carrageenan addition on the properties of soya protein meat analogues. LWT—Food Sci. Technol. 2018, 87, 546–552. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, H.; Lee, J.; Choi, M.-J. Effects of Plant-Based Fat Beads on the Physicochemical and Sensory Properties of Pork Patty. Food Eng. Prog. 2021, 25, 247–254. [Google Scholar] [CrossRef]
- Siegel, D.G.; Church, K.E.; Schmidt, G.R. Gel structure of nonmeat proteins as related to their ability to bind meat pieces. J. Food Sci. 1979, 44, 1276–1284. [Google Scholar] [CrossRef]
- Lu, G.H.; Chen, T.C. Application of egg white and plasma powders as muscle food binding agents. J. Food Eng. 1999, 42, 147–151. [Google Scholar] [CrossRef]
- Serdaroglu, M. The characteristics of beef patties contain different levels of fat and oat flour. Int. J. Food Sci. Technol. 2006, 41, 147–153. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Jeon, K.-H.; Park, J.-D.; Sung, J.-M.; Seo, D.-H.; Ku, S.-K.; Oh, N.-S.; Kim, Y.-B. Comparison of Pork Patty Quality Characteristics with Various Binding Agents. Korean J. Food Cook. Sci. 2015, 31, 588–595. [Google Scholar] [CrossRef]
- Owusu-Ansah, P.; Besiwah, E.K.; Bonah, E.; Amagloh, F.K. Non-meat ingredients in meat products: A scoping review. Appl. Food Res. 2022, 2, 100044. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Choi, M.-J.; Cho, Y. Improved Physicochemical Properties of Pork Patty Supplemented with Oil-in-Water Nanoemulsion. Food Sci. Anim. Resour. 2020, 40, 262–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrasik, Z.; Duda, Z. Effect of fat content and soy protein/carrageenan mix on the quality characteristics of comminuted, scalded sausages. Meat Sci. 2000, 56, 181–188. [Google Scholar] [CrossRef]
- Fernández-López, J.; Lucas-González, R.; Viuda-Martos, M.; Sayas-Barberá, E.; Ballester-Sánchez, J.; Haros, C.M.; Martínez-Mayoral, A.; Pérez-Álvarez, J.A. Chemical and technological properties of bologna-type sausages with added black quinoa wet-milling coproducts as binder replacer. Food Chem. 2020, 310, 125936. [Google Scholar] [CrossRef]
- Ahamed, E.M.; Anjaneyulu, A.S.R.; Sathu, T.; Thomas, R.; Kondaiah, N. Effect of different binders on the quality of enrobed buffalo meat cutlets and their shelf life at refrigeration storage (4 ± 1 °C). Meat Sci. 2007, 75, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Koranne, V.; Jonas, O.L.C.; Mitra, H.; Bapat, S.; Ardekani, A.M.; Sealy, M.P.; Rajurkar, K.; Malshe, A.P. Exploring properties of edible hydrolyzed collagen for 3D food printing of scaffold for biomanufacturing cultivated meat. Procedia CIRP 2022, 110, 186–191. [Google Scholar] [CrossRef]
- Lee, E.-J.; Hong, G.-P. Effects of microbial transglutaminase and alginate on the waterbinding, textural and oil absorption properties of soy patties. Food Sci. Biotechnol. 2020, 29, 777–782. [Google Scholar] [CrossRef]
- Asgar, M.A.; Fazilah, A.; Huda, N.; Bhat, R.; Karim, A.A. Nonmeat protein alternatives as meat extenders and meat analogs. Compr. Rev. Food Sci. Food Saf. 2020, 9, 513–529. [Google Scholar] [CrossRef]
- Kim, J.W.; Yu, J.; Jeon, C.; Shin, J.K. Quality of soy-based patties using κ-carrageenan and methylcellulose as binders during cold storage periods. Food Eng. Prog. 2021, 24, 317–326. [Google Scholar] [CrossRef]
- Kuraishi, C.; Sakamoto, J.; Yamazaki, K.; Susa, Y.; Kuhara, C.; Soeda, T. Production of Restructured Meat using Microbial Transglutaminase without Salt or Cooking. J. Food Sci. 1997, 62, 488–490. [Google Scholar] [CrossRef]
- Dube, M.; Schäfer, C.; Neidhart, S.; Carle, R. Texturisation and modification of vegetable proteins for food applications using microbial transglutaminase. Eur. Food Res. Technol. 2007, 225, 287–299. [Google Scholar] [CrossRef]
- Yasir, S.B.M.; Sutton, K.H.; Newberry, M.P.; Andrews, N.R.; Gerrard, J.A. The impact of transglutaminase on soy proteins and tofu texture. Food Chem. 2007, 104, 1491–1501. [Google Scholar] [CrossRef]
- Forghani, Z.; Eskandari, M.H.; Aminlari, M.; Shekarforoush, S.S. Effects of microbial transglutaminase on physicochemical properties, electrophoretic patterns and sensory attributes of veggie burger. J. Food Sci. Technol. 2017, 54, 2203–2213. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.S.; Luo, S.Z.; Cai, J.; Zhong, X.Y.; Jiang, S.T.; Zhao, Y.Y.; Zheng, Z. Transglutaminase-induced gelation properties of soy protein isolate and wheat gluten mixtures with high intensity ultrasonic pretreatment. Ultrason. Sonochem. 2016, 31, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Mattice, K.D.; Marangoni, A.G. Physical properties of zein networks treated with microbial transglutaminase. Food Chem. 2021, 338, 128010. [Google Scholar] [CrossRef] [PubMed]
- Herz, E.M.; Schäfer, S.; Terjung, N.; Gibis, M.; Weiss, J. Influence of Transglutaminase on Glucono-δ-lactone-Induced Soy Protein Gels. ACS Food Sci. Technol. 2021, 1, 1412–1417. [Google Scholar] [CrossRef]
- Chang, Y.H.; Su, H.J.; Shiau, S.Y. Rheological and textural characteristics of black soybean touhua (soft soybean curd) prepared with glucono-δ-lactone. Food Chem. 2009, 115, 585–591. [Google Scholar] [CrossRef]
- Dybowska, B.E.; Fujio, Y. Optical analysis of glucono-δ-lactone induced soy protein gelation. J. Food Eng. 1998, 36, 123–133. [Google Scholar] [CrossRef]
- Hui, T.; Xing, G. Effect of transglutaminase pre-crosslinking treatment incorporated with glucono-δ-lactone on the Physicochemical and Digestive Properties of Tofu. Polymers 2022, 14, 2364. [Google Scholar] [CrossRef]
- Bastos, S.C.; Pimenta, M.E.S.G.; Pimenta, C.J.; Reis, T.A.; Nunes, C.A.; Pinheiro, A.C.M.; Fabrício, L.F.F.; Leal, R.S. Alternative fat substitutes for beef burger: Technological and sensory characteristics. J. Food Sci. Technol. 2014, 51, 2046–2053. [Google Scholar] [CrossRef]
- Samard, S.; Ryu, G.H. A comparison of physicochemical characteristics, texture, and structure of meat analogue and meats. J. Sci. Food Agric. 2019, 99, 2708–2715. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Bae, J.; Wi, G.; Kim, H.-T.; Cho, Y.; Choi, M.-J. Physicochemical properties and sensory evaluation of meat analog mixed with different liquid materials as an animal fat substitute. Food Eng. Prog. 2019, 23, 62–68. [Google Scholar] [CrossRef]
- Yeoh, S.Y.; Alkarkhi, A.F.M.; Ramli, S.B.; Easa, A.M. Effect of cooking on physical and sensory properties of fresh yellow alkaline noodles prepared by partial substitution of wheat flour with soy protein isolate and treated with cross-linking agents. Int. J. Food Sci. Nutr. 2011, 62, 410–417. [Google Scholar] [CrossRef]
- Hill, S.E.; Mitchell, J.R.; Armstrong, H.J. Gums and Stabilizers for the Food Industry, the Production of Heat Stable Gels at Low Protein Concentration by the Use of the Maillard Reaction; Phillip, G.O., Wedlock, D.J., Williams, P.A., Eds.; Oxford University Press: Oxford, UK, 1992; pp. 479–482. [Google Scholar]
- Lee, K.P.; Easa, A.M.; Ismail, N. Effects of reducing sugars on texture of thermally processed soyprotein isolate glucono-d-lactone gels. J. Food Sci. Technol. 2000, 37, 188–190. [Google Scholar]
- Gaspar, A.L.C.; de Góes-Favoni, S.P. Action of microbial transglutaminase (MTGase) in the modification of food proteins: A review. Food Chem. 2015, 171, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Ashaolu, T.J.; Zhao, G. Fabricating a pickering stabilizer from Okara dietary fibre particulates by conjugating with soy protein isolate via maillard reaction. Foods 2020, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yuan, J.-l.; Fan, C.; Yan, P.; Kang, X. Fabrication and characteristics of porcine plasma protein cold-set gel: Influence of the aggregates produced by glucono-δ-lactone acidification on microbial transglutaminase catalysis. Food Hydrocoll. 2021, 115, 106597. [Google Scholar] [CrossRef]
- Yang, M.O.; Cho, E.J. Quality Properties of Surimi with Added Citrus Fruits. J. East Asian Soc. Diet. Life 2007, 17, 58–63. [Google Scholar]
- Bakhsh, A.; Lee, S.-J.; Lee, E.-Y.; Sabikun, N.; Hwang, Y.-H.; Joo, S.-T. A novel approach for tuning the physicochemical, textural, and sensory characteristics of plant-based meat analogs with different levels of methylcellulose concentration. Foods 2021, 10, 560. [Google Scholar] [CrossRef] [PubMed]
- Erdem, N.; Babaoglu, A.S.; Pocan, H.B.; Karakaya, M. The effect of transglutaminase on some quality properties of beef, chicken, and turkey meatballs. Food Process Preserv. 2020, 44, e14815. [Google Scholar] [CrossRef]
- Kim, S.-A.; Ryu, M.-H.; Lee, M.-K.; Oh, J.-S.; Kim, S.-O.; Lee, S.-Y. The Quality Characteristics of Hamburger Patties Based on Enzyme Treated Textured Soy Protein. Korean J. Food Cult. 2008, 23, 514–520. [Google Scholar]
Treatments * | Base Ingredients (%) | Emulsion (%) | Binder (%) ** | |||
---|---|---|---|---|---|---|
TVP 1) | SPI 2) | DW | Oil | GdL 3) | TG 4) | |
Control | 65 | 5.3 | 17.7 | 12 | - | - |
G0T10 | 65 | 5.3 | 17.7 | 12 | - | 1 |
G3T7 | 65 | 5.3 | 17.7 | 12 | 3 | 0.7 |
G5T5 | 65 | 5.3 | 17.7 | 12 | 5 | 0.5 |
G7T3 | 65 | 5.3 | 17.7 | 12 | 7 | 0.3 |
G10T0 | 65 | 5.3 | 17.7 | 12 | 10 | - |
Treatments | L* | a* | b* |
---|---|---|---|
Control | 69.81 ± 1.15 b | 2.50 ± 0.41 c | 17.01 ± 0.62 b |
G0T10 | 71.26 ± 1.32 b | 2.42 ± 0.14 cd | 17.05 ± 0.59 b |
G3T7 | 74.30 ± 0.74 a | 2.13 ± 0.11 d | 16.38 ± 0.51 b |
G5T5 | 73.67 ± 0.94 a | 2.55 ± 0.31 c | 16.99 ± 0.81 b |
G7T3 | 64.30 ± 1.51 c | 3.10 ± 0.27 b | 17.96 ± 0.38 a |
G10T0 | 58.98 ± 1.84 d | 3.62 ± 0.19 a | 17.99 ± 0.33 a |
Treatments * | Hardness 1) (N) | Adhesiveness 2) (mJ) | Cohesiveness | Springiness (mm) | Gumminess (N) | Chewiness (mJ) |
---|---|---|---|---|---|---|
Control | 8.31 ± 2.11 d | 5.53 ± 2.04 a | 0.13 ± 0.03 c | 1.56 ± 0.26 cd | 5.98 ± 0.62 e | 9.96 ± 2.56 d |
G0T10 | 10.54 ± 3.17 d | 0.58 ± 0.37 c | 0.16 ± 0.01 b | 3.66 ± 0.25 a | 11.33 ± 1.60 b | 43.67 ± 9.10 b |
G3T7 | 25.49 ± 6.82 a | 1.37 ± 1.00 c | 0.21 ± 0.30 a | 3.70 ± 0.61 a | 15.99 ± 1.35 a | 57.76 ± 6.42 a |
G5T5 | 19.18 ± 5.32 b | 3.49 ± 0.60 b | 0.11 ± 0.05 d | 1.75 ± 0.13 bc | 6.33 ± 0.78 e | 11.53 ± 0.59 d |
G7T3 | 20.80 ± 6.86 b | 3.31 ± 1.13 b | 0.09 ± 0.17 e | 1.37 ± 0.19 d | 7.73 ± 0.71 d | 11.36 ± 2.61 d |
G10T0 | 14.98 ± 1.32 c | 5.83 ± 2.77 a | 0.11 ± 0.16 d | 1.88 ± 0.42 b | 9.49 ± 0.99 c | 18.00 ± 4.77 c |
Treatments * | Color | Flavor | Hardness | Elasticity | Compactness | Juiciness | Meat Similarity |
---|---|---|---|---|---|---|---|
Control | 4.11 ± 1.15 abc | 3.50 ± 1.54 ND | 3.68 ±1.67 ND | 3.79 ±1.23 ND | 3.89 ± 1.15 ND | 2.84 ± 1.17 ND | 2.61 ± 1.14 ab |
G0T10 | 3.79 ± 0.85 bc | 3.67 ± 1.41 | 4.21 ± 1.44 | 3.89 ± 1.20 | 4.16 ± 1.21 | 3.00 ± 1.33 | 3.32 ± 1.20 a |
G3T7 | 3.42 ± 1.02 c | 3.67 ± 1.57 | 4.53 ± 1.07 | 3.47 ± 1.07 | 3.58 ± 1.26 | 3.05 ± 0.85 | 3.05 ± 1.22 a |
G5T5 | 3.53 ± 1.02 c | 3.61 ± 1.58 | 4.00 ± 1.15 | 4.05 ± 1.39 | 4.16 ± 1.26 | 3.32 ± 1.20 | 3.37 ± 1.26 a |
G7T3 | 4.47 ± 1.22 abc | 4.06 ± 1.86 | 4.42 ± 1.17 | 3.47 ± 1.47 | 3.79 ± 1.03 | 3.21 ± 1.03 | 2.67 ± 1.46 ab |
G10T0 | 4.74 ± 1.56 a | 4.11 ± 1.32 | 3.63 ± 1.46 | 3.21 ± 1.32 | 3.68 ± 1.34 | 2.68 ± 1.34 | 2.00 ± 0.94 b |
Treatments * | Color | Flavor | Hardness | Elasticity | Compactness | Juiciness | Overall Acceptance |
---|---|---|---|---|---|---|---|
Control | 4.21 ± 1.23 ND | 4.11 ± 1.60 a | 4.37 ± 1.42 a | 3.68 ± 1.34 ab | 3.74 ± 1.33 ab | 3.21 ± 1.51 ND | 3.53 ± 1.39 ab |
G0T10 | 4.26 ± 1.15 | 4.33 ± 1.33 a | 4.26 ± 1.37 a | 4.05 ± 1.39 ab | 4.26 ± 1.37 a | 3.42 ± 1.50 | 4.11 ± 1.70 a |
G3T7 | 3.63 ± 1.54 | 2.83 ± 1.34 b | 3.26 ± 1.15 b | 3.32 ± 1.11 bc | 3.42 ± 1.22 ab | 3.00 ± 1.25 | 2.74 ± 1.19 bcd |
G5T5 | 3.89 ± 1.10 | 2.67 ± 1.08 b | 3.84 ± 1.12 ab | 4.26 ± 1.24 a | 3.89 ± 1.18 ab | 3.32 ± 1.29 | 3.00 ± 1.49 bc |
G7T3 | 4.11 ± 1.49 | 2.28 ± 1.07 b | 3.74 ± 1.19 ab | 3.68 ± 1.34 ab | 3.84 ± 1.07 ab | 3.05 ± 1.22 | 2.22 ± 1.17 cd |
G10T0 | 4.16 ± 1.50 | 2.83 ± 1.34 b | 3.53 ± 1.50 ab | 2.74 ± 1.15 c | 3.21 ± 1.27 b | 2.63 ± 1.42 | 2.00 ± 1.05 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Lee, M.-Y.; Lee, J.; Jo, Y.-J.; Choi, M.-J. Effects of Glucono-δ-Lactone and Transglutaminase on the Physicochemical and Textural Properties of Plant-Based Meat Patty. Foods 2022, 11, 3337. https://doi.org/10.3390/foods11213337
Kim H, Lee M-Y, Lee J, Jo Y-J, Choi M-J. Effects of Glucono-δ-Lactone and Transglutaminase on the Physicochemical and Textural Properties of Plant-Based Meat Patty. Foods. 2022; 11(21):3337. https://doi.org/10.3390/foods11213337
Chicago/Turabian StyleKim, Haesanna, Mi-Yeon Lee, Jiseon Lee, Yeon-Ji Jo, and Mi-Jung Choi. 2022. "Effects of Glucono-δ-Lactone and Transglutaminase on the Physicochemical and Textural Properties of Plant-Based Meat Patty" Foods 11, no. 21: 3337. https://doi.org/10.3390/foods11213337
APA StyleKim, H., Lee, M. -Y., Lee, J., Jo, Y. -J., & Choi, M. -J. (2022). Effects of Glucono-δ-Lactone and Transglutaminase on the Physicochemical and Textural Properties of Plant-Based Meat Patty. Foods, 11(21), 3337. https://doi.org/10.3390/foods11213337