Antioxidant, Organoleptic and Physicochemical Changes in Different Marinated Oven-Grilled Chicken Breast Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Schematic Overview of Experimental Program
2.2. Procurement, and Storage of Chicken Breast Meat Samples
2.3. Preparation of Marinades, and Marination Variants/Process
2.4. Oven-Grilling Activity
2.5. Analytical Measurements
2.5.1. Determination of Antioxidant Aspects
2.5.2. Determination of Organoleptic Aspects
2.5.3. Determination of Physicochemical Aspects
2.6. Statistical Analysis
3. Results and Discussion
3.1. Changes in Antioxidant Properties
3.2. Changes in Organoleptic Properties
3.3. Changes in Physicochemical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sas, A. Production of Meat and Meat Products in Poland 2018–2021, by Product Type, Agriculture-Farming, Statistica. 2022. Available online: https://www.statista.com/statistics/1125806/poland-production-of-meat-and-meat-products/ (accessed on 11 October 2022).
- Adamski, M.; Kuzniacka, J.; Milczewska, N. Preferences of consumers for choosing poultry meat. Pol. J. Natur. Sci. 2017, 32, 261–271. [Google Scholar]
- Sosnówka-Czajka, E.; Skomorucha, I.; Muchacka, R. Effect of Organic Production System on the Performance and Meat Quality of Two Purebred Slow-Growing Chicken Breeds. Ann. Anim. Sci. 2017, 17, 1197–1213. [Google Scholar] [CrossRef] [Green Version]
- Pawłowska, J.; Sosnówka-Czajka, E. Factors affecting chick quality in Poland. World’s Poult. Sci. J. 2019, 75, 621–632. [Google Scholar] [CrossRef]
- Kokoszyński, D.; Żochowska-Kujawska, J.; Kotowicz, M.; Sobczak, M.; Piwczyński, D.; Stęczny, K.; Majrowska, M.; Saleh, M. Carcass characteristics and selected meat quality traits from commercial broiler chickens of different origin. Anim. Sci. J. 2022, 93, e13709. [Google Scholar] [CrossRef]
- Jaturasitha, S.; Kayan, A.; Wicke, M. Carcass and meat characteristics of male chickens between Thai indigenous compared with improved layer breeds and their crossbred. Arch. Anim. Breed. 2008, 51, 283–294. [Google Scholar] [CrossRef] [Green Version]
- De Liu, X.; Jayasena, D.D.; Jung, Y.; Jung, S.; Kang, B.S.; Heo, K.N.; Lee, J.H.; Jo, C. Differential Proteome Analysis of Breast and Thigh Muscles between Korean Native Chickens and Commercial Broilers. Asian-Australas. J. Anim. Sci. 2012, 25, 895–902. [Google Scholar] [CrossRef]
- Swatland, H. How pH causes paleness or darkness in chicken breast meat. Meat Sci. 2008, 80, 396–400. [Google Scholar] [CrossRef]
- Martini, S.; Cattivelli, A.; Conte, A.; Tagliazucchi, D. Black, green, and pink pepper affect differently lipid oxidation during cooking and in vitro digestion of meat. Food Chem. 2021, 350, 129246. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Guo, X. Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Sci. Hum. Wellness 2016, 5, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Istrati, D.; Ciuciu, A.M.; Vizireanu, C.; Ionescu, A.; Carballo, J. Impact of Spices and Wine-Based Marinades on Tenderness, Fragmentation of Myofibrillar Proteins and Color Stability in Bovine B iceps Femoris Muscle. J. Texture Stud. 2015, 46, 455–466. [Google Scholar] [CrossRef]
- Sokołowicz, Z.; Augustyńska-Prejsnar, A.; Krawczyk, J.; Kačániová, M.; Kluz, M.; Hanus, P.; Topczewska, J. Technological and Sensory Quality and Microbiological Safety of RIR Chicken Breast Meat Marinated with Fermented Milk Products. Animals 2021, 11, 3282. [Google Scholar] [CrossRef] [PubMed]
- Cheok, C.; Chin, N.; Yusof, Y.; Kamal, S.M.M.; Sazili, A. Effect of marinating temperatures on physical changes of traditionally marinated beef satay. J. Food Process. Preserv. 2011, 35, 474–482. [Google Scholar] [CrossRef]
- Lemos, A.; Nunes, D.; Viana, A. Optimization of the still-marinating process of chicken parts. Meat Sci. 1999, 52, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Al-Dalali, S.; Li, C.; Xu, B. Evaluation of the effect of marination in different seasoning recipes on the flavor profile of roasted beef meat via chemical and sensory analysis. J. Food Biochem. 2021, 46, e13962. [Google Scholar] [CrossRef] [PubMed]
- Salmon, C.; Knize, M.; Felton, J. Effects of marinating on heterocyclic amine carcinogen formation in grilled chicken. Food Chem. Toxicol. 1997, 35, 433–441. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Bioactives in spices, and spice oleoresins: Phytochemicals and their beneficial effects in food preservation and health promotion. J. Food Bioact. 2018, 3, 8–75. [Google Scholar] [CrossRef] [Green Version]
- Jalali, M.; Mahmoodi, M.; Moosavian, S.P.; Jalali, R.; Ferns, G.; Mosallanezhad, A.; Imanieh, M.H.; Mosallanezhad, Z. The effects of ginger supplementation on markers of inflammatory and oxidative stress: A systematic review and meta-analysis of clinical trials. Phytother. Res. 2020, 34, 1723–1733. [Google Scholar] [CrossRef]
- Roopchand, D.E.; Krueger, C.G.; Moskal, K.; Fridlender, B.; Lila, M.A.; Raskin, I. Food-compatible method for the efficient extraction and stabilization of cranberry pomace polyphenols. Food Chem. 2013, 141, 3664–3669. [Google Scholar] [CrossRef] [Green Version]
- Teplá, J.L.; Dostálová, T.; Lužová, D.; Rožnovská, J.; Přichystalová, L.; Kalhotka, L.; Dvořák, L.; Sýkora, V.; Šustová, K. Antimicrobial effects of selected plant extracts on the shelf life of goat whey. MendelNet 2013, 614–620. Available online: https://mnet.mendelu.cz/mendelnet2013/articles/44_tepla_877.pdf (accessed on 1 December 2022).
- Yu, J.; Ahmedna, M.; Goktepe, I. Effects of processing methods and extraction solvents on concentration and antioxidant activity of peanut skin phenolics. Food Chem. 2005, 90, 199–206. [Google Scholar] [CrossRef]
- Zhang, Y.; Henning, S.M.; Lee, R.-P.; Huang, J.; Zerlin, A.; Li, Z.; Heber, D. Turmeric and black pepper spices decrease lipid peroxidation in meat patties during cooking. Int. J. Food Sci. Nutr. 2015, 66, 260–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awuchi, C.G.; Okpala, C.O.R. Natural nutraceuticals, especially functional foods, their ma-jor bioactive components, formulation, and health benefits for disease prevention-An overview. J. Food Bioact. 2022, 19, 97–123. [Google Scholar] [CrossRef]
- Raut, S.S.; Rindhe, S.N.; Verma, S.K.; Swami, J.N.; Mundhe, B.L.; Rayeesul, I. Effect of Acidulant on Chicken Pickle Incorporated with Poultry By-products. J. Meat Sci. Technol. 2015, 3, 12–17. [Google Scholar]
- Viegas, O.; Amaro, L.F.; Ferreira, I.M.; Pinho, O. Inhibitory Effect of Antioxidant-Rich Marinades on the Formation of Heterocyclic Aromatic Amines in Pan-Fried Beef. J. Agric. Food Chem. 2012, 60, 6235–6240. [Google Scholar] [CrossRef]
- Richardson, P. (Ed.) Improving the Thermal Processing of Foods; Woodhead Publishing Ltd.: Cambridge, UK, 2004; p. 520. ISBN 978-1855737303. [Google Scholar]
- Schröder, M.J. Food Quality and Consumer Value: Delivering Food that Satisfies; Springer: Berlin, Germany, 2003; p. 150. ISBN 3540439145. [Google Scholar]
- Ježek, F.; Kameník, J.; Macharáčková, B.; Bogdanovičová, K.; Bednář, J. Cooking of meat: Effect on texture, cooking loss and microbiological quality—A review. Acta Vet. Brno 2020, 88, 487–496. [Google Scholar] [CrossRef] [Green Version]
- Beckett, F. Sausage & Mash; Bloomsbury Publishing: London, UK, 2012; p. 160. ISBN 9781408187760. [Google Scholar]
- Liao, G.; Wang, G.; Xu, X.; Zhou, G. Effect of cooking methods on the formation of heterocyclic aromatic amines in chicken and duck breast. Meat Sci. 2010, 85, 149–154. [Google Scholar] [CrossRef]
- Farhadian, A.; Jinap, S.; Abas, F.; Sakar, Z.I. Determination of polycyclic aromatic hydrocarbons in grilled meat. Food Control 2010, 21, 606–610. [Google Scholar] [CrossRef]
- Kerth, C.R.; Blair-Kerth, L.K.; Jones, W.R. Warner-Bratzler shear force repeatability in beef longissimus steaks cooked with a convection oven, broiler, or clam-shell grill. J. Food Sci. 2003, 68, 668–669. [Google Scholar] [CrossRef]
- Khan, M.I.; Min, J.-S.; Lee, S.-O.; Yim, D.G.; Seol, K.-H.; Lee, M.; Jo, C. Cooking, storage, and reheating effect on the formation of cholesterol oxidation products in processed meat products. Lipids Health Dis. 2015, 14, 89. [Google Scholar] [CrossRef] [Green Version]
- Bai, W.K.; Zhang, F.J.; He, T.J.; Su, P.W.; Ying, X.Z.; Zhang, L.L.; Wang, T. Dietary pro-biotic Bacillus subtilis strain fmbj increases antioxidant capacity and oxidative stability of chicken breast meat during storage. PLoS ONE 2016, 11, e0167339. [Google Scholar] [CrossRef]
- Lengkidworraphiphat, P.; Wongpoomchai, R.; Taya, S.; Jaturasitha, S. Effect of genotypes on macronutrients and antioxidant capacity of chicken breast meat. Asian-Australas. J. Anim. Sci. 2020, 33, 1817–1823. [Google Scholar] [CrossRef] [PubMed]
- Augustyńska-Prejsnar, A.; Ormian, M.; Sokołowicz, Z. Physicochemical and Sensory Properties of Broiler Chicken Breast Meat Stored Frozen and Thawed Using Various Methods. J. Food Qual. 2018, 2018, 6754070. [Google Scholar] [CrossRef]
- Brambila, G.S.; Bowker, B.C.; Zhuang, H. Comparison of sensory texture attributes of broiler breast fillets with different degrees of white striping. Poult. Sci. 2016, 95, 2472–2476. [Google Scholar] [CrossRef]
- Akmakçı, S.; Topdaş, E.F.; Kalın, P.; Han, H.; Şekerci, P.; Köse, L.P.; Gülçin, İ. Antioxidant capacity and functionality of oleaster (Elaeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. Int. J. Food Sci. Technol. 2015, 50, 472–481. [Google Scholar] [CrossRef]
- Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 5th ed.; CRC Press: Boca Raton, FL, USA, 2015; p. 632. ISBN 13-9781482216905. [Google Scholar]
- Barido, F.H.; Lee, S.K. Effect of detoxified Rhus verniciflua extract on oxidative stability and quality improvement of raw chicken breast during cold storage. J. Anim. Sci. Technol. 2022, 64, 380–395. [Google Scholar] [CrossRef] [PubMed]
- Luciano, G.; Moloney, A.P.; Priolo, A.; Röhrle, F.T.; Vasta, V.; Biondi, L.; López-Andrés, P.; Grasso, S.; Monahan, F.J. Vitamin E and polyunsaturated fatty acids in bovine muscle and the oxidative stability of beef from cattle receiving grass or concentrate-based rations1. J. Anim. Sci. 2011, 89, 3759–3768. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Kang, G.-H.; Yang, H.-S.; Jeong, J.-Y.; Hwang, Y.-H.; Park, G.-B.; Joo, S.-T. A Comparison of Meat Characteristics between Duck and Chicken Breast. Asian-Australas. J. Anim. Sci. 2007, 20, 1002–1006. [Google Scholar] [CrossRef]
- Kopec, W.; Jamroz, D.; Wiliczkiewicz, A.; Biazik, E.; Pudlo, A.; Korzeniowska, M.; Hikawczuk, T.; Skiba, T. Antioxidative Characteristics of Chicken Breast Meat and Blood after Diet Supplementation with Carnosine, L-histidine, and β-alanine. Antioxidants 2020, 9, 1093. [Google Scholar] [CrossRef]
- Augustyńska-Prejsnar, A.; Ormian, M.; Sokołowicz, Z. The influence of frozen storage duration and thawing methods on the meat quality of broiler chickens. Apar. Badaw. i Dydakt. 2017, 22, 253–259. [Google Scholar]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Song, W.O.; Fernandez, M.L.; Bruno, R.S.; Koo, S.I.; Chun, O.K. Development and validation of an algorithm to establish a total antioxidant capacity database of the US diet. Int. J. Food Sci. Nutr. 2010, 61, 600–623. [Google Scholar] [CrossRef]
- Sáyago-Ayerdi, S.; Brenes, A.; Viveros, A.; Goñi, I. Antioxidative effect of dietary grape pomace concentrate on lipid oxidation of chilled and long-term frozen stored chicken patties. Meat Sci. 2009, 83, 528–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Bang, J.; Beuchat, L.R.; Kim, H.; Ryu, J.-H. Controlled fermentation of kimchi using naturally occurring antimicrobial agents. Food Microbiol. 2012, 32, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Jung, P.M.; Oh, Y.-C.; Song, N.-Y.; Kim, T.; Ma, J.Y. Extraction and Bioactivity Analysis of Major Flavones Compounds fromScutellaria baicalensisUsing In Vitro Assay and Online Screening HPLC-ABTS System. J. Anal. Methods Chem. 2014, 2014, 563702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smaoui, S.; Ben Hlima, H.; Ghorbel, R. The effect of sodium lactate and lactic acid combinations on the microbial, sensory, and chemical attributes of marinated chicken thigh. Poult. Sci. 2012, 91, 1473–1481. [Google Scholar] [CrossRef]
- Warner, R.; Miller, R.; Ha, M.; Wheeler, T.L.; Dunshea, F.; Li, X.; Wheeler, T. Meat tenderness: Underlying mechanisms, instrumental measurement, and sensory assessment. Meat Muscle Biol. 2021, 4, 1–25. [Google Scholar] [CrossRef]
- Chumngoen, W.; Tan, F.J. Relationships between descriptive sensory attributes and physico-chemical analysis of broiler and Taiwan native chicken breast meat. Asian-Australas. J. Anim. Sci. 2015, 28, 1028. [Google Scholar] [CrossRef] [Green Version]
- Schilling, M.W.; Schilling, J.K.; Claus, J.R.; Marriott, N.G.; Duncan, S.E.; Wang, H. Instrumental texture assessment and consumer acceptability of cooked broiler breasts evaluated using a geometrically uniform-shaped sample. J. Muscle Foods 2003, 14, 11–23. [Google Scholar] [CrossRef]
- Chuaynukool, K.; Wattanachant, S.; Siripongvutikorn, S. Chemical and physical properties of raw and cooked spent hen, broiler and Thai indigenous chicken muscles in mixed herbs acidified soup (Tom Yum). J. Food Technol. 2007, 5, 180–186. [Google Scholar]
- Amaral, A.B.; da Silva, M.V.; Lannes, S.C.D.S. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sáyago-Ayerdi, S.; Brenes, A.; Goñi, I. Effect of grape antioxidant dietary fiber on the lipid oxidation of raw and cooked chicken hamburgers. LWT-Food Sci. Technol. 2009, 42, 971–976. [Google Scholar] [CrossRef] [Green Version]
- Murphy, R.Y.; Marks, B.P. Effect of meat temperature on proteins, texture, and cook loss for ground chicken breast patties. Poult. Sci. 2000, 79, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Rabeler, F.; Feyissa, A.H. Kinetic Modeling of Texture and Color Changes During Thermal Treatment of Chicken Breast Meat. Food Bioprocess Technol. 2018, 11, 1495–1504. [Google Scholar] [CrossRef]
Flavor | Apperance | Tenderness | Taste | Off-Flavor | |||
---|---|---|---|---|---|---|---|
Control | Control | 0% | 3.86 ± 0.96b | 3.83 ± 1.02b | 3.93 ± 0.82abc | 3.44 ± 0.62b | 4.63 ± 0.74b |
Grape pomace | 0.5% | 3.75 ± 0.46b | 3.81 ± 0.65b | 3.56 ± 0.62abc | 3.31 ± 0.70b | 4.00 ± 1.07b | |
1% | 3.81 ± 0.59b | 3.50 ± 0.60b | 3.94 ± 1.02abc | 3.94 ± 0.68b | 4.63 ± 0.52b | ||
1.5% | 3.94 ± 0.86b | 3.69 ± 0.80b | 4.00 ± 0.96abc | 3.88 ± 0.64b | 4.50 ± 0.76b | ||
Cranberry pomace | 0.5% | 4.19 ± 1.04b | 3.94 ± 0.68b | 4.31 ± 0.93bc | 3.38 ± 0.92b | 4.38 ± 0.76b | |
1% | 4.06 ± 0.64b | 3.88 ± 0.83b | 4.13 ± 0.68abc | 4.13 ± 0.52b | 4.56 ± 0.52b | ||
1.5% | 3.69 ± 1.24b | 3.88 ± 0.98b | 3.69 ± 0.73abc | 3.69 ± 0.99b | 4.19 ± 1.04b | ||
Scutellaria baicalensis | 0.5% | 3.61 ± 1.02b | 3.83 ± 1.13b | 3.67 ± 0.65abc | 3.17 ± 0.95b | 4.56 ± 0.62b | |
1% | 3.81 ± 0.92b | 3.50 ± 0.83b | 3.19 ± 0.71ab | 3.19 ± 1.07b | 4.38 ± 0.46b | ||
1.5% | 3.81 ± 0.82b | 3.69 ± 0.93b | 4.25 ± 0.86bc | 3.63 ± 0.70b | 4.75± 0.50b | ||
African Spices | Control | 0% | 4.25 ± 0.71b | 3.88 ± 1.13b | 4.50 ± 0.76c | 4.25 ± 0.93b | 4.13 ± 1.36b |
Grape pomace | 0.5% | 4.00 ± 0.89b | 3.94 ± 0.78b | 4.06 ± 0.50abc | 4.31 ± 0.46b | 4.25 ± 1.04b | |
1% | 3.94 ± 0.78b | 3.88 ± 0.83b | 4.19 ± 0.75bc | 3.88 ± 0.64b | 4.25 ± 1.16b | ||
1.5% | 3.75 ± 1.25b | 3.75 ± 1.07b | 3.56 ± 1.18abc | 3.88 ± 0.99b | 4.50 ± 0.76b | ||
Cranberry pomace | 0.5% | 4.19 ± 0.73b | 4.25 ± 0.76b | 4.00 ± 0.64abc | 4.00 ± 0.83b | 4.25 ± 1.16b | |
1% | 4.19 ± 0.65b | 4.00 ± 0.92b | 3.81± 0.75abc | 3.88 ± 0.86b | 4.25 ± 0.93b | ||
1.5% | 3.94 ± 1.08b | 3.94 ± 1.07b | 3.88 ± 0.52abc | 3.94 ± 0.95b | 4.38 ± 1.07b | ||
Scutellaria baicalensis | 0.5% | 3.93 ± 1.35b | 3.86 ± 1.22b | 3.93 ± 0.46abc | 4.00± 1.44b | 5.00 ± 1.41b | |
1% | 3.81 ± 0.65b | 4.13 ± 1.31b | 3.75 ± 0.92abc | 3.81 ± 1.00b | 4.75 ± 1.06b | ||
1.5% | 3.94 ± 0.92b | 4.00 ± 1.03b | 4.06 ± 0.65abc | 4.31 ± 0.74b | 5.00 ± 0.46b | ||
Industrial | Control | 0% | 4.06 ± 1.27b | 4.25 ± 0.71b | 4.13 ± 0.83abc | 4.00 ± 1.07b | 4.13 ± 1.13b |
Grape pomace | 0.5% | 4.13 ± 0.99b | 3.63 ± 0.74b | 3.69 ± 0.70abc | 4.06 ± 0.68b | 4.25 ± 1.16b | |
1% | 3.69 ± 1.19b | 3.69 ± 0.96b | 3.94 ± 0.82abc | 3.94 ± 0.68b | 4.13 ± 1.13b | ||
1.5% | 3.50 ± 1.28b | 3.88 ± 0.69b | 4.06 ± 0.94abc | 3.75 ± 1.04b | 4.13 ± 1.46b | ||
Cranberry pomace | 0.5% | 3.81 ± 0.65b | 4.25 ± 0.83b | 4.13 ± 0.92abc | 3.94 ± 0.50b | 4.13 ± 0.93b | |
1% | 3.94 ± 1.03b | 4.06 ± 0.76b | 4.25 ± 1.02bc | 4.00 ± 1.07b | 4.44 ± 1.16b | ||
1.5% | 4.31 ± 1.20b | 4.25 ± 0.89b | 4.13 ± 1.28abc | 4.25 ± 1.04b | 4.50 ± 0.73b | ||
Scutellaria baicalensis | 0.5% | 4.19 ± 1.13b | 3.94 ± 0.83b | 3.88 ± 0.69abc | 4.00 ± 0.92b | 4.25 ± 0.52b | |
1% | 4.13 ± 1.16b | 3.88 ± 1.41b | 3.88 ± 0.98abc | 4.19 ± 1.06b | 4.63 ± 1.41b | ||
1.5% | 4.25 ± 1.22b | 4.00 ± 0.74b | 3.56 ± 0.72abc | 3.63 ± 0.88b | 4.38 ± 0.89b |
Hardness | Chewiness | Gumminess | Graininess | Greasiness | |||
---|---|---|---|---|---|---|---|
Control | Control | 0% | 4.25 ± 1.39a | 3.63 ± 1.19ab | 2.88 ± 1.13ab | 2.50 ± 0.92ab | 2.25 ± 1.04abcde |
Grape pomace | 0.5% | 4.25 ± 1.75a | 3.38 ± 1.30ab | 2.88 ± 0.99ab | 3.38 ± 1.13ab | 2.25 ± 1.16abcde | |
1% | 3.13 ± 1.55a | 2.63 ± 1.06a | 2.13 ± 1.25ab | 2.63 ± 1.41ab | 2.00 ± 1.07abcd | ||
1.5% | 4.13 ± 1.64a | 3.25 ± 0.89ab | 2.88 ± 1.25ab | 3.25 ± 1.46ab | 2.63 ± 1.85abcde | ||
Cranberry pomace | 0.5% | 3.13 ± 1.55a | 2.88 ± 1.36a | 3.00 ± 1.20ab | 2.88 ± 1.49ab | 4.63 ± 2.33de | |
1% | 3.75 ± 1.75a | 3.75 ± 1.04ab | 3.50 ± 1.41ab | 2.88 ± 2.07ab | 3.75 ± 2.49bcde | ||
1.5% | 4.50 ± 2.45a | 3.50 ± 1.07ab | 3.25 ± 1.04ab | 4.25 ± 1.36b | 3.50 ± 1.85abcde | ||
Scutellaria baicalensis | 0.5% | 3.56 ± 1.58a | 3.78 ± 1.60ab | 3.78 ± 2.00ab | 2.57 ± 1.41ab | 1.56 ± 0.92ab | |
1% | 4.25 ± 1.91a | 3.38 ± 1.69ab | 4.00 ± 2.78ab | 2.25 ± 1.06ab | 2.50 ± 1.77abcde | ||
1.5% | 3.38 ± 1.69a | 3.75 ± 1.67ab | 3.69 ± 1.71ab | 3.00 ± 1.68ab | 3.63 ± 3.02abcde | ||
African Spices | Control | 0% | 2.88 ± 1.89a | 2.38 ± 1.30a | 2.00 ± 1.31a | 2.63 ± 1.31ab | 2.50 ± 1.41abcde |
Grape pomace | 0.5% | 4.25 ± 1.04a | 2.88 ± 1.13a | 2.56 ± 1.24ab | 3.13 ± 1.60ab | 2.25 ± 1.10abcde | |
1% | 3.00 ± 1.77ab | 2.75 ± 1.67a | 3.06 ± 1.43ab | 2.50 ± 1.41ab | 1.88 ± 0.83abc | ||
1.5% | 5.00 ± 1.51a | 3.88 ± 1.96ab | 4.00 ± 2.67ab | 2.88 ± 1.83ab | 2.75 ± 1.91abcde | ||
Cranberry pomace | 0.5% | 3.25 ± 1.28a | 3.50 ± 1.60ab | 3.25 ± 1.83ab | 2.75 ± 1.46ab | 3.75 ± 2.49bcde | |
1% | 4.13 ± 1.96a | 3.75 ± 1.49ab | 4.00 ± 1.51ab | 3.38 ± 1.25ab | 3.38 ± 1.77abcde | ||
1.5% | 3.63 ± 2.45a | 4.13 ± 1.46ab | 4.25 ± 1.49b | 2.88 ± 1.49ab | 4.00 ± 2.20bcde | ||
Scutellaria baicalensis | 0.5% | 4.14 ± 1.02a | 4.21 ± 1.13ab | 3.29 ± 0.65ab | 2.56 ± 0.95ab | 3.57 ± 0.53abcde | |
1% | 4.13 ± 0.92a | 3.44 ± 0.83ab | 2.88 ± 0.71ab | 2.38 ± 1.07ab | 2.38 ± 0.46abcde | ||
1.5% | 4.00 ± 2.62a | 3.88 ± 2.17ab | 3.06 ± 1.37ab | 2.44 ± 1.85ab | 3.00 ± 2.14abcde | ||
Industrial pickle | Control | 0% | 3.50 ± 1.31a | 2.88 ± 0.83a | 3.00 ± 1.20ab | 2.63 ± 1.06ab | 3.50 ± 1.07abcd |
Grape pomace | 0.5% | 3.75 ± 1.75a | 3.75 ± 1.75ab | 3.25 ± 1.28ab | 2.88 ± 1.36ab | 2.00 ± 1.07abcd | |
1% | 2.88 ± 1.13a | 2.69 ± 0.96a | 2.88 ± 1.13ab | 2.75 ± 1.04ab | 2.38 ± 1.30abcde | ||
1.5% | 3.00 ± 1.69a | 3.38 ± 1.85ab | 2.50 ± 0.93ab | 2.75 ± 1.67ab | 2.38 ± 1.41abcde | ||
Cranberry pomace | 0.5% | 3.88 ± 1.36a | 3.38 ± 1.69ab | 3.38 ± 1.19ab | 3.00 ± 1.31ab | 4.25 ± 2.55bcde | |
1% | 2.88 ± 1.55a | 2.63 ± 1.60a | 2.81 ± 1.41ab | 2.75 ± 1.49ab | 4.88 ± 2.70e | ||
1.5% | 3.25 ± 1.58a | 3.25 ± 1.83ab | 3.13 ± 1.55ab | 2.50 ± 1.51ab | 4.75 ± 2.49e | ||
Scutellaria baicalensis | 0.5% | 4.50 ± 2.00a | 4.00 ± 1.41ab | 3.88 ± 2.23ab | 3.00 ± 2.00ab | 3.00 ± 2.14abcde | |
1% | 3.88 ± 1.46a | 3.63 ± 1.77ab | 3.50 ± 1.41ab | 2.50 ± 1.51ab | 3.25 ± 2.19abcde | ||
1.5% | 4.50 ± 2.20a | 4.25 ± 2.12ab | 3.63 ± 2.26ab | 3.00 ± 2.33ab | 3.63 ± 2.72abcde |
(a) cranberry Pomace (CP) before and after Oven-Grill | ||||||
CP before Oven-Grill | CP after Oven-Grill | |||||
Samples | L* | a* | b* | L* | a* | b* |
1 | 54.2 ± 1.3a | 0.5 ± 0.2cd | 7.41 ± 1.1bc | 76.4a ± 1.8 | −1.8 ± 0.1c | 18.6 ± 2.1de |
2 | 48.8 ± 3.2bcd | 5.8 ± 1.3a | 3.2 ± 0.5cd | 67.7bc ± 2.5 | 1.6 ± 1.2b | 12.0 ± 2.5g |
3 | 51.5 ± 2.6abc | 2.1 ± 1.7bcd | 5.4 ± 0.7cd | 73.3ab ± 4.5 | −0.9 ± 3.4bc | 16.7 ± 1.0ef |
4 | 48.4 ± 1.4bcd | 5.6 ± 1.1a | 2.6 ± 1.5d | 70.5b ± 0.3 | 0.2 ± 0.4abc | 14.0 ± 1.1fg |
5 | 51.2 ± 5.3abcd | 2.5 ± 0.6bc | 12.9 ± 1.6a | 68.2bc ± 2.8 | 1.2 ± 1.5ab | 20.7 ± 0.7bcd |
6 | 46.1 ± 4.3d | 3.6 ± 1.0b | 11.9ab ± 0.4 | 69.6bc ± 4.2 | 0.2 ± 0.8abc | 21.5 ± 1.0bcd |
7 | 52.5 ± 2.2ab | 3.6 ± 2.1b | 14.3a ± 5.9 | 68.5bc ± 3.9 | 0.6 ± 0.8abc | 20.2 ± 0.7cd |
8 | 47.3 ± 0.5bcd | 3.2 ± 0.8b | 10.8ab ± 2.8 | 64.3cd ± 3.3 | 3.0 ± 1.3a | 21.7 ± 2.3bcd |
9 | 52.5 ± 2.0ab | 0.3 ± 0.9d | 14.8a ± 1.5 | 71.3cb ± 1.9 | 0.1 ± 1.4abc | 28.2 ± 3.9a |
10 | 47.1 ± 1.2cd | 2.3 ± 1.1cd | 10.3ab ± 3.8 | 68.0bc ± 5.5 | 0.8 ± 1.4abc | 22.6 ± 1.5bc |
11 | 49.7 ± 1.9abcd | 3.4 ± 0.8b | 14.6a ± 2.4 | 60.2d ± 2.4 | 2.8 ± 1.1a | 24.0 ± 2.4b |
12 | 50.8 ± 2.1abcd | 2.5 ± 0.8bc | 12.6a ± 1.3 | 69.8bc ± 0.3 | 0.4 ± 0.7abc | 21.7 ± 1.1bcd |
(b) grape pomace (GP) before and after oven-grill. | ||||||
GP before oven-grill | GP after oven-grill | |||||
Samples | L* | a* | b* | L* | a* | b* |
1 | 52.1 ± 2.9abc | 1.6 ± 0.9cde | 4.9 ± 1.1de | 83.3 ± 1.1a | 0.8 ± 0.9f | 15.7 ± 1.0ef |
2 | 50.7 ± 1.8abcd | 1.3 ± 0.8de | 5.4 ± 3.9de | 75.6 ± 3.0bc | 1.5 ± 0.7ef | 14.8 ± 1.4f |
3 | 53.8 ± 3.6a | 1.1 ± 0.5e | 2.4 ± 1.3e | 78.0 ± 3.4ab | 1.7 ± 1.0def | 12.4 ± 3.8f |
4 | 49.4 ± 3.4abcd | 2.0 ± 0.1abcde | 6.1 ± 2.9de | 69.8 ± 6.3cde | 3.3 ± 0.7abcd | 13.2 ± 1.9f |
5 | 49.2 ± 0.9abcd | 1.9 ± 0.5bcde | 13.4 ± 1.6b | 76.5 ± 3.5abc | 2.4 ± 0.4bcdef | 20.7 ± 2.1cd |
6 | 43.7 ± 2.9d | 3.5 ± 1.2a | 13.3 ± 2.4b | 73.0 ± 2.3bcd | 2.2 ± 0.1cdef | 19.9 ± 1.8d |
7 | 46.1 ± 0.6bcd | 3.5 ± 0.2ab | 18.5 ± 0.8a | 69.1 ± 5.4cde | 3.8 ± 1.4abc | 19.5 ± 2.3de |
8 | 53.4 ± 6.5ab | 3.1 ± 0.6abc | 9.5 ± 2.2bcd | 65.7 ± 2.7de | 4.5 ± 1.2a | 19.6 ± 1.8de |
9 | 51.9 ± 4.4abc | 2.4 ± 1.0abcde | 12.6 ± 0.5bc | 66.8 ± 5.2de | 3.8 ± 1.0abc | 29.1 ± 1.4a |
10 | 46.5 ± 1.7abcd | 2.8 ± 1.4abcd | 13.4 ± 5.5b | 66.0 ± 1.6de | 4.1 ± 0.4ab | 25.7 ± 2.6ab |
11 | 52.1 ± 2.4abc | 1.4 ± 0.6de | 13.5 ± 3.3b | 63.8 ± 4.2e | 4.0 ± 0.1ab | 26.0 ± 2.4ab |
12 | 45.0 ± 2.6cd | 2.3 ± 0.6abcde | 8.1 ± 0.4cd | 71.2 ± 5.0bcde | 3.2 ± 1.4abcde | 24.0 ± 2.3bc |
(c) Baikal skullcap (BS) before and after oven-grill | ||||||
BS before oven-grill | BS after oven-grill | |||||
Samples | L* | a* | b* | L* | a* | b* |
1 | 45.0 ± 0.1bcd | −0.3 ± 0.4bcd | 4.3 ± 2.5e | 77.0 ± 1.7a | −1.8 ± 0.4cd | 18.8 ± 1.0c |
2 | 48.7 ± 3.5abc | −0.9 ± 0.2cde | 8.7 ± 0.6cd | 73.6 ± 5.0abc | −2.6 ± 0.1d | 17.3 ± 5.2c |
3 | 44.8 ± 4.7bcd | −0.6 ± 0.3cde | 7.0 ± 0.8de | 74.2 ± 1.2abc | −2.5 ± 0.8d | 15.8 ± 1.3c |
4 | 46.2 ± 1.0bcd | −1.6 ± 1.0e | 11.5 ± 3.8bcd | 71.4 ± 2.5abcd | −2.2 ± 0.4d | 18.0 ± 1.5c |
5 | 49.2 ± 0.9ab | 1.9 ± 0.5a | 13.4 ± 1.6ab | 76.5 ± 3.5ab | 2.4 ± 0.4ab | 20.7 ± 2.1bc |
6 | 41.7 ± 2.4d | 0.7 ± 1.1b | 15.9 ± 3.3ab | 63.0 ± 9.1de | 1.6 ± 2.6ab | 24.8 ± 4.8ab |
7 | 44.0 ± 2.9cd | 0.3 ± 0.3bc | 14.6 ± 1.8ab | 61.5 ± 2.1e | 1.5 ± 1.0b | 25.3 ± 0.6ab |
8 | 42.6 ± 1.5d | 0.3 ± 0.1bc | 17.2 ± 2.7a | 61.4 ± 9.2e | 0.3 ± 2.6bc | 25.4 ± 2.4ab |
9 | 51.9 ± 4.4ab | 2.4 ± 1.0a | 12.6 ± 0.5abc | 66.8 ± 5.2bcde | 3.8 ± 1.0a | 29.1 ± 1.4a |
10 | 44.3 ± 3.4bcd | −0.2 ± 0.1bcd | 15.0 ± 3.8ab | 68.3 ± 6.7abcde | −1.1 ± 0.3cd | 26.9 ± 1.6a |
11 | 48.9 ± 0.8abc | −1.7 ± 0.6e | 14.4 ± 2.3ab | 64.8 ± 2.2cde | −1.4 ± 1.0cd | 25.5 ± 2.3ab |
12 | 45.6 ± 0.5bcd | −1.1 ± 0.5de | 14.7 ± 2.0ab | 63.5 ± 4.7de | 0.4 ± 0.1bc | 28.6 ± 3.1a |
Antioxidant Additive | Marinade Type | Percentage (%) of Antioxidant Additive | Chicken Cutting Force [N] |
---|---|---|---|
Cranberry pomace | Control | 0.0 | 17.3 ± 1.0cdefghi |
0.5 | 13.4 ± 2.8abcde | ||
1.0 | 17.1 ± 2.5cdefghi | ||
1.5 | 15.8 ± 3.6abcdefgh | ||
AS | 0.0 | 12.8 ± 1.5abcd | |
0.5 | 15.2 ± 6.5abcdefgh | ||
1.0 | 19.2 ± 7.9cdefghi | ||
1.5 | 18.2 ± 0.8cdefghi | ||
IM | 0.0 | 21.4 ± 2.7hi | |
0.5 | 19.4 ± 6.1defghi | ||
1.0 | 17.7 ± 2.3cdefghi | ||
1.5 | 19.4 ± 2.2efghi | ||
Grape Pomace | Control | 0.0 | 19.1 ± 4.0cdefghi |
0.5 | 20.2 ± 4.3fghi | ||
1.0 | 18.6 ± 1.0cdefghi | ||
1.5 | 20.3 ± 3.0ghi | ||
AS | 0.0 | 19.2 ± 3.4cdefghi | |
0.5 | 16.9 ± 2.0bcdefgh | ||
1.0 | 14.0 ± 2.5abcdefg | ||
1.5 | 15.4 ± 1.6abcdefgh | ||
IM | 0.0 | 16.0 ± 2.1abcdefgh | |
0.5 | 13.7 ± 2.1abcdef | ||
1.0 | 14.9 ± 3.6abcdefgh | ||
1.5 | 14.9 ± 2.2abcdefgh | ||
BS | Control | 0.0 | 12.6 ± 1.0abc |
0.5 | 21.0 ± 2.5hi | ||
1.0 | 10.5 ± 1.0ab | ||
1.5 | 19.2 ± 1.2defghi | ||
AS | 0.0 | 12.8 ± 1.5abcd | |
0.5 | 15.7 ± 1.5abcdefgh | ||
1.0 | 10.2 ± 1.5a | ||
1.5 | 19.1 ± 4.4cdefghi | ||
IM | 0.0 | 16.0 ± 2.1abcdefgh | |
0.5 | 23.5 ± 4.8i | ||
1.0 | 18.4 ± 3.1cdefghi | ||
1.5 | 19.1 ± 3.6cdefghi |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okpala, C.O.R.; Juchniewicz, S.; Leicht, K.; Korzeniowska, M.; Guiné, R.P.F. Antioxidant, Organoleptic and Physicochemical Changes in Different Marinated Oven-Grilled Chicken Breast Meat. Foods 2022, 11, 3951. https://doi.org/10.3390/foods11243951
Okpala COR, Juchniewicz S, Leicht K, Korzeniowska M, Guiné RPF. Antioxidant, Organoleptic and Physicochemical Changes in Different Marinated Oven-Grilled Chicken Breast Meat. Foods. 2022; 11(24):3951. https://doi.org/10.3390/foods11243951
Chicago/Turabian StyleOkpala, Charles Odilichukwu R., Szymon Juchniewicz, Katarzyna Leicht, Małgorzata Korzeniowska, and Raquel P. F. Guiné. 2022. "Antioxidant, Organoleptic and Physicochemical Changes in Different Marinated Oven-Grilled Chicken Breast Meat" Foods 11, no. 24: 3951. https://doi.org/10.3390/foods11243951
APA StyleOkpala, C. O. R., Juchniewicz, S., Leicht, K., Korzeniowska, M., & Guiné, R. P. F. (2022). Antioxidant, Organoleptic and Physicochemical Changes in Different Marinated Oven-Grilled Chicken Breast Meat. Foods, 11(24), 3951. https://doi.org/10.3390/foods11243951