Adsorption of Phenylalanine from Aqueous Solutions Using Activated Carbon from Sunflower Meal Functionalized with Sulfonic Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
2.2.1. Activated Carbon Preparation
2.2.2. Characterization of the Adsorbents
2.2.3. Adsorption Test
2.2.4. Adsorption Tests with Binary Solutions Containing Phenylalanine and Tyrosine
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Adsorbent Preparation
3.2. Adsorbent Characterization
3.3. Influence of Adsorbent Particle Size and Dosage and pH of the Initial Solution on the Adsorption Capacity of Phenylalanine
3.4. Effect of Initial Phenylalanine Concentration and Contact Time
3.5. Adsorption Equilibrium
3.6. Adsorption Kinetics
3.7. Thermodynamic Adsorption Characterization
3.8. Adsorption Mechanism
3.9. Adsorption in Multicomponent Solutions
3.10. Comparison with Literature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blau, N.; van Spronsen, F.J.; Levy, H.L. Phenylketonuria. Lancet 2010, 376, 1417–1427. [Google Scholar] [CrossRef]
- Dalei, S.K.; Adlakha, N. Food Regime for Phenylketonuria: Presenting Complications and Possible Solutions. J. Multidiscip. Healthc. 2022, 15, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.; Evans, S.; Pinto, A.; Ashmore, C.; MacDonald, A. Protein Substitutes in PKU.; Their Historical Evolution. Nutrients 2021, 13, 484. [Google Scholar] [CrossRef]
- Oliveira, L.; Franca, A. Low-cost adsorbents from agri-food wastes. In Food Science and Technology: New Research; Greco, L.V., Bruno, M.N., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2008; pp. 171–210. [Google Scholar]
- Silva, V.D.; De Marco, L.M.; Afonso, W.O.; Lopes, D.C.; Januario, J.; Aguiar, M.J.; Starling, A.L.P.; Silvestre, M.P. Preparation of Low-phenylalanine Whey Hydrolysates, Using Papain and Pancreatin Immobilized on Activated Carbon and Alumina. Am. J. Food Technol. 2007, 2, 327–341. [Google Scholar] [CrossRef] [Green Version]
- Carreira, R.; Silva, M.; Starling, A.; Aguiar, M.; Januario, J.; Silvestre, M. Association of Two Enzymes for Obtaining Low Phenylalanine Protein Hydrolysates from Wheat Flour. Int. J. Food Eng. 2008, 4, 1–11. [Google Scholar] [CrossRef]
- Silvestre, M.P.C.; da Silva, M.C.; de Souza, M.W.S.; Silva, V.D.M.; de Aguiar, M.J.B.; Silva, M.R. Hydrolysis degree, peptide profile and phenylalanine removal from whey protein concentrate hydrolysates obtained by various proteases. Int. J. Food Sci. Technol. 2013, 48, 588–595. [Google Scholar] [CrossRef]
- Bu, T.; Zhou, M.; Zheng, J.; Yang, P.; Song, H.; Li, S.; Wu, J. Preparation and characterization of a low-phenylalanine whey hydrolysate using two-step enzymatic hydrolysis and macroporous resin adsorption. LWT 2020, 132, 109753. [Google Scholar] [CrossRef]
- Su, Y.; Wang, Y.; Lu, C.; Gu, L.; Chang, C.; Li, J.; McClements, D.J.; Yang, Y. Removal of phenylalanine from egg white powder: Two-step enzymatic method combined with activated carbon adsorption. Process Biochem. 2021, 104, 101–109. [Google Scholar] [CrossRef]
- Lopes, D.C.F.; Bizzoto, C.S.; Carreira, R.L.; Afonso, W.d.O.; Lopes, C.O., Jr.; Silvestre, M.P.C. Removal of Phenylalanine from Protein Hydrolysates Prepared with Rice. J. Food Tecnol. 2008, 6, 57–65. [Google Scholar]
- De Souza, M.V.S.; Starling, A.L.P.; de Aguiar, M.J.B.; Januário, J.M.; Silva, V.D.M.; Silvestre, M.P.C. Emprego Do Carvão Ativado E De Uma Protease Do B Acillus Subtilis Na Obtenção De Hidrolisados Proteicos De Leite Com Baixo Teor De Fenilalanina. Braz. J. Food Nutr. 2010, 21, 37–46. [Google Scholar]
- Lee, J.-W.; Nguyen, T.P.B.; Moon, H. Adsorption and desorption of phenylalanine and tryptophane on a nonionic polymeric sorbent. Korean J. Chem. Eng. 2006, 23, 812–818. [Google Scholar] [CrossRef]
- Clark, H.M.; Alves, C.C.C.; Franca, A.S.; Oliveira, L.S. Evaluation of the performance of an agricultural residue-based activated carbon aiming at removal of phenylalanine from aqueous solutions. LWT 2012, 49, 155–161. [Google Scholar] [CrossRef]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef] [PubMed]
- Karić, N.; Maia, A.S.; Teodorović, A.; Atanasova, N.; Langergraber, G.; Crini, G.; Ribeiro, A.R.L.; Đolić, M. Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment. Chem. Eng. J. Adv. 2022, 9, 100239. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 2013, 219, 499–511. [Google Scholar] [CrossRef]
- Alves, C.C.O.; Franca, A.S.; Oliveira, L.S. Removal of phenylalanine from aqueous solutions with thermo-chemically modified corn cobs as adsorbents. LWT Food Sci. Technol. 2013, 51, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Belhamdi, B.; Merzougui, Z.; Trari, M.; Addoun, A. A kinetic, equilibrium and thermodynamic study of l-phenylalanine adsorption using activated carbon based on agricultural waste (date stones). J. Appl. Res. Technol. 2016, 14, 354–366. [Google Scholar] [CrossRef] [Green Version]
- Zabaniotou, A.; Kamaterou, P.; Kachrimanidou, V.; Vlysidis, A.; Koutinas, A. Taking a reflexive TRL3-4 approach to sustainable use of sunflower meal for the transition from a mono-process pathway to a cascade biorefinery in the context of Circular Bioeconomy. J. Clean. Prod. 2018, 172, 4119–4129. [Google Scholar] [CrossRef]
- Konwar, L.J.; Das, R.; Thakur, A.J.; Salminen, E.; Mäki-Arvela, P.; Kumar, N.; Mikkola, J.-P.; Deka, D. Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil-cake waste. J. Mol. Catal. A Chem. 2014, 388–389, 167–176. [Google Scholar] [CrossRef]
- Malins, K.; Kampars, V.; Brinks, J.; Neibolte, I.; Murnieks, R. Synthesis of activated carbon based heterogenous acid catalyst for biodiesel preparation. Appl. Catal. B Environ. 2015, 176–177, 553–558. [Google Scholar] [CrossRef]
- Shengli, N.; Hewei, Y.; Yilin, N.; Xincheng, T.; Xiangyu, Z.; Shuang, Z.; Kuihua, H.; Lu, C. Synthesis of 4-aminobenzenesulfonic acid functionalized carbon catalyst through diazonium salt reduction for biodiesel production. Energy Convers. Manag. 2018, 173, 753–762. [Google Scholar] [CrossRef]
- Nata, I.F.; Irawan, C.; Mardina, P.; Lee, C.-K.K. Carbon-based strong solid acid for cornstarch hydrolysis. J. Solid State Chem. 2015, 230, 163–168. [Google Scholar] [CrossRef]
- Elkhaeleefa, A.; Ali, I.H.; Brima, E.I.; Shighidi, I.; Elhag, A.; Karama, B. Evaluation of the Adsorption Efficiency on the Removal of Lead (II) Ions from Aqueous Solutions Using Azadirachta indica Leaves as an Adsorvbent. Processes 2021, 9, 559. [Google Scholar] [CrossRef]
- Alves, C.C.O.; Franca, A.S.; Oliveira, L.S. Evaluation of an Adsorbent Based on Agricultural Waste (Corn Cobs) for Removal of Tyrosine and Phenylalanine from Aqueous Solutions. BioMed Res. Int. 2013, 2013, 978256. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, L.; Franca, A. Conventional and non-conventional thermal processing for the production of activated carbons from agro-industrial wastes. In Activated Carbon: Classifications, Properties and Applications; Kwiatkowski, J.F., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 204–238. [Google Scholar]
- Moralı, U.; Demiral, H.; Şensöz, S. Optimization of activated carbon production from sunflower seed extracted meal: Taguchi design of experiment approach and analysis of variance. J. Clean. Prod. 2018, 189, 602–611. [Google Scholar] [CrossRef]
- Konwar, L.J.; Mäki-Arvela, P.; Salminen, E.; Kumar, N.; Thakur, A.J.; Mikkola, J.-P.; Deka, D. Towards carbon efficient biorefining: Multifunctional mesoporous solid acids obtained from biodiesel production wastes for biomass conversion. Appl. Catal. B Environ. 2015, 176–177, 20–35. [Google Scholar] [CrossRef]
- Malins, K.; Brinks, J.; Kampars, V.; Malina, I. Esterification of rapeseed oil fatty acids using a carbon-based heterogeneous acid catalyst derived from cellulose. Appl. Catal. A Gen. 2016, 519, 99–106. [Google Scholar] [CrossRef]
- Rocha, P.D.; Oliveira, L.S.; Franca, A.S. Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification. Renew. Energy 2019, 143, 1710–1716. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Guo, X.; Mao, J.; Zhang, S. Etherification of glycerol with isobutene on sulfonated graphene: Reaction and separation. Green Chem. 2014, 16, 4669–4679. [Google Scholar] [CrossRef]
- De Luna, M.Y.; Marcelo Rodrigues, P.; Torres, G.A.M.; da Eufrázio, C.J.A.; Jackson Queiroz, M.; Elaine, M.S.; De Sousa, R.M.A. A thermogravimetric analysis of biomass wastes from the northeast region of Brazil as fuels for energy recovery. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1557–1572. [Google Scholar] [CrossRef]
- Belhamdi, B.; Merzougui, Z.; Laksaci, H.; Trari, M. The removal and adsorption mechanisms of free amino acid l-tryptophan from aqueous solution by biomass-based activated carbon by H3PO4 activation: Regeneration study. Phys. Chem. Earth Parts A/B/C 2019, 114, 102791. [Google Scholar] [CrossRef]
- Furtado, G.; Fideles, T.; Cruz, R.; Souza, J.; Rodriguez, M.; Lia Fook, M. Chitosan/NaF Particles Prepared Via Ionotropic Gelation: Evaluation of Particles Size and Morphology. Mater. Res. 2018, 21, 1–8. [Google Scholar] [CrossRef]
- Lakshmikantha, R.; Rajaramakrishna, R.; Anavekar, R.; Ayachit, N. Characterization and structural studies of vanadium doped lithium–barium–phosphate glasses. Can. J. Phys. 2012, 90, 235–239. [Google Scholar] [CrossRef]
- Jensen, J. Vibrational frequencies and structural determination of tellurophene. J. Mol. Struct. THEOCHEM 2005, 718, 209–218. [Google Scholar] [CrossRef]
- Mahmood, T.; Ali, R.; Naeem, A.; Hamayun, M.; Aslam, M. Potential of used Camellia sinensis leaves as precursor for activated carbon preparation by chemical activation with H3PO4; optimization using response surface methodology. Process Saf. Environ. Prot. 2017, 109, 548–563. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, R.; Qi, W.; Tong, L.; Su, R.; He, Z. Hydrolysis of cellulose by sulfonated magnetic reduced graphene oxide. Chem. Eng. J. 2015, 280, 90–98. [Google Scholar] [CrossRef]
- Lin, Q.-x.; Zhang, C.-h.; Wang, X.-h.; Cheng, B.-g.; Mai, N.; Ren, J.-l. Impact of activation on properties of carbon-based solid acid catalysts for the hydrothermal conversion of xylose and hemicelluloses. Catal. Today 2019, 319, 31–40. [Google Scholar] [CrossRef]
- González-Domínguez, J.; Fernández-González, M.; Alexandre-Franco, M.; Gómez-Serrano, V. How does phosphoric acid interact with cherry stones? A discussion on overlooked aspects of chemical activation. Wood Sci. Technol. 2018, 52, 1645–1669. [Google Scholar] [CrossRef]
- Demiral, H.; Güngör, C. Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J. Clean. Prod. 2016, 124, 103–113. [Google Scholar] [CrossRef]
- Abbasabadi, M.K.; Rashidi, A.; Khodabakhshi, S. Benzenesulfonic acid-grafted graphene as a new and green nanoadsorbent in hydrogen sulfide removal. J. Nat. Gas Sci. Eng. 2016, 28, 87–94. [Google Scholar] [CrossRef]
- Moreira, M.J.A.; Ferreira, L.M.G.A. Equilibrium studies of phenylalanine and tyrosine on ion-exchange resins. Chem. Eng. Sci. 2005, 60, 5022–5034. [Google Scholar] [CrossRef]
- Tan, S.-H.; Ismail, N.A. Isotherm and Kinetic Studies of L-Phenylalanine Adsorption onto Porous Nanosilica. Mater. Today Proc. 2018, 5, 3193–3201. [Google Scholar] [CrossRef]
- Ahmad, Z.U.; Lian, Q.; Zappi, M.E.; Buchireddy, P.R.; Gang, D.D. Adsorptive removal of resorcinol on a novel ordered mesoporous carbon (OMC) employing COK-19 silica scaffold: Kinetics and equilibrium study. J. Environ. Sci. 2019, 75, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Saeed, K.S. Potassium Adsorption Phenomenon in Calcareous Soils of Shahrazur Plain. Kurd. J. Appl. Res. 2021, 6, 95–109. [Google Scholar] [CrossRef]
- Abu-Alsoud, G.F.; Hawboldt, K.A.; Bottaro, C.S. Comparison of Four Adsorption Isotherm Models for Characterizing Molecular Recognition of Individual Phenolic Compounds in Porous Tailor-Made Molecularly Imprinted Polymer Films. ACS Appl. Mater. Interfaces 2020, 12, 11998–12009. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.V.; Sivanesan, S. Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: Comparison of linear and non-linear regression methods. J. Hazard. Mater. 2006, 136, 721–726. [Google Scholar] [CrossRef]
- Ho, Y.S. Selection of optimum sorption isotherm. Carbon 2004, 42, 2115–2116. [Google Scholar] [CrossRef]
- Gunawardene, O.; Gunathilake, C.; Amaraweera, A.; Fernando, N.; Manipura, A.; Manamperi, W.; Kulatunga, K.; Rajapaksha, S.; Gamage, A.; Dassanayake, R.; et al. Removal of Pb(II) Ions from Aqueous Solution Using Modified Starch. J. Compos. Sci. 2021, 5, 46. [Google Scholar] [CrossRef]
- Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Patil, S. Surfactant Adsorption Isotherms: A Review. ACS Omega 2021, 6, 32342–32348. [Google Scholar] [CrossRef]
- El Shafei, G.M.S.; Moussa, N.A. Adsorption of Some Essential Amino Acids on Hydroxyapatite. J. Colloid Interface Sci. 2001, 238, 160–166. [Google Scholar] [CrossRef]
- Golmohammadi, F.; Hazrati, M.; Safari, M. Removal of reactive yellow 15 from water sample using a magnetite nanoparticles coated with covalently immobilized dimethyl octadecyl[3-(trimethoxysilylpropyl)]ammonium chloride ionic liquid. Microchem. J. 2019, 144, 64–72. [Google Scholar] [CrossRef]
- Qiu, H.; Lv, L.; Pan, B.; Zhang, Q.Q.; Zhang, W.; Zhang, Q.Q. Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A 2009, 10, 716–724. [Google Scholar] [CrossRef]
- Bouguettoucha, A.; Reffas, A.; Chebli, D.; Mekhalif, T.; Amrane, A. Novel activated carbon prepared from an agricultural waste, Stipa tenacissima, based on ZnCl2 activation—Characterization and application to the removal of methylene blue. Desalination Water Treat. 2016, 57, 24056–24069. [Google Scholar] [CrossRef]
- Tran, H.N.; Wang, Y.-F.; You, S.-J.; Chao, H.-P. Insights into the mechanism of cationic dye adsorption on activated charcoal: The importance of π–π interactions. Process Saf. Environ. Prot. 2017, 107, 168–180. [Google Scholar] [CrossRef]
- Al-Ghouti, M.; Khraisheh, M.A.M.; Ahmad, M.N.M.; Allen, S. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: A kinetic study. J. Colloid Interface Sci. 2005, 287, 6–13. [Google Scholar] [CrossRef]
- Bhunia, A.; Bansal, K.; Henini, M.; Alshammari, M.S.; Datta, S. Negative activation energy and dielectric signatures of excitons and excitonic Mott transitions in quantum confined laser structures. J. Appl. Phys. 2016, 120, 144304. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Tang, J.; Wang, S.; Zhang, L.; Sun, W. Bimetallic coordination polymer for highly selective removal of Pb(II): Activation energy, isosteric heat of adsorption and adsorption mechanism. Chem. Eng. J. 2021, 425, 131474. [Google Scholar] [CrossRef]
- Blackburn, R.S. Natural Polysaccharides and Their Interactions with Dye Molecules: Applications in Effluent Treatment. Environ. Sci. Technol. 2004, 38, 4905–4909. [Google Scholar] [CrossRef]
- Mattson, J.A.; Mark, H.B.; Malbin, M.D.; Weber, W.J.; Crittenden, J.C. Surface chemistry of active carbon: Specific adsorption of phenols. J. Colloid Interface Sci. 1969, 31, 116–130. [Google Scholar] [CrossRef] [Green Version]
- Mahamadi, C.; Nharingo, T. Competitive adsorption of Pb2+, Cd2+ and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems. Bioresour. Technol. 2010, 101, 859–864. [Google Scholar] [CrossRef]
- Goscianska, J.; Olejnik, A.; Pietrzak, R. Comparison of ordered mesoporous materials sorption properties towards amino acids. Adsorption 2013, 19, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Zhao, Y.; Nie, M.; Jiang, Z. Molecularly imprinted organic-inorganic hybrid membranes for selective separation of phenylalanine isomers and its analogue. Sep. Purif. Technol. 2009, 68, 97–104. [Google Scholar] [CrossRef]
- Mei, J.; Min, H.; Lü, Z. Enhanced biotransformation of l-phenylalanine to 2-phenylethanol using an in situ product adsorption technique. Process Biochem. 2009, 44, 886–890. [Google Scholar] [CrossRef]
- Goscianska, J.; Olejnik, A.; Pietrzak, R. Adsorption of l-phenylalanine onto mesoporous silica. Mater. Chem. Phys. 2013, 142, 586–593. [Google Scholar] [CrossRef]
- Jiao, F.P.; Fu, Z.d.; Shuai, L.; Chen, X.Q. Removal of phenylalanine from water with calcined CuZnAl-CO3 layered double hydroxides. Trans. Nonferrous Met. Soc. China 2012, 22, 476–482. (In English) [Google Scholar] [CrossRef]
Sample | Yield (%) | R (%) | ||
---|---|---|---|---|
M500 | 30.23 ± 1.84 c | 7.28 ± 1.83 c | 2.20 ± 0.57 c | 12.79 ± 3.22 c |
MP500 | 49.01 ± 3.99 a | 17.50 ± 0.09 b | 8.58 ± 0.70 b | 33.62 ± 0.18 b |
MPS500 | 40.46 ± 3.29 b | 25.75 ± 0.67 a | 10.42 ± 0.89 a | 49.02 ± 1.40 a |
Adsorbent | ST (m2 g−1) | VT (cm3 g−1) | Mesopores | Micropores | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Sme | Vme | Smi | Vmi | |||||||
(m2 g−1) | (%) | (cm3 g−1) | (%) | (m2 g−1) | (%) | (cm3 g−1) | (%) | |||
M500 1 | 1.26 | 1.52 × 10−3 | 1.14 | 90.43 | 1.41 × 10−3 | 92.53 | 0.12 | 9.56 | 1.13 × 10−4 | 7.44 |
MP500 1 | 155.32 | 2.57 × 10−1 | 93.39 | 60.13 | 2.24 × 10−1 | 87.03 | 61.80 | 39.79 | 3.23 × 10−2 | 12.58 |
MPS500 1 | 317.31 | 3.82 × 10−1 | 128.29 | 40.43 | 2.92 × 10−1 | 76.51 | 188.86 | 59.52 | 8.85 × 10−2 | 23.16 |
CCAC 2 | 893.70 | 6.12 × 10−1 | 192.40 | 21.53 | 2.48 × 10−1 | 40.52 | 610.60 | 68.32 | 2.88 × 10−1 | 47.06 |
ADC 3 | 490.80 | 2.77 × 10−1 | 31.00 | 6.32 | 3.40 × 10−2 | 12.27 | 421.49 | 85.88 | 2.00 × 10−1 | 72.02 |
A–H–2-500 4 | 727.14 | 4.03 × 10−1 | - | - | 1.29 × 10−1 | 32.01 | - | - | 2.74 × 10−1 | 67.89 |
AC Precursor Material | qe (mg g−1) | Contact Time (min) | Reference |
---|---|---|---|
Corn cobs | 32.92 | 720 | [17] |
Defective coffee beans | 28.74 | 360 | [13] |
Sunflower meal | 25.75 | 25 | This work |
Element | M500 | MP500 | MPS500 | |||
---|---|---|---|---|---|---|
% M * | % A ** | % M * | % A ** | % M * | % A ** | |
Carbon | 63.28 | 74.19 | 57.59 | 71.59 | 73.11 | 79.71 |
Oxygen | 22.87 | 20.13 | 18.24 | 17.02 | 22.34 | 18.29 |
Potassium | 7.11 | 2.56 | 2.54 | 0.97 | 0 | 0 |
Phosphorus | 3.57 | 1.62 | 20.36 | 9.81 | 1.23 | 0.52 |
Magnesium | 1.48 | 0.86 | 0.20 | 0.13 | 0.06 | 0.03 |
Calcium | 1.38 | 0.48 | 0.57 | 0.21 | 0 | 0 |
Aluminum | 0.27 | 0.14 | 0.33 | 0.18 | 0.24 | 0.12 |
Sulfur | 0.04 | 0.02 | 0.00 | 0.00 | 1.51 | 0.62 |
Sodium | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.04 |
Silicon | 63.28 | 74.19 | 57.59 | 71.59 | 73.11 | 79.71 |
Model | Equation | Parameter Values | R2 | χ2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
25 °C | 35 °C | 45 °C | 25 °C | 35 °C | 45 °C | 25 °C | 35 °C | 45 °C | ||
Langmuir | KL = 0.0122 | KL = 0.0247 | KL = 0.0954 | 0.9925 | 0.9997 | 0.9999 | 44.56 | 3.57 | 13.89 | |
qm = 39.62 | qm = 29.02 | qm = 21.27 | ||||||||
RL = 0.67 | RL = 0.58 | RL = 0.33 | ||||||||
Freundlich | KF = 2.853 | KF = 2.717 | KF = 5.290 | 0.9989 | 0.9997 | 1.0000 | 6.39 | 3.81 | 6.10 | |
n = 2.308 | n = 2.381 | n = 3.597 | ||||||||
Temkin | KT = 0.2516 | KT = 0.2269 | KT = 1.3645 | 0.9919 | 0.9998 | 1.0000 | 48.52 | 2.15 | 8.21 | |
RT/b = 6.93 | RT/b = 6.43 | RT/b = 3.90 | ||||||||
b = 0.3578 | b = 0.3981 | b = 0.6789 | ||||||||
Langmuir-Freundlich | KLF = 9.04 × 10−5 | KLF = 5.14 × 10−6 | KLF = 8.51 × 10−6 | 0.9925 | 0.9997 | 0.9999 | 59.42 | 4.75 | 18.52 | |
qm = 39.64 | qm = 29.02 | qm = 21.27 | ||||||||
n = 7.40 × 10−3 | n = 2.08 × 10−4 | n = 8.92 × 10−5 | ||||||||
Dubinin-Radushkevich (D-R) | qe = qm exp(−Be2) | E = 10.38 | E = 11.14 | E = 14.56 | 0.9741 | 0.9939 | 0.9311 | 13.62 | 3.06 | 7.24 |
e = RT ln(1 + 1/Ce) | qm = 101.93 | qm = 82.19 | qm = 47.22 | |||||||
Phe Initial Concentration (mg L−1) | |||||
---|---|---|---|---|---|
100 | 200 | 300 | 400 | 500 | |
25 °C | |||||
qe (experimental) | 9.02 | 15.39 | 20.06 | 25.22 | 29.22 |
Pseudo-first-order | |||||
k1 (min−1) | 2.528 | 3.747 | 2.930 | 1.848 | 2.184 |
qe (estimated) (mg g−1) | 9.10 | 15.07 | 19.32 | 24.00 | 28.37 |
R2 | 0.9959 | 0.9914 | 0.9461 | 0.9202 | 0.9856 |
χ2 | 0.049 | 0.281 | 2.979 | 7.103 | 1.675 |
Pseudo-second-order | |||||
k2 (g mg−1min−1) | 2.058 | 0.565 | 0.172 | 0.076 | 0.136 |
qe (estimated) (mg g−1) | 9.07 | 15.46 | 20.48 | 26.00 | 29.47 |
R2 | 0.9999 | 0.9998 | 0.9981 | 0.9964 | 0.9996 |
χ2 | 0.0001 | 0.0001 | 0.0005 | 0.0006 | 0.0001 |
Intra-particle-difusion | |||||
kP (mg g−1min−1/2) | 8.84 | 14.74 | 17.33 | 18.75 | 24.73 |
C | 0.00 | 0.59 | 0.81 | 0.72 | 0.48 |
R2 | 0.9999 | 0.9476 | 0.9293 | 0.9505 | 0.9870 |
35 °C | |||||
qe (experimental) | 8.36 | 15.83 | 19.93 | 23.30 | 26.93 |
Pseudo-first-order | |||||
k1 (min−1) | 5.548 | 2.980 | 2.343 | 1,582,000 | 1,714,000 |
qe (estimated) (mg g−1) | 8.09 | 15.13 | 19.00 | 21.94 | 25.77 |
R2 | 0.9905 | 0.9835 | 0.9446 | 0.9194 | 0.9507 |
χ2 | 0.090 | 0.540 | 2.977 | 6.120 | 4.975 |
Pseudo-second-order | |||||
k2 (g mg−1min−1) | 1.006 | 0.238 | 0.128 | 0.074 | 0.085 |
qe (estimated) (mg g−1) | 8.33 | 15.87 | 20.32 | 23.83 | 27.48 |
R2 | 0.9996 | 0.9994 | 0.9980 | 0.9966 | 0.9983 |
χ2 | 0.0006 | 0.0003 | 0.0005 | 0.0006 | 0.0002 |
Intra-particle-difusion | |||||
kP (mg g−1min−1/2) | 8.25 | 14.24 | 16.32 | 16.07 | 19.86 |
C | 0.41 | 0.45 | 0.59 | 0.60 | 0.59 |
R2 | 0.9212 | 0.9657 | 0.9556 | 0.9553 | 0.9702 |
45 °C | |||||
qe (experimental) | 9.21 | 17.97 | 19.36 | 21.91 | 26.46 |
Pseudo-first-order | |||||
k1 (min−1) | 3.280 | 1.741 | 1.761 | 1.170 | 1.213 |
qe (estimated) (mg g−1) | 9.07 | 16.45 | 18.69 | 20.26 | 24.75 |
R2 | 0.9908 | 0.9029 | 0.9379 | 0.8667 | 0.8947 |
χ2 | 0.1075 | 4.1496 | 3.3344 | 9.7289 | 10.9570 |
Pseudo-second-order | |||||
k2 (g mg−1min−1) | 2.091 | 0.082 | 0.114 | 0.047 | 0.048 |
qe (estimated) (mg g−1) | 9.19 | 18.20 | 19.98 | 22.79 | 27.33 |
R2 | 0.9999 | 0.9954 | 0.9969 | 0.9891 | 0.9938 |
χ2 | 0.0001 | 0.001 | 0.0008 | 0.002 | 0.001 |
Intra-particle-difusion | |||||
kP (mg g−1min−1/2) | 8.69 | 12.42 | 14.62 | 13.11 | 16.05 |
C | 0.39 | 0.54 | 0.41 | 0.35 | 0.57 |
R2 | 0.9326 | 0.9374 | 0.9732 | 0.9753 | 0.9570 |
T(K) | Van’t Hoff Equation | KC | ΔG° (KJ mol−1) | ΔH° (KJ mol−1) | ΔS° (KJ mol−1) | Ea (KJ mol−1) |
---|---|---|---|---|---|---|
298 | y = 1627.5x + 1.9556 R2 = 0.9935 | 1.71 | −18.45 | −13.53 | 0.02 | −13.50 |
308 | 1.40 | −18.55 | ||||
318 | 1.21 | −18.78 |
Adsorbent | Qm (mg g−1) | Textural Properties | Adsorption Conditions | Reference | |||||
---|---|---|---|---|---|---|---|---|---|
ST (m2 g−1) | VT (cm3 g−1) | Average Pore Diameter (nm) | Phe Concentration (mg L−1) | pH | T (°C) | Dosage Adsorbent (g L−1) | |||
Mesoporous materials CSBA-15, CSBA-16 and CKIT-6 | 0.27–0.31 | 1074–1210 | 0.97–1.02 | 3.29–4.13 | 80–11,600 | 5.6 | 20 | 5 | [63] |
Organic–inorganic hybrid membranes | 1.21 | - | - | - | 41–111 | - | 25 | 16 | [64] |
Macroporous resins NKA-9, HD-2, HP-20, NKA-2 e S-8 | 12.80–26.90 | 40–600 | - | - | 10,000 | 6.8 | 25 | 100 | [65] |
Mesoporous silica SBA-3 | 37.33 | 1233 | 0.78 | 2.53 | 80–11,600 | 5.6 | 20 | 5 | [66] |
Activated meal sunflower | 39.64 | 317.31 | 0.38 | 4.78 | 100–500 | 4 | 25 | 10 | This study |
Calcined CuZnAl-CO3 layered double hydroxides | 46.4 | - | - | - | 0–25 | 6.7 | 40–80 | 1 | [67] |
Activated defective coffee beans | 69.45 | 490.80 | 0,28 | 2 | 300–1500 | 6 | 25 | 10 | [13] |
Activated corn cobs | 109.20 | 893.70 | 0.61 | 1.30–3.60 | 200–1500 | 6 | 25 | 10 | [17] |
Activated date stones | 133.33–188.32 | 1209–1235 | 0.55–0.63 | 1.48–1.59 | 50–1000 | 5.7 | 20 | 1 | [18] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, W.C.; Oliveira, L.S.; Franca, A.S. Adsorption of Phenylalanine from Aqueous Solutions Using Activated Carbon from Sunflower Meal Functionalized with Sulfonic Groups. Foods 2022, 11, 3427. https://doi.org/10.3390/foods11213427
Lima WC, Oliveira LS, Franca AS. Adsorption of Phenylalanine from Aqueous Solutions Using Activated Carbon from Sunflower Meal Functionalized with Sulfonic Groups. Foods. 2022; 11(21):3427. https://doi.org/10.3390/foods11213427
Chicago/Turabian StyleLima, William Cardoso, Leandro S. Oliveira, and Adriana S. Franca. 2022. "Adsorption of Phenylalanine from Aqueous Solutions Using Activated Carbon from Sunflower Meal Functionalized with Sulfonic Groups" Foods 11, no. 21: 3427. https://doi.org/10.3390/foods11213427
APA StyleLima, W. C., Oliveira, L. S., & Franca, A. S. (2022). Adsorption of Phenylalanine from Aqueous Solutions Using Activated Carbon from Sunflower Meal Functionalized with Sulfonic Groups. Foods, 11(21), 3427. https://doi.org/10.3390/foods11213427