Organic Honey from the Middle Atlas of Morocco: Physicochemical Parameters, Antioxidant Properties, Pollen Spectra, and Sugar Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Honey Samples
2.3. Melissopalynological Analysis
2.4. Routine Analysis and Proximate Composition
2.5. Hydroxymethylfurfural (HMF) Determination
2.6. Total Phenolic Content (TPC)
2.7. Total Flavonoid Content (TFC)
2.8. Ascorbic Acid Quantification
2.9. Total Antioxidant Capacity
2.10. Free-Radical-Scavenging Activity (DDPH Assay)
2.11. Radical Cation Decolorization (ABTS Assay)
2.12. GC-FID Determination of Sugars
2.13. Statistical Analysis
3. Results and Discussions
3.1. Melissopalynological Analysis
3.2. Physicochemical Analysis
3.3. Phytochemical Constituents and Antioxidant Activities
3.4. Sugars Content
3.5. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eteraf-Oskouei, T.; Najafi, M. Uses of Natural Honey in Cancer: An Updated Review. Adv. Pharm. Bull. 2021, 12, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Zakaria, Z.A.; Albujja, M.; Bakar, M.F.A. Honey and Its Nutritional and Anti-Inflammatory Value. BMC Complementary Med. Ther. 2021, 21, 30. [Google Scholar] [CrossRef]
- Les Chiffres Clés de La Filière Maraîchage—Fellah Trade. Available online: www.fellah-trade.com (accessed on 11 June 2022).
- Moujanni, A.; Essamadi, A.K.; Terrab, A. L’apiculture Au Maroc: Focus Sur La Production de Miel. Int. J. Innov. Appl. Stud. 2017, 20, 52–78. [Google Scholar]
- El-Haskoury, R.; Kriaa, W.; Lyoussi, B.; Makni, M. Ceratonia Siliqua Honeys from Morocco: Physicochemical Properties, Mineral Contents, and Antioxidant Activities. J. Food Drug Anal. 2018, 26, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Pasupuleti, V.R.; Arigela, C.S.; Gan, S.H.; Salam, S.K.N.; Krishnan, K.T.; Rahman, N.A.; Jeffree, M.S. A Review on Oxidative Stress, Diabetic Complications, and the Roles of Honey Polyphenols. Oxidative Med. Cell. Longev. 2020, 2020, 8878172. [Google Scholar] [CrossRef] [PubMed]
- AGRICULTURE EN CHIFFRES. Available online: www.agriculture.gov.ma/sites/default/files/19-00145-book_agricultures_en_chiffres_def.pdf (accessed on 14 June 2022).
- Fennane, M.; Propositions de Zones Importantes Pour Les Plantes Au Maroc (ZIP Maroc). Inst. Sci. Rabat Moroc. 2004. Available online: https://uicnmed.org/web2007/CD2004/conten/doc-2004/zip_Maroc_final.pdf (accessed on 11 June 2022).
- Can, Z.; Yildiz, O.; Sahin, H.; Turumtay, E.A.; Silici, S.; Kolayli, S. An Investigation of Turkish Honeys: Their Physico-Chemical Properties, Antioxidant Capacities and Phenolic Profiles. Food Chem. 2015, 180, 133–141. [Google Scholar] [CrossRef]
- Ferreira, I.C.; Aires, E.; Barreira, J.C.; Estevinho, L.M. Antioxidant Activity of Portuguese Honey Samples: Different Contributions of the Entire Honey and Phenolic Extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Piana, M.L.; Oddo, L.P.; Bentabol, A.; Bruneau, E.; Bogdanov, S.; Declerck, C.G. Sensory Analysis Applied to Honey: State of the Art. Apidologie 2004, 35, S26–S37. [Google Scholar] [CrossRef] [Green Version]
- Herrero, B.; Valencia, R.; San Martín, R.; Pando, V. Characterization of Honeys by Melissopalynology and Statistical Analysis. Can. J. Plant Sci. 2002, 82, 75–82. [Google Scholar] [CrossRef]
- Iurlina, M.O.; Fritz, R. Characterization of Microorganisms in Argentinean Honeys from Different Sources. Int. J. Food Microbiol. 2005, 105, 297–304. [Google Scholar] [CrossRef]
- Bayram, N.E.; Kara, H.H.; Can, A.M.; Bozkurt, F.; Akman, P.K.; Vardar, S.U.; Çebi, N.; Yılmaz, M.T.; Sağdıç, O.; Dertli, E. Characterization of Physicochemical and Antioxidant Properties of Bayburt Honey from the North-East Part of Turkey. J. Apic. Res. 2021, 60, 46–56. [Google Scholar] [CrossRef]
- Aazza, S.; Lyoussi, B.; Antunes, D.; Miguel, M.G. Physicochemical Characterization and Antioxidant Activity of 17 Commercial Moroccan Honeys. Int. J. Food Sci. Nutr. 2014, 65, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Terrab, A.; Díez, M.J.; Heredia, F.J. Characterisation of Moroccan Unifloral Honeys by Their Physicochemical Characteristics. Food Chem. 2002, 79, 373–379. [Google Scholar] [CrossRef]
- Erdtman, G. The Acetolysis Method-a Revised Description. Sven Bot Tidskr 1960, 54, 516–564. [Google Scholar]
- Díez, M. Clave General de Tipos Polínicos. Atlas Polínico Andal. Occident. 1987, 23–61. [Google Scholar]
- Saá, P.; Díaz, E.; González, A. Estudio Estadístico de Representatividad de Los Datos Obtenidos En Análisis Polínicos En Mieles de Orense (España). Bol. Real Soc. Esp. Hist. Nat. (Sec. Biol.) 1993, 90, 5–16. [Google Scholar]
- Faegri, K.; Kaland, P.E.; Krzywinski, K. Textbook of Pollen Analysis; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1989; ISBN 0-471-92178-5. [Google Scholar]
- Moore, P.D.; Webb, J.A. Illustrated Guide to Pollen Analysis; Hodder and Stoughton: London, UK, 1978; ISBN 0-340-17236-3. [Google Scholar]
- Sowunmi, M. Pollen Grains of Nigerian Plants: I. Woody Species. Grana 1973, 13, 145–186. [Google Scholar] [CrossRef]
- Sowunmi, M.A. Pollen of Nigerian Plants: II Woody Species. Grana 1995, 34, 120–141. [Google Scholar] [CrossRef]
- Erdtman, G. Handbook of Palynology: Morphology, Taxonomy, Ecology; Hafner: New York, NY, USA, 1969. [Google Scholar]
- Jones, G.D.; Bryant, J.; Vaughn, M. The Use of ETOH for the Dilution of Honey. Grana 2004, 43, 174–182. [Google Scholar] [CrossRef]
- Bogdanov, S. Harmonised Methods of the International Honey Commission. Int. Honey Comm. (IHC) 2002, 5, 1–62. [Google Scholar]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar]
- Sousa, J.M.; De Souza, E.L.; Marques, G.; Meireles, B.; de Magalhães Cordeiro, Â.T.; Gullón, B.; Pintado, M.M.; Magnani, M. Polyphenolic Profile and Antioxidant and Antibacterial Activities of Monofloral Honeys Produced by Meliponini in the Brazilian Semiarid Region. Food Res. Int. 2016, 84, 61–68. [Google Scholar] [CrossRef]
- Nweze, C.C.; Abdulganiyu, M.G.; Erhabor, O.G. Comparative analysis of vitamin C in fresh fruits juice of malus domestica, citrus sinensi, ananas comosus and citrullus lanatus by Iodometric titration. Int. J. Sci. Environ. Technol. 2015, 4, 17–22. [Google Scholar]
- Laaroussi, H.; Bakour, M.; Ousaaid, D.; Ferreira-Santos, P.; Genisheva, Z.; El Ghouizi, A.; Aboulghazi, A.; Teixeira, J.A.; Lyoussi, B. Protective Effect of Honey and Propolis against Gentamicin-Induced Oxidative Stress and Hepatorenal Damages. Oxidative Med. Cell. Longev. 2021, 2021, 9719906. [Google Scholar] [CrossRef]
- Sabatini, A.G.; Marcazzan, G.; Colombo, R.; Carpana, E.; Serra, G. The Analytical Determination of Sugars in Honey. Ind. Aliment. 2001, 40, 623–627. [Google Scholar]
- Codex Alimentarius Commission. Revised Codex Standard for Honey; Codex STAN, 12-1981, Rev. 1 1987, Rev. 2. 2001.
- Hegazi, A.G.; Al Guthami, F.M.; Ramadan, M.F.; Al Gethami, A.F.; Craig, A.M.; Serrano, S. Characterization of Sidr (Ziziphus Spp.) Honey from Different Geographical Origins. Appl. Sci. 2022, 12, 9295. [Google Scholar] [CrossRef]
- Boussaid, A.; Chouaibi, M.; Rezig, L.; Hellal, R.; Donsì, F.; Ferrari, G.; Hamdi, S. Physicochemical and Bioactive Properties of Six Honey Samples from Various Floral Origins from Tunisia. Arab. J. Chem. 2018, 11, 265–274. [Google Scholar] [CrossRef]
- Ouchemoukh, S.; Louaileche, H.; Schweitzer, P. Physicochemical Characteristics and Pollen Spectrum of Some Algerian Honeys. Food Control 2007, 18, 52–58. [Google Scholar] [CrossRef]
- Feás, X.; Pires, J.; Iglesias, A.; Estevinho, M.L. Characterization of Artisanal Honey Produced on the Northwest of Portugal by Melissopalynological and Physico-Chemical Data. Food Chem. Toxicol. 2010, 48, 3462–3470. [Google Scholar] [CrossRef] [Green Version]
- Rashed, M.; Soltan, M. Major and Trace Elements in Different Types of Egyptian Mono-Floral and Non-Floral Bee Honeys. J. Food Compos. Anal. 2004, 17, 725–735. [Google Scholar] [CrossRef]
- Mato, I.; Huidobro, J.F.; Simal-Lozano, J.; Sancho, M.T. Significance of Nonaromatic Organic Acids in Honey. J. Food Prot. 2003, 66, 2371–2376. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.R.; Videira, R.; Monteiro, A.P.; Valentão, P.; Andrade, P.B. Honey from Luso Region (Portugal): Physicochemical Characteristics and Mineral Contents. Microchem. J. 2009, 93, 73–77. [Google Scholar] [CrossRef]
- Achour, H.Y.; Khali, M. Composition Physicochimique Des Miels Algériens. Détermination Des Éléments Traces et Des Éléments Potentiellement Toxiques. Afr. Sci. Rev. Int. Des Sci. Technol. 2014, 10, 127–136. [Google Scholar]
- Elamine, Y.; Aazza, S.; Lyoussi, B.; Dulce Antunes, M.; Estevinho, L.M.; Anjos, O.; Resende, M.; Faleiro, M.L.; Miguel, M.G. Preliminary Characterization of a Moroccan Honey with a Predominance of Bupleurum Spinosum Pollen. J. Apic. Res. 2017, 57, 153–165. [Google Scholar] [CrossRef] [Green Version]
- EU Council Council Directive 2001/11 O/EC of 20 December 2001 Relating to Honey. Off. J. Eur. Commun. L 2002, 10, 47–52.
- Naman, M.; Faid, M.; El Adlouni, C. Microbiological and Physico-Chemical Properties of Moroccan Honey. Int. J. Agric. Biol. 2005, 7, 773–776. [Google Scholar]
- Terrab, A.; Díez, M.J.; Heredia, F.J. Palynological, Physico-chemical and Colour Characterization of Moroccan Honeys: III. Other Unifloral Honey Types. Int. J. Food Sci. Technol. 2003, 38, 395–402. [Google Scholar] [CrossRef]
- Laaroussi, H.; Bouddine, T.; Bakour, M.; Ousaaid, D.; Lyoussi, B. Physicochemical Properties, Mineral Content, Antioxidant Activities, and Microbiological Quality of Bupleurum Spinosum Gouan Honey from the Middle Atlas in Morocco. J. Food Qual. 2020, 2020, 7609454. [Google Scholar] [CrossRef] [Green Version]
- Elamine, Y.; Imtara, H.; Miguel, M.G.; Anjos, O.; Estevinho, L.M.; Alaiz, M.; Girón-Calle, J.; Vioque, J.; Martín, J.; Lyoussi, B. Antibacterial Activity of Moroccan Zantaz Honey and the Influence of Its Physicochemical Parameters Using Chemometric Tools. Appl. Sci. 2021, 11, 4675. [Google Scholar] [CrossRef]
- Smetanska, I.; Alharthi, S.S.; Selim, K.A. Physicochemical, Antioxidant Capacity and Color Analysis of Six Honeys from Different Origin. J. King Saud Univ. -Sci. 2021, 33, 101447. [Google Scholar] [CrossRef]
- Fallico, B.; Zappala, M.; Arena, E.; Verzera, A. Effects of Conditioning on HMF Content in Unifloral Honeys. Food Chem. 2004, 85, 305–313. [Google Scholar] [CrossRef]
- Meda, A.; Lamien, C.E.; Millogo, J.; Romito, M.; Nacoulma, O.G. Therapeutic Uses of Honey and Honeybee Larvae in Central Burkina Faso. J. Ethnopharmacol. 2004, 95, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Tosi, F.; Sandri, S.; Tedeschi, G.; Malacarne, M.; Fossa, E. Variazioni Di Composizione e Proprietà Fisico-Chimiche Del Parmigiano-Reggiano Durante La Maturazione e in Differenti Zone Della Forma. Sci. E Tec. Latt. Casearia 2008, 59, 507–528. [Google Scholar]
- Bergamo, G.; Seraglio, S.K.T.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Physicochemical Characteristics of Bracatinga Honeydew Honey and Blossom Honey Produced in the State of Santa Catarina: An Approach to Honey Differentiation. Food Res. Int. 2019, 116, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Tappi, S.; Laghi, L.; Dettori, A.; Piana, L.; Ragni, L.; Rocculi, P. Investigation of Water State during Induced Crystallization of Honey. Food Chem. 2019, 294, 260–266. [Google Scholar] [CrossRef]
- Gleiter, R.; Horn, H.; Isengard, H.-D. Influence of Type and State of Crystallisation on the Water Activity of Honey. Food Chem. 2006, 96, 441–445. [Google Scholar] [CrossRef]
- Zamora, M.C.; Chirife, J. Determination of Water Activity Change Due to Crystallization in Honeys from Argentina. Food Control 2006, 17, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Antioxidant Properties of Phenolic Compounds: H-Atom versus Electron Transfer Mechanism. J. Phys. Chem. A 2004, 108, 4916–4922. [Google Scholar] [CrossRef]
- El Menyiy, N.; Akdad, M.; Elamine, Y.; Lyoussi, B. Microbiological Quality, Physicochemical Properties, and Antioxidant Capacity of Honey Samples Commercialized in the Moroccan Errachidia Region. J. Food Qual. 2020, 2020, 7383018. [Google Scholar] [CrossRef]
- Santos, P.F.; Duca, A.; Genisheva, Z.; Silva, B.; De Biasio, F.; Botelho, C.; Rocha, C.; Gorgoglione, D.; Teixeira, J.A. Extracts from Red Eggplant: Impact of Ohmic Heating and Different Extraction Solvents on the Chemical Profile and Bioactivity. Front. Sustain. Food Syst. 2021, 5, 804004. [Google Scholar] [CrossRef]
- Tomaszewski, M.; Dein, M.; Novy, A.; Hartman, T.G.; Steinhaus, M.; Luckett, C.R.; Munafo, J.P., Jr. Quantitation and Seasonal Variation of Key Odorants in Propolis. J. Agric. Food Chem. 2019, 67, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.Z.; Alhebsi, M.S.; Ghnimi, S.; Kamal-Eldin, A. Inability of Total Antioxidant Activity Assays to Accurately Assess the Phenolic Compounds of Date Palm Fruit (Phoenix Dactylifera L.). NFS J. 2021, 22, 32–40. [Google Scholar] [CrossRef]
- Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.; Imtiaz Shafiq, M.; Khaleeq, A.; Huma, R.; Abdul Qadir, M.; Khalid, A.; Ali, A.; Samad, A. Physiochemical, Biochemical, Minerals Content Analysis, and Antioxidant Potential of National and International Honeys in Pakistan. J. Chem. 2016, 2016, 8072305. [Google Scholar] [CrossRef] [Green Version]
- Al-Mosa, A.; Brima, E.I.; Fawy, K.F.; AL Ghrama, H.A.; Mohammed, M.E. Antioxidant Vitamins in Honey Samples from Different Floral Origins and Altitudes in Asir Region at the South-Western Part of Saudi Arabia. Curr. Nutr. Food Sci. 2019, 15, 296–304. [Google Scholar] [CrossRef]
- Laaroussi, H.; Ferreira-Santos, P.; Genisheva, Z.; Bakour, M.; Ousaaid, D.; Teixeira, J.A.; Lyoussi, B. Unraveling the Chemical Composition, Antioxidant, α-Amylase and α-Glucosidase Inhibition of Moroccan Propolis. Food Biosci. 2021, 42, 101160. [Google Scholar] [CrossRef]
- Yang, H.; Dong, Y.; Du, H.; Shi, H.; Peng, Y.; Li, X. Antioxidant Compounds from Propolis Collected in Anhui, China. Molecules 2011, 16, 3444–3455. [Google Scholar] [CrossRef]
- Nenadis, N.; Wang, L.-F.; Tsimidou, M.; Zhang, H.-Y. Estimation of Scavenging Activity of Phenolic Compounds Using the ABTS•+ Assay. J. Agric. Food Chem. 2004, 52, 4669–4674. [Google Scholar] [CrossRef]
- Jakobek, L.; Seruga, M.; Novak, I.; Medvidovic-Kosanovic, M. Flavonols, Phenolic Acids and Antioxidant Activity of Some Red Fruits. Dtsch. Lebensm. Rundsch. 2007, 103, 369–377. [Google Scholar]
- Zhang, W.; Cai, Y.; Chen, X.; Ji, T.; Sun, L. Optimized Extraction Based on the Terpenoids of Heterotrigona Itama Propolis and Their Antioxidative and Anti-inflammatory Activities. J. Food Biochem. 2020, 44, e13296. [Google Scholar] [CrossRef] [PubMed]
- Mouhoubi-Tafinine, Z.; Ouchemoukh, S.; Tamendjari, A. Antioxydant Activity of Some Algerian Honey and Propolis. Ind. Crops Prod. 2016, 88, 85–90. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, S.; Wang, H.; Cai, M. In Vitro Antioxidant Activity of Extracts from Common Legumes. Food Chem. 2014, 152, 462–466. [Google Scholar] [CrossRef]
- Molyneux, P. The Use of the Stable Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant Activity. Songklanakarin J. Sci. Technol 2004, 26, 211–219. [Google Scholar]
- Ali, H.M.; Abo-Shady, A.; Sharaf Eldeen, H.A.; Soror, H.A.; Shousha, W.G.; Abdel-Barry, O.A.; Saleh, A.M. Structural Features, Kinetics and SAR Study of Radical Scavenging and Antioxidant Activities of Phenolic and Anilinic Compounds. Chem. Cent. J. 2013, 7, 53. [Google Scholar] [CrossRef] [Green Version]
- Elamine, Y.; Lyoussi, B.; Miguel, M.G.; Anjos, O.; Estevinho, L.; Alaiz, M.; Girón-Calle, J.; Martín, J.; Vioque, J. Physicochemical Characteristics and Antiproliferative and Antioxidant Activities of Moroccan Zantaz Honey Rich in Methyl Syringate. Food Chem. 2021, 339, 128098. [Google Scholar] [CrossRef]
- Tomczyk, M.; Bocian, A.; Sidor, E.; Miłek, M.; Zaguła, G.; Dżugan, M. The Use of HPTLC and SDS-PAGE Methods for Coniferous Honeydew Honey Fingerprinting Compiled with Mineral Content and Antioxidant Activity. Molecules 2022, 27, 720. [Google Scholar] [CrossRef]
- Pena Júnior, D.S.; Almeida, C.A.; Santos, M.C.F.; Fonseca, P.H.V.; Menezes, E.V.; de Melo Junior, A.F.; Brandão, M.M.; de Oliveira, D.A.; de Souza, L.F.; Silva, J.C. Antioxidant Activities of Some Monofloral Honey Types Produced across Minas Gerais (Brazil). PLOS ONE 2022, 17, e0262038. [Google Scholar] [CrossRef]
- Perna, A.; Simonetti, A.; Intaglietta, I.; Sofo, A.; Gambacorta, E. Metal Content of Southern Italy Honey of Different Botanical Origins and Its Correlation with Polyphenol Content and Antioxidant Activity. Int. J. Food Sci. Technol. 2012, 47, 1909–1917. [Google Scholar] [CrossRef]
- Mateo, R.; Bosch, F.; Pastor, A.; Jimenez, M. Capillary Column Gas Chromatographic Identification of Sugars in Honey as Trimethylsilyl Derivatives. J. Chromatogr. A 1987, 410, 319–328. [Google Scholar] [CrossRef]
- Ouchemoukh, S.; Schweitzer, P.; Bey, M.B.; Djoudad-Kadji, H.; Louaileche, H. HPLC Sugar Profiles of Algerian Honeys. Food Chem. 2010, 121, 561–568. [Google Scholar] [CrossRef]
- Obia, O.; Ogwa, C.O.; Ojeka, S.O.; Ajah, A.A.; Chuemere, A.N. Effect of Honey on the Body Weight of Glibenclamide Treated Alloxan Induced Diabetic Rats. J. Apitherapy 2016, 1, 33–35. [Google Scholar] [CrossRef]
- Serrano, S.; Villarejo, M.; Espejo, R.; Jodral, M. Chemical and Physical Parameters of Andalusian Honey: Classification of Citrus and Eucalyptus Honeys by Discriminant Analysis. Food Chem. 2004, 87, 619–625. [Google Scholar] [CrossRef]
- Anklam, E. A Review of the Analytical Methods to Determine the Geographical and Botanical Origin of Honey. Food Chem. 1998, 63, 549–562. [Google Scholar] [CrossRef]
- Leite, J.D.C.; Trugo, L.; Costa, L.; Quinteiro, L.; Barth, O.; Dutra, V.; De Maria, C. Determination of Oligosaccharides in Brazilian Honeys of Different Botanical Origin. Food Chem. 2000, 70, 93–98. [Google Scholar] [CrossRef]
- Gürbüz, S.; Çakıcı, N.; Mehmetoğlu, S.; Atmaca, H.; Demir, T.; Arıgül Apan, M.; Atmaca, Ö.F.; Güney, F. Physicochemical Quality Characteristics of Southeastern Anatolia Honey, Turkey. Int. J. Anal. Chem. 2020, 2020, 8810029. [Google Scholar] [CrossRef]
- El Sohaimy, S.A.; Masry, S.; Shehata, M. Physicochemical Characteristics of Honey from Different Origins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Arquillué, C.; Conchello, P.; Ariño, A.; Juan, T.; Herrera, A. Physicochemical Attributes and Pollen Spectrum of Some Unifloral Spanish Honeys. Food Chem. 1995, 54, 167–172. [Google Scholar] [CrossRef]
- Sanz, M.; Sanz, J.; Martínez-Castro, I. Gas Chromatographic–Mass Spectrometric Method for the Qualitative and Quantitative Determination of Disaccharides and Trisaccharides in Honey. J. Chromatogr. A 2004, 1059, 143–148. [Google Scholar] [CrossRef]
Code | Local Denomination | Geographical Origin | Latitude | Longitude | Altitude (m) | Harvest Period |
---|---|---|---|---|---|---|
H1 | Thyme | Serghina | 33°20′19″ N | 4°29′26″ W | 1578 | June 2018 |
H2 | Rosemary | ImouzzerMarmoucha | 33°24′44″ N | 4°17′45″ W | 1447 | April 2018 |
H3 | Jujube | Ain Cheggag | 33°48′27″ N | 5°06′59″ W | 749 | August 2018 |
H4 | Buplevre | El Mers | 33°26′10″ N | 4°27′10″ W | 1550 | August 2018 |
H5 | ElHarra | Oumjniba, Boulemane | 33°20′09″ N | 4°40′50″ W | 1950 | May 2018 |
H6 | Buplevre, Chouk | Oumjniba, Boulemane | 33°20′38″ N | 4°36′21″ W | 1784 | August 2018 |
H7 | Asfour | Ain Cheggag | 33°51′13″ N | 5°07′24″ W | 697 | August 2018 |
H8 | Buplevre | Oulad Ali Youssef, Imouzzer | 33°27′43″ N | 3°58′28″ W | 1362 | September 2018 |
H9 | Thyme | El Mers | 33°26′36″ N | 4°26′34″ W | 1487 | June 2018 |
H10 | El Harmel | Enjil | 33°12′42″ N | 4°36′56″ W | 1683 | July 2018 |
H11 | Asfour | Ahl Sidi Lahcen, Sefrou | 33°46′55″ N | 4°40′48″ W | 960 | August 2018 |
H12 | Multiflower | Boulemane Centre | 33°21′31″ N | 4°43′42″ W | 1730 | June 2018 |
H13 | Fijel | Guigou | 33°28′47″ N | 4°51′46″ W | 1578 | July 2018 |
H14 | Jujube | Outat El Haj | 33°20′44″ N | 3°45′26″ W | 841 | August 2018 |
H15 | Jujube | Outat El Haj | 33°22′44″ N | 3°45′03″ W | 834 | July 2018 |
H16 | Lharra | Oumjniba, Boulemane | 33°19′38″ N | 4°40′33″ W | 1912 | May 2018 |
H17 | Buplevre | Bouyblan | 33°39′06″ N | 4°03′57″ W | 1948 | September 2018 |
H18 | Jujube | Missour | 33°02′32″ N | 3°58′20″ W | 886 | July 2018 |
H19 | Buplevre | ImouzzerMarmoucha | 33°25′22″ N | 4°18′57″ W | 1412 | September 2018 |
H20 | El Harra | Skoura | 33°29′23″ N | 4°36′03″ W | 1070 | May2018 |
H21 | Jujube | Ifrane | 33°35′23″ N | 5°09′33″ W | 1426 | July 2018 |
H22 | Jujube | Oued Ifrane | 33°18′05″ N | 5°29′38″ W | 904 | July 2018 |
H23 | Thyme | Bekrit | 33°03′10″ N | 5°13′03″ W | 1868 | May 2018 |
Predominant Pollen (PP) | Secondary Pollen (SP) | ||||
---|---|---|---|---|---|
Pollen Taxa | Honey Group | Honey Number | Frequency PP (%) | Honey Number | Frequency SP (%) |
Ziziphus lotus | G1 | 6 | 51–93 | - | - |
Rhamnaceae | G2 | 2 | 43–68 | 1 | 11 |
Sinapis arvensis | G3 | 2 | 54–63 | 1 | 20 |
Fabaceae | G4 | 1 | 73 | 4 | 10–37 |
Rosmarinus officinalis | G5 | 1 | 64 | - | - |
Lamiaceae | G6 | 1 | 64 | 4 | 11–34 |
Thymus vulgaris | G7 | 1 | 55 | - | - |
Ammi visnaga | G8 | 1 | 53 | - | - |
Apiaceae | G9 | 1 | 41 | 3 | 11–12 |
Rosaceae | - | - | 9 | 11–36 | |
Olea europea | - | - | 3 | 10–18 | |
Rubus | - | - | 3 | 17–28 | |
Cistaceae | - | - | 2 | 10–14 | |
Brassicaceae | - | - | 2 | 13–15 | |
Rutaceae | - | - | 2 | 14–21 | |
Oleaceae | - | - | 1 | 35 | |
Anacardiaceae | G10 | - | - | 1 | 10 |
Plantago ovata | - | - | 1 | 36 | |
Salix | - | - | 1 | 18 | |
Diplotaxisharra | - | - | 1 | 28 | |
Chenopodiaceae | - | - | 1 | 20 | |
Echium vulgare | - | - | 1 | 17 |
Honey Samples | Moisture (%) | Free Acidity (mEq/kg) | LactonicAcidity (mEq/kg) | Total Acidity (mEq/kg) | pH | Ash Content (%) | Electrical Conductivity (µs/cm) | HMF | TSS (%) | Saccharase Index | Honey Color | PfundScale (mm) | Activity of Water |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H1 | 14.2 ± 0.4 a | 28.65 ± 1.3 ef | 9.84 ± 0.5 c | 38.49 ± 1.8 i | 4.16 ± 0.18 a | 0.24 ± 0.1 i | 110 ± 0.02 a | 5.1 ± 2.3 ab | 85.8 ± 0.3 h | 26.7 ± 1.7 hij | White | 22.3 ± 0.5 e | 0.563 ± 0.01 abc |
H2 | 16.1 ± 0.4 cde | 17.42 ± 1.3 c | 7.07 ± 0.5 a | 24.49 ± 1.8 k | 3.93 ± 0.18 a | 0.28 ± 0.1 def | 100 ± 0.02 a | 5.5 ± 2.3 ab | 83.9 ± 0.3 e | 3.5 ± 1.7 a | White | 29.5 ± 0.5 h | 0.522 ± 0.01 abc |
H3 | 14.8 ± 0.4 ab | 36.31 ± 1.3 gh | 18.29 ± 0.5 i | 54.6 ± 1.8 c | 4.37 ± 0.18 a | 2.44 ± 0.1 ef | 620 ± 0.02 l | 3.5 ± 2.3 ab | 85.2 ± 0.3 gh | 23.8 ± 1.7 efghi | Amber | 92.9 ± 0.5 o | 0.560 ± 0.01 a |
H4 | 17.8 ± 0.4 g | 35.76 ± 1.3 g | 16.43 ± 0.5 h | 52.19 ± 1.8 d | 4.31 ± 0.18 a | 0.162 ± 0.1 j | 460 ± 0.02 h | 1.2 ± 2.3 ab | 82.2 ± 0.3 bc | 36.3 ± 1.7 k | Dark Amber | 125.7 ± 0.5 s | 0.551 ± 0.01 abc |
H5 | 16.2 ± 0.4 cde | 15.12 ± 1.3 b | 8.59 ± 0.5 b | 23.71 ± 1.8 kl | 3.94 ± 0.18 a | 0.007 ± 0.1 abcdef | 160 ± 0.02 b | 2.7 ± 2.3 ab | 83.8 ± 0.3 e | 17.9 ± 1.7 cd | White | 26.9 ± 0.5 g | 0.560 ± 0.01 abc |
H6 | 17.4 ± 0.4 fg | 34.48 ± 1.3 g | 16.16 ± 0.5 h | 50.64 ± 1.8 e | 4.28 ± 0.18 a | 0.21 ± 0.1 a | 410 ± 0.02 g | 3 ± 2.3 ab | 82.6 ± 0.3 cd | 29.3 ± 1.7 ij | Dark Amber | 118.1 ± 0.5 q | 0.591 ± 0.01 abc |
H7 | 19.2 ± 0.4 h | 38.88 ± 1.3 h | 22.84 ± 0.5 j | 61.72 ± 1.8 b | 4.24 ± 0.18 a | 0.43 ± 0.1 cdef | 820 ± 0.02 n | 4.9 ± 2.3 ab | 80.8 ± 0.3 a | 28.8 ± 1.7 ij | Dark Amber | 123.8 ± 0.5 r | 0.549 ± 0.01 bc |
H8 | 19.0 ± 0.4 h | 12.34 ± 1.3 a | 10.51 ± 0.5 cd | 22.85 ± 1.8 m | 3.89 ± 0.18 a | 1.48 ± 0.1 g | 100 ± 0.02 a | 1.2 ± 2.3 ab | 81 ± 0.3 a | 4.3 ± 1.7 a | White | 25.7 ± 0.5 f | 0.534 ± 0.01 abc |
H9 | 16.0 ± 0.4 cde | 29.98 ± 1.3 ef | 11.16 ± 0.5 d | 41.14 ± 1.8 h | 4.04 ± 0.18 a | 3.88 ± 0.1 h | 160 ± 0.02 b | 2 ± 2.3 ab | 84 ± 0.3 e | 18.3± 1.7 cde | Extra white | 16.4 ± 0.5 d | 0.533 ± 0.01 ab |
H10 | 15.2 ± 0.4 bc | 21.07 ± 1.3 d | 14.73 ± 0.5 g | 35.8 ± 1.8 j | 4.37 ± 0.18 a | 0.28 ± 0.1 k | 320 ± 0.02 e | N.D | 84.8 ± 0.3 fg | 25.5 ± 1.7 ghij | White | 27.6 ± 0.5 g | 0.546 ± 0.01 ab |
H11 | 16.5 ± 0.4 de | 42.57 ± 1.3 i | 12.39 ± 0.5 e | 54.96 ± 1.8 c | 4.12 ± 0.18 a | 0.06 ± 0.1 ef | 490 ± 0.02 ij | 7.6 ± 2.3 ab | 83.5 ± 0.3 e | 20.1 ± 1.7 cg | Amber | 89.4 ± 0.5 m | 0.529 ± 0.01 abc |
H12 | 14.2 ± 0.4 a | 28.19 ± 1.3 ef | 8.62 ± 0.5 b | 36.81 ± 1.8 j | 3.97 ± 0.18 a | 0.16 ± 0.1 ab | 160 ± 0.02 b | 5.2 ± 2.3 ab | 85.8 ± 0.3 h | 18.7 ± 1.7 cde | White | 33.2 ± 0.5 i | 0.507 ± 0.01 a |
H13 | 15.7 ± 0.4 bcd | 36.73 ± 1.3 gh | 14.19 ± 0.5 g | 50.92 ± 1.8 e | 4.27 ± 0.18 a | 0.26 ± 0.1 abcde | 490 ± 0.02 ij | 4.2 ± 2.3 ab | 84.3 ± 0.3 ef | 23.9 ± 1.7 efghi | Water white | 8.1 ± 0.5 b | 0.542 ± 0.01 a |
H14 | 15.7 ± 0.4 bcd | 35.45 ± 1.3 g | 14.44 ± 0.5 g | 49.89 ± 1.8 e | 4.27 ± 0.18 a | 0.18 ± 0.1 ef | 500 ± 0.02 jk | 4.4 ± 2.3 ab | 84.3 ± 0.3 ef | 24.9 ± 1.7 fghi | Extra white | 11.00 ± 0.5 c | 0.536 ± 0.01 abc |
H15 | 16.0 ± 0.4 cde | 49.02 ± 1.3 j | 28.92 ± 0.5 k | 77.94 ± 1.8 a | 6.34 ± 0.18 c | 0.11 ± 0.1 bcde | 680 ± 0.02 m | N.D | 84 ± 0.3 e | 30.5 ± 1.7 j | White | 22.3 ± 0.5 e | 0.563 ± 0.01 abc |
H16 | 19.4 ± 0.4 h | 31.31 ± 1.3 f | 9.57 ± 0.5 bc | 40.88 ± 1.8 h | 3.98 ± 0.18 a | 0.32 ± 0.1 abcd | 220 ± 0.02 d | 4.6 ± 2.3 ab | 80.6 ± 0.3 a | 10.4 ± 1.7 b | White | 29.5 ± 0.5 h | 0.522 ± 0.01 abc |
H17 | 16.1 ± 0.4 cde | 27.52 ± 1.3 e | 14.29 ± 0.5 g | 41.81 ± 1.8 h | 4.35 ± 0.18 a | 0.07 ± 0.1 f | 480 ± 0.02 i | 32.8 ± 2.3 d | 83.9 ± 0.3 e | 8 ± 1.7 ab | Amber | 92.9 ± 0.5 o | 0.560 ± 0.01 a |
H18 | 18.0 ± 0.4 g | 29.16 ± 1.3 ef | 13.66 ± 0.5 fg | 42.82 ± 1.8 g | 4.31 ± 0.18 a | 0.24 ± 0.1 ab | 410 ± 0.02 g | 4.5 ± 2.3 ab | 82 ± 0.3 b | 20.6 ± 1.7 cdefg | Dark amber | 125.7 ± 0.5 s | 0.551 ± 0.01 abc |
H19 | 16.1 ± 0.4 cde | 28.94 ± 1.3 ef | 14.05 ± 0.5 fg | 42.99 ± 1.8 g | 4.32 ± 0.18 a | 0.10 ± 0.1 cdef | 350 ± 0.02 f | 35.7 ± 2.3 d | 83.9 ± 0.3 e | 5.7 ± 1.7 a | White | 26.9 ± 0.5 g | 0.560 ± 0.01 abc |
H20 | 16.1 ± 0.4 cde | 21.87 ± 1.3 d | 10.28 ± 0.5 cd | 32.15 ± 1.8 j | 4.08 ± 0.18 a | 0.24 ± 0.1 abc | 200 ± 0.02 c | 10.9 ± 2.3 c | 83.9 ± 0.3 e | 5.7 ± 1.7 a | Dark amber | 118.1 ± 0.5 q | 0.591 ± 0.01 abc |
H21 | 16.4 ± 0.4 bcd | 28.11 ± 1.3 ef | 10.47 ± 0.5 cd | 38.58 ± 1.8i | 4.34 ± 0.18 b | 0.18 ± 0.1 cdef | 510 ± 0.02 ij | 5 ± 2.3 ab | 83.6 ± 0.3 e | 22.3 ± 1.7 dh | Dark amber | 123.8 ± 0.5 r | 0.549 ± 0.01 bc |
H22 | 17.0 ± 0.4 cde | 30.92 ± 1.3 ef | 12.26 ± 0.5 e | 43.18 ± 1.8 f | 4.14 ± 0.18 a | 0.2 ± 0.1 ab | 310 ± 0.02 k | 4.4 ± 2.3 ab | 83 ± 0.3 d | 19.4 ± 1.7 cf | White | 25.7 ± 0.5 f | 0.534 ± 0.01 abc |
H23 | 14.2 ± 0.4 ef | 30.79 ± 1.3 ef | 13.09 ± 0.5 f | 43.88 ± 1.8 f | 4.16 ± 0.18 a | 0.28 ± 0.1 bcde | 110 ± 0.02 e | 5.1 ± 2.3 ab | 85.8 ± 0.3 h | 16 ± 1.7 c | Extra white | 16.4 ± 0.5 d | 0.533 ± 0.01 ab |
Min | 14.2 ± 0.4 | 12.34 ± 1.3 a | 7.07 ± 0.5 a | 22.85 ± 1.8 | 3.89 ± 0.18 a | 0.007 ± 0.1 | 100 ± 0.02 | ND | 80.6 ± 0.3 | 3.5 ± 1.7 | Water white | 8.1 ± 0.5 | 0.507 ± 0.01 |
Max | 19.4 ± 0.4 | 49.02 ± 1.3 j | 28.92 ± 0.5 k | 77.94 ± 1.8 | 6.34 ± 0.18 | 3.88 ± 0.1 | 820 ± 0.02 | 35.7 ± 2.3 | 85.8 ± 0.3 | 36.3 ± 1.7 | Dark Amber | 125.7 ± 0.5 | 0.591 ± 0.01 |
Samples | Phenolics (mg GAE/100 g) | Flavonoids (mg QE/100 g) | Ascorbic Acid (mg/100 g) | TAA (mg AAE/g) | DPPH (IC50 = mg/mL) | ABTS (IC50 = mg/mL) |
---|---|---|---|---|---|---|
H1 | 67.96 ± 0.03 h | 9.72 ± 0.03bc | 10.33 ± 0.16 bc | 54.89 ± 0.15 c | 17.32 ± 0.88 d | 21.52 ± 0.21 c |
H2 | 72.19 ± 0.03 j | 15.40 ± 0.03 e | 10.48 ± 0.03 bc | 66.20 ± 0.61 ab | 17.51 ± 0.75 d | 24.74 ± 0.08 ab |
H3 | 110.70 ± 0.03 q | 7.17 ± 0.03 b | 9.98 ± 0.72 b | 118.94 ± 0.18 i | 13.54 ± 0.32 bc | 19.06 ±1.74 c |
H4 | 152.95 ± 0.03 t | 8.85 ± 0.03 b | 15.02 ± 0.3 g | 131.20 ± 0.85 j | 12.47 ± 0.21 b | 16.74 ± 0.12 c |
H5 | 60.01 ± 0.03 f | 16.37 ± 0.03 ef | 12.77 ± 0.79 e | 69.22 ± 0.26 ab | 17.06 ± 0.89 d | 14.67 ± 0.02 b |
H6 | 124.84 ± 0.03 s | 11.35 ± 0.03 bc | 15.73 ± 0.18 g | 82.27 ± 2.37 d | 9.34 ± 0.26 a | 13.65 ± 0.15 b |
H7 | 155.89 ± 0.03 u | 10.98 ± 0.03 bc | 16.5 ± 0.44 h | 115.80 ± 3.66 i | 8.14 ± 0.33 a | 18.82 ± 0.07 c |
H8 | 52.92 ± 0.03 d | 15.51 ± 0.03 e | 18.73 ± 0.17 i | 41.89 ± 0.04 b | 19.68 ± 0.45 d | 32.76 ± 0.43 d |
H9 | 38.98 ± 0.03 c | 5.52 ± 0.03 a | 9.92 ± 0.56 b | 45.05 ± 0.23 b | 23.89 ± 0.57 d | 18.63 ± 1.46 c |
H10 | 70.23 ± 0.03 i | 17.20 ± 0.03 ef | 20.59 ± 0.08 j | 81.94 ± 0.26 d | 15.05 ± 0.20 bc | 22.65 ± 0.73 ab |
H11 | 93.75 ± 0.03 o | 12.09 ± 0.03 d | 13.75 ± 0.2 f | 96.87 ± 0.37 e | 14.51 ± 0.18 bc | 28.90 ± 1.04 d |
H12 | 62.15 ± 0.03 g | 13.81 ± 0.03 d | 11.88 ± 0.24 d | 52.05 ± 0.04 c | 18.99 ± 0.04 d | 17.62 ± 0.07 c |
H13 | 20.92 ± 0.03 a | 13.73 ± 0.03 d | 23.26 ± 0.35 k | 34.18 ± 0.15 a | 45.20 ± 0.65 f | 8.19 ± 0.11 b |
H14 | 21.54 ± 0.03 a | 5.97 ± 0.0 a | 19.85 ± 0.45 j | 40.77 ± 0.26 b | 39.48 ± 0.43 e | 30.24 ± 1.97 d |
H15 | 24.34 ± 0.03 b | 8.57 ± 0.03 b | 11.09 ± 0.11 cd | 49.82 ± 0.61 c | 36.76 ± 0.81 e | 27.41 ± 1.16 d |
H16 | 56.95 ± 0.03 e | 17.85 ± 0.03 ef | 8.01 ± 0.5 a | 50.41 ± 0.01 c | 20.92 ± 0.05 d | 18.64 ± 0.31 c |
H17 | 123.54 ± 0.03 r | 16.31 ± 0.03 ef | 16.86 ± 0.58 h | 124.82 ± 7.48 i | 9.02 ± 0.17 a | 21.45 ± 0.25 ab |
H18 | 90.56 ± 0.03 n | 13.82 ± 0.03 d | 14.15 ± 0.86 f | 95.27 ± 3.87 e | 12.56 ± 0.63 b | 10.93 ± 0.07 b |
H19 | 78.68 ± 0.03 k | 12.98 ± 0.03 d | 14.92 ± 0.9 g | 62.01 ± 0.04 ab | 16.09 ± 0.61 bc | 21.03 ± 0.11 ab |
H20 | 80.58 ± 0.03 l | 6.26 ± 0.03 a | 11.54 ± 0.71 d | 65.76 ± 0.25 ab | 10.11 ± 0.34 a | 28.73 ± 0.07 d |
H21 | 81.70 ± 0.03 l | 15.02 ± 0.03 e | 15.41 ± 0.1 g | 69.07 ± 0.05 ab | 11.59 ± 0.15 b | 18.74 ± 0.16 c |
H22 | 83.15 ± 0.03 m | 17.02 ± 0.03 ef | 18.04 ± 0.23 i | 70.08 ± 0.01 ab | 11.33 ± 0.03 a | 28.47 ± 1.06 d |
H23 | 106.71 ± 0.03 p | 20.69 ± 0.03 i | 17.3 ± 0.3 h | 105.56 ± 7.35 f | 9.81 ± 0.92 a | 3.34 ± 0.07 a |
Min | 20.92 ± 0.03 | 5.52 ± 0.03 | 8.01 ± 0.5 | 34.18 ± 0.15 | 8.14 ± 0.33 | 8.19 ± 0.11 |
Max | 155.89 ± 0.03 | 20.69 ± 0.03 | 23.26 ± 0.35 | 131.20 ± 0.85 | 45.20 ± 0.65 | 32.76 ± 0.43 |
Trolox (µg/mL) | - | - | - | 10.81 ± 0.1 b | 23.15 ± 4.0 ab |
Phenolics | TAA | DPPH | ABTS | |
---|---|---|---|---|
Phenolics | 1 | 0.902 *** | −0.810 *** | −0.240 |
TAA | 0.902 *** | 1 | −0.681 *** | −0.260 |
DPPH | −0.810 *** | −0.681 *** | 1 | 0.096 |
ABTS | −0.240 | −0.260 | 0.096 | 1 |
Samples | Fructose | Glucose | Maltose+ | Turanose+ | Melibiose and Isomaltose | Sucrose | Trehalose | Palatinose | Raffinose | Erlose | Melezitose | Maltotriose | Panose |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H1 | 37.22 ± 3.2 a | 30.47 ± 2.14 abcd | 5.17 ± 1.32 a | 1.96 ± 0.64 a | 0.41 ± 0.38 a | 0.34 ± 0.1 c | ND | 0.16 ± 0.1 b | 0.32 ± 0.12 a | 0.81 ± 0.16 e | 0.03 ± 0.01 a | 0.07 ± 0.02 abcd | 0.08 ± 0.01 abcdef |
H2 | 36.1 ± 3.32 a | 32.79 ± 2.14 d | 3.12 ± 1.32 a | 0.99 ± 0.64 a | 0.21 ± 0.1 a | 0.33 ± 0.1 c | ND | ND | 0.21 ± 0.12 a | 1.24 ± 0.16 fg | 0.03 ± 0.01 a | 0.12 ± 0.02 cde | 0.04 ± 0.01 abc |
H3 | 36.36 ± 3.32 a | 30.57 ± 2.14 abcd | 3.63 ± 1.32 a | 1.53 ± 0.64 a | 0.73 ± 0.38 a | 0.07 ± 0.01 a | ND | 0.09 ± 0.02 ab | 0.3 ± 0.12 a | 0.66 ± 0.16 de | 0.04 ± 0.01 a | 0.1 ± 0.02 bcd | 0.14 ± 0.010 ef |
H4 | 38.25 ± 3.32 a | 27.99 ± 2.14 abcd | 4.04 ± 1.32 a | 1.42 ± 0.64 a | 0.56 ± 0.38 a | 0.03 ± 0.0 a | 0.03 ± 0.01 a | ND | 0.29 ± 0.12 a | 0.11 ± 0.02 ab | 0.46 ± 0.01 d | 0.04 ± 0.02 abc | 0.07 ± 0.01 abcdef |
H5 | 38.7 ± 3.32 a | 31.79 ± 2.14 cd | 3.25 ± 1.32 a | 0.73 ± 0.64 a | 0.25 ± 0.1 a | 0.05 ± 0.01 a | ND | ND | 0.16 ± 0.12 a | 0.25 ± 0.16 abc | ND | ND | 0.03 ± 0.01 ab |
H6 | 36 ± 3.32 a | 26.73 ± 2.14 abcd | 3.16 ± 1.32 a | 1.25 ± 0.64 a | 0.06 ± 0.01 a | 0.03 ± 0.01 a | ND | 0.05 ± 0.02 ab | 0.25 ± 0.12 a | 0.11 ± 0.02 ab | 0.33 ± 0.01 c | ND | 0.07 ± 0.01 abcde |
H7 | 34.93 ± 3.32 a | 26.37 ± 2.14 abcd | 3.77 ± 1.32 a | 0.88 ± 0.64 a | 0.33 ± 0.1 a | 0.06 ± 0.01 a | 0.03 ± 0.01 a | ND | 0.27 ± 0.12 a | 0.14 ± 0.02 ab | 0.06 ± 0.01 a | 0.06 ± 0.02 abcd | 0.12 ± 0.01 cdef |
H8 | 37.32 ± 3.32 a | 28.53 ± 2.14 ad | 2.68 ± 1.32 a | 0.72 ± 0.64 a | 0.2 ± 0.1 a | 0.08 ± 0.01 a | ND | ND | 0.23 ± 0.12 a | 0.46 ± 0.16 abcd | 0.02 ± 0.01 a | 0.04 ± 0.02 abc | 0.05 ± 0.01 abcd |
H9 | 36.29 ± 3.32 a | 31.49 ± 2.14 bcd | 4.32 ± 1.32 a | 0.91 ± 0.64 a | 0.37 ± 0.1 a | 0.1 ± 0.01 ab | ND | 0.15 ± 0.02 b | 0.23 ± 0.12 a | 0.61 ± 0.16 cde | 0.02 ± 0.01 a | 0.07 ± 0.02 abcd | 0.13 ± 0.01 def |
H10 | 37.51 ± 3.32 a | 31.76 ± 2.14 cd | 4.95 ± 1.32 a | 0.95 ± 0.64 a | 0.48 ± 0.38 a | 0.07 ± 0.01 a | ND | 0.14 ± 0.02 ab | 0.22 ± 0.12 a | 0.26 ± 0.16 abc | ND | ND | 0.08 ± 0.01 abcdef |
H11 | 36.81 ± 3.32 a | 26.74 ± 2.14 abcd | 3.34 ± 1.32 a | 0.81 ± 0.64 a | 0.2 ± 0.1 a | 0.06 ± 0.01 ab | 0.01 ± 0.01 a | ND | 0.28 ± 0.12 a | 0.25 ± 0.16 abc | ND | 0.02 ± 0.02 ab | 0.04 ± 0.01 abc |
H12 | 37.98 ± 3.32 a | 31.6 ± 2.14 bcd | 3.73 ± 1.32 a | 0.93 ± 0.64 a | 0.27 ± 0.1 a | 0.26 ± 0.1 bc | ND | 0.11 ± 0.02 ab | 0.24 ± 0.12 a | 0.49 ± 0.16 bcde | 0.06 ± 0.01 a | 0.05 ± 0.02 abcd | 0.08 ± 0.01 abcde |
H13 | 37.86 ± 3.32 a | 25.27 ± 2.14 ab | 3.82 ± 1.32 a | 1.07 ± 0.64 a | 0.42 ± 0.38 a | 0.19 ± 0.1 abc | ND | 0.16 ± 0.02 b | 0.27 ± 0.12 a | 1.36 ± 0.16 fg | 0.09 ± 0.01 ab | 0.13 ± 0.02 de | 0.12 ± 0.01 cdef |
H14 | 39.22 ± 3.32 a | 25.93 ± 2.14 abc | 4.2 ± 1.32 a | 1.07 ± 0.64 a | 0.42 ± 0.38 a | 0.2 ± 0.1 abc | ND | 0.16 ± 0.02 b | 0.25 ± 0.12 a | 1.4 ± 0.16 g | 0.09 ± 0.01 ab | 0.12 ± 0.02 cde | 0.11 ± 0.01 bcdef |
H15 | 33.77 ± 3.32 a | 24.52 ± 2.14 a | 4.54 ± 1.32 a | 1.15 ± 0.64 a | 1.08 ± 0.38 a | 0.74 ± 0.1 c | ND | 0.44 ± 0.02 c | 0.28 ± 0.12 a | 2.19 ± 0.16 h | 0.11 ± 0.01 ab | 0.13 ± 0.02 de | 0.23 ± 0.01 g |
H16 | 35.75 ± 3.32 a | 32.26 ± 2.14 cd | 1.95 ± 1.32 a | 0.57 ± 0.2 a | 0.2 ± 0.1 a | 0.03 ± 0.01 a | ND | ND | 0.22 ± 0.12 a | ND | ND | ND | 0.06 ± 0.01 abcd |
H17 | 37.03 ± 3.32 a | 28.11 ± 2.14 abcd | 4.37 ± 1.32 a | 1.09 ± 0.64 a | 0.44 ± 0.38 a | 0.04 ± 0.01 a | ND | ND | 0.27 ± 0.12 a | 0.09 ± 0.02 a | 0.02 ± 0.01 a | 0.09 ± 0.02 abcd | 0.08 ± 0.01 abcde |
H18 | 37.49 ± 3.32 a | 30.41 ± 2.14 abcd | 3.09 ± 1.32 a | 0.73 ± 0.64 a | 0.28 ± 0.1 a | 0.08 ± 0.01 a | 0.05 ± 0.01 a | ND | 0.18 ± 0.12 a | 0.4 ± 0.02 abcd | 0.33 ± 0.01 c | ND | 0.3 ± 0.01 h |
H19 | 39.16 ± 3.32 a | 30.79 ± 2.14 abcd | 4.1 ± 1.32 a | 1.11 ± 0.64 a | 0.5 ± 0.38 a | 0.19 ± 0.1 abc | 0.02 ± 0.01 a | 0.16 ± 0.02 b | 0.27 ± 0.12 a | 0.28 ± 0.16 abc | 0.19 ± 0.01 b | 0.21 ± 0.02 f | 0.1 ± 0.01 bcdef |
H20 | 40.16 ± 3.32 a | 32.86 ± 2.14 d | 3.47 ± 1.32 a | 1.22 ± 0.64 a | 0.22 ± 0.1 a | 0.91 ± 0.1 f | 0.03 ± 0.01 a | 0.07 ± 0.02 ab | 0.23 ± 0.12 a | 0.65 ± 0.16 de | ND | 0.03 ± 0.02 ab | ND |
H21 | 35.63 ± 3.32 a | 29.61 ± 2.14 abcd | 4.33 ± 1.32 a | 1.23 ± 0.64 a | 0.04 ± 0.01 a | 0.49 ± 0.1 d | ND | 0.29 ± 0.02 b | 0.22 ± 0.12 a | 2.03 ± 0.16 h | 0.17 ± 0.01 ab | 0.18 ± 0.02 cd | 0.16 ± 0.01 ef |
H22 | 38.18 ± 3.32 a | 26.06 ± 2.14 abc | 3.95 ± 1.32 a | 1.02 ± 0.64 a | 0.39 ± 0.1 a | 0.13 ± 0.01 ab | ND | 0.17 ± 0.02 b | 0.19 ± 0.12 a | 1.09 ± 0.16 f | 0.09 ± 0.01 ab | 0.08 ± 0.02 abcd | 0.08 ± 0.01 abcd |
H23 | 38.78 ± 3.32 a | 27.58 ± 2.14 abcd | 3.96 ± 1.32 a | 0.85 ± 0.64 a | 0.29 ± 0.1 a | 0.07 ± 0.01 a | ND | 0.09 ± 0.02 ab | 0.19 ± 0.12 a | 0.39 ± 0.16 abcd | 0.02 ± 0.01 a | 0.03 ± 0.02 ab | 0.03 ± 0.01 ab |
Min | 33.77 ± 3.32 | 24.52 ± 2.14 | 2.68 ± 1.32 | 0.57 ± 0.2 | 0.04 ± 0.01 | 0.03 ± 0.01 | ND | ND | 0.16 ± 0.12 | ND | ND | ND | ND |
Max | 40.16 ± 3.32 | 32.86 ± 2.14 | 5.17 ± 1.32 | 1.96 ± 0.64 | 1.08 ± 0.38 | 0.91 ± 0.1 | 0.05 ± 0.01 | 0.44 ± 0.02 | 0.32 ± 0.12 | 2.03 ± 0.16 | 0.46 ± 0.01 | 0.21 ± 0.02 | 0.3 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouddine, T.; Laaroussi, H.; Bakour, M.; Guirrou, I.; Khallouki, F.; Mazouz, H.; Hajjaj, H.; Hajji, L. Organic Honey from the Middle Atlas of Morocco: Physicochemical Parameters, Antioxidant Properties, Pollen Spectra, and Sugar Profiles. Foods 2022, 11, 3362. https://doi.org/10.3390/foods11213362
Bouddine T, Laaroussi H, Bakour M, Guirrou I, Khallouki F, Mazouz H, Hajjaj H, Hajji L. Organic Honey from the Middle Atlas of Morocco: Physicochemical Parameters, Antioxidant Properties, Pollen Spectra, and Sugar Profiles. Foods. 2022; 11(21):3362. https://doi.org/10.3390/foods11213362
Chicago/Turabian StyleBouddine, Toufik, Hassan Laaroussi, Meryem Bakour, Ibtissame Guirrou, Farid Khallouki, Hamid Mazouz, Hassan Hajjaj, and Lhoussain Hajji. 2022. "Organic Honey from the Middle Atlas of Morocco: Physicochemical Parameters, Antioxidant Properties, Pollen Spectra, and Sugar Profiles" Foods 11, no. 21: 3362. https://doi.org/10.3390/foods11213362
APA StyleBouddine, T., Laaroussi, H., Bakour, M., Guirrou, I., Khallouki, F., Mazouz, H., Hajjaj, H., & Hajji, L. (2022). Organic Honey from the Middle Atlas of Morocco: Physicochemical Parameters, Antioxidant Properties, Pollen Spectra, and Sugar Profiles. Foods, 11(21), 3362. https://doi.org/10.3390/foods11213362