Effects of Composition and Strength of Wheat Gluten on Starch Structure, Digestion Properties and the Underlying Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Extraction and Separation of Gluten and Starch
2.2.2. Isolation of Gliadin and Glutenin
2.2.3. Preparation of Protein-Starch Recombinant Flours
2.2.4. X-ray Diffraction and Relative Crystallinity
2.2.5. Fourier Transform Infrared (FTIR) Spectroscopy
2.2.6. Solid State Nuclear Magnetic Resonance (NMR) Experiments
2.2.7. Laser Confocal Micro—Roman (LCM—Raman) Spectroscopy
2.2.8. Quantification of the Chemical Bonds in Recombinant Powder Proteins
2.2.9. Detection of Intrinsic Fluorescence Spectrum
2.2.10. Size-Exclusion High Performance Liquid Chromatography (SE-HPLC) Analysis of Recombinant Powder Proteins
2.2.11. In Vitro Digestibility of Recombinant Flours
2.2.12. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Digestibility of Recombinant Flours
3.2. The Advanced Structure of Proteins in the Recombinant Flours
3.3. Protein Behaviors of the Recombinant Flours
3.4. Comparison of Protein Secondary Structure of the Recombinant Flours
3.5. Quantitative Changes of Different Chemical Bonds within Protein of the Recombinant Flours
3.6. Long- and Short-Range Molecular Order of Starch in Recombinant Flours
3.7. Correlationship between Starch Digestibility and the Structal Characteristics of Protein and Starch
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, D.; Wang, L.; Chen, W.; Ma, S.; Ma, W.; Liu, X.; Zhao, J.; Zhang, H. Effect of microwave on lamellar parameters of rice starch through small-angle X-ray scattering. Food Hydrocoll. 2014, 35, 620–626. [Google Scholar] [CrossRef]
- Nasir, M.; Ahmad, S.; Usman, M.; Farooq, U.; Naz, A.; Murtaza, M.A.; Shehzad, Q.; Mehmood, A.; Din, G.M.U. Influence of pregelatinized starch on rheology of composite flour, in vitro enzyme digestibility and textural properties of millet-based Chapatti. Carbohydr. Polym. Technol. Appl. 2021, 2, 100108. [Google Scholar] [CrossRef]
- López-Barón, N.; Gu, Y.; Vasanthan, T.; Hoover, R. Plant proteins mitigate in vitro wheat starch digestibility. Food Hydrocoll. 2017, 69, 19–27. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, J.; Yu, J.; Wang, S.; Wang, S. Mechanisms underlying the effect of gluten and its hydrolysates on in vitro enzymatic digestibility of wheat starch. Food Hydrocoll. 2020, 113, 106507. [Google Scholar] [CrossRef]
- Birt, D.F.; Phillips, G.J. Diet, Genes, and Microbes. Toxicol. Pathol. 2013, 42, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.-J.; Liu, Q.; Lee, L.; Wei, D. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocoll. 2010, 25, 968–975. [Google Scholar] [CrossRef]
- Bello-Pérez, L.A.; Flores-Silva, P.C.; Sifuentes-Nieves, I.; Agama-Acevedo, E. Controlling starch digestibility and glycaemic response in maize-based foods. J. Cereal Sci. 2021, 99, 103222. [Google Scholar] [CrossRef]
- Peng, P.; Wang, X.; Zou, X.; Zhang, X.; Hu, X. Dynamic behaviors of protein and starch and interactions associated with glutenin composition in wheat dough matrices during sequential thermo-mechanical treatments. Food Res. Int. 2022, 154, 110986. [Google Scholar] [CrossRef]
- Lu, X.; Ma, R.; Zhan, J.; Wang, F.; Tian, Y. The role of protein and its hydrolysates in regulating the digestive properties of starch: A review. Trends Food Sci. Technol. 2022, 125, 54–65. [Google Scholar] [CrossRef]
- Jekle, M.; Mühlberger, K.; Becker, T. Starch–gluten interactions during gelatinization and its functionality in dough like model systems. Food Hydrocoll. 2015, 54, 196–201. [Google Scholar] [CrossRef]
- Li, H.-T.; Li, Z.; Fox, G.P.; Gidley, M.J.; Dhital, S. Protein-starch matrix plays a key role in enzymic digestion of high-amylose wheat noodle. Food Chem. 2020, 336, 127719. [Google Scholar] [CrossRef] [PubMed]
- Dhital, S.; Brennan, C.; Gidley, M.J. Location and interactions of starches in planta: Effects on food and nutritional functionality. Trends Food Sci. Technol. 2019, 93, 158–166. [Google Scholar] [CrossRef]
- Wang, X.; Peng, P.; Appels, R.; Tian, L.; Zou, X. Macromolecular networks interactions in wheat flour dough matrices during sequential thermal-mechanical treatment. Food Chem. 2022, 366, 130543. [Google Scholar] [CrossRef] [PubMed]
- AACCI. Approved Methods of Analysis, 11th ed.; In Method 26-20.01. Experimental Milling-Batch Method for Hard Wheat, AACCI: St. Paul, MN, USA, 1988. [Google Scholar]
- Cao, Z.-B.; Yu, C.; Yang, Z.; Xing, J.-J.; Guo, X.-N.; Zhu, K.-X. Impact of gluten quality on textural stability of cooked noodles and the underlying mechanism. Food Hydrocoll. 2021, 119, 106842. [Google Scholar] [CrossRef]
- Liao, L.; Zhang, F.-L.; Lin, W.-J.; Li, Z.-F.; Yang, J.-Y.; Park, K.H.; Ni, L.; Liu, P. Gluten-starch interactions in wheat gluten during carboxylic acid deamidation upon hydrothermal treatment. Food Chem. 2019, 283, 111–122. [Google Scholar] [CrossRef]
- Chen, B.; Wang, Y.-R.; Fan, J.-L.; Yang, Q.; Chen, H.-Q. Effect of glutenin and gliadin modified by protein-glutaminase on retrogradation properties and digestibility of potato starch. Food Chem. 2019, 301, 125226. [Google Scholar] [CrossRef]
- Nara, S.; Komiya, T. Studies on the Relationship Between Water-satured State and Crystallinity by the Diffraction Method for Moistened Potato Starch. Starch-Starke 1983, 35, 407–410. [Google Scholar] [CrossRef]
- Ortolan, F.; Urbano, K.; Netto, F.M.; Steel, C.J. Chemical and structural characteristics of proteins of non-vital and vital wheat glutens. Food Hydrocoll. 2021, 125, 107383. [Google Scholar] [CrossRef]
- Yin, X.; Ma, Z.; Hu, X.; Li, X.; Boye, J.I. Molecular rearrangement of Laird lentil (Lens culinaris Medikus) starch during different processing treatments of the seeds. Food Hydrocoll. 2018, 79, 399–408. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Wang, S.; Copeland, L. Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization. Sci. Rep. 2016, 6, 28271. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; Borderías, A.J.; Montero, P. Chemical Interactions of Nonmuscle Proteins in the Network of Sardine (Sardina pilchardus) Muscle Gels. LWT-Food Sci. Technol. 1997, 30, 602–608. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Yang, C.-T.; Chu, L.-K. Differentiating the protein dynamics using fluorescence evolution of tryptophan residue(s): A comparative study of bovine and human serum albumins upon temperature jump. Chem. Phys. Lett. 2021, 781, 138998. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, D.; Sang, S.; Jin, Y.; Xu, X.; Cui, B. Effect of superheated steam treatment on the structural and digestible properties of wheat flour. Food Hydrocoll. 2020, 112, 106362. [Google Scholar] [CrossRef]
- Pallares, I.; Vendrell, J.; Aviles, F.X.; Ventura, S. Amyloid Fibril Formation by a Partially Structured Intermediate State of α-Chymotrypsin. J. Mol. Biol. 2004, 342, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Xiang, B.; Tong, L. Application of Fluorescence Spectrometry in Protein Study. Exp. Technol. Manag. 2010, 27, 33–36. [Google Scholar] [CrossRef]
- Ewart, J.A.D. Amino acid analyses of glutenins and gliadins. J. Sci. Food Agric. 1967, 18, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Wang, P. Study on Degradation Mechanism and Improvement of Wheat Gluten Protein Quality in Frozen Dough. Ph.D. Thesis, Jiangnan University, Wuxi, China, 2016. [Google Scholar]
- Wang, Y.; Wang, J.; Zhao, M.; Tu, H. Composition, Structure and Properties of Wheat Gluten Protein. Sci. Technol. Food Ind. 2007, 28, 228–231. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Guo, X.-N.; Zhu, K.-X. Polymerization of wheat gluten and the changes of glutenin macropolymer (GMP) during the production of Chinese steamed bread. Food Chem. 2016, 201, 275–283. [Google Scholar] [CrossRef]
- Hu, L.; Gai, J.; Xu, W.; Dong, H.; Zhang, L.; Zhang, L. Effects of Different High Molecular Weight Gluten Subunits on Quantity and Quality of Gluten in Wheat. J. Wheat Crops 2007, 26, 57–58. [Google Scholar] [CrossRef]
- Ma, W.; Yu, Z.; She, M.; Zhao, Y.; Islam, S. Wheat gluten protein and its impacts on wheat processing quality. Front. Agric. Sci. Eng. 2019, 6, 279. [Google Scholar] [CrossRef]
- Bruneel, C.; Buggenhout, J.; Lagrain, B.; Brijs, K.; Delcour, J.A. Redox agents and N -ethylmaleimide affect protein polymerization during laboratory scale dry pasta production and cooking. Food Chem. 2016, 196, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Yang, H.; Chi, C.; Ma, X. Effect of protein types on structure and digestibility of starch-protein-lipids complexes. LWT 2020, 134, 110175. [Google Scholar] [CrossRef]
- Zhao, T.; Li, X.; Zhu, R.; Ma, Z.; Liu, L.; Wang, X.; Hu, X. Effect of natural fermentation on the structure and physicochemical properties of wheat starch. Carbohydr. Polym. 2019, 218, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chao, C.; Yu, J.; Copeland, L.; Wang, S.; Wang, S. Effect of protein-fatty acid interactions on the formation of starch-lipid-protein complexes. Food Chem. 2021, 364, 130390. [Google Scholar] [CrossRef] [PubMed]
- Therien-Aubin, H.; Janvier, F.; Baille, W.E.; Zhu, X.; Marchessault, R.H. Study of hydration of cross-linked high amylose starch by solid state 13C NMR spectroscopy. Carbohydr. Res. 2007, 342, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Flores-Morales, A.; Jiménez-Estrada, M.; Mora-Escobedo, R. Determination of the structural changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydr. Polym. 2012, 87, 61–68. [Google Scholar] [CrossRef]
- Zou, X.; Wang, X.; Zhang, M.; Peng, P.; Ma, Q.; Hu, X. Pre-baking-steaming of oat induces stronger macromolecular interactions and more resistant starch in oat-buckwheat noodle. Food Chem. 2023, 400, 134045. [Google Scholar] [CrossRef]
Sample | Protein | Starch |
---|---|---|
200115 | 16.67% gluten from 2001 flour | 83.33% starch from 2006 flour |
200215 | 16.67% gluten from 2002 flour | 83.33% starch from 2006 flour |
200315 | 16.67% gluten from 2003 flour | 83.33% starch from 2006 flour |
200131 | 12.50% glutenin, 4.17% gliadin from 2001 flour | 83.33% starch from 2006 flour |
200231 | 12.50% glutenin, 4.17% gliadin from 2002 flour | 83.33% starch from 2006 flour |
200331 | 12.50% glutenin, 4.17% gliadin from 2003 flour | 83.33% starch from 2006 flour |
200113 | 4.17% glutenin, 12.50% gliadin from 2001 flour | 83.33% starch from 2006 flour |
200213 | 4.17% glutenin, 12.50% gliadin from 2002 flour | 83.33% starch from 2006 flour |
200313 | 4.17% glutenin, 12.50% gliadin from 2003 flour | 83.33% starch from 2006 flour |
Sample | LPP (%) | MPP (%) | SPP (%) | LMP (%) | SMP (%) | UPP (%) |
---|---|---|---|---|---|---|
200115 | 10.45 ± 0.51 ef | 24.91 ± 0.57 g | 10.19 ± 0.31 a | 50.99 ± 0.14 b | 3.46 ± 0.22 ab | 27.44 ± 0.17 h |
200215 | 10.92 ± 0.29 f | 22.65 ± 0.38 f | 11.71 ± 0.06 b | 52.02 ± 1.11 bc | 2.70 ± 1.15 a | 20.36 ± 0.02 g |
200315 | 9.99 ± 0.11 e | 23.01 ± 0.32 f | 10.32 ± 0.21 a | 52.99 ± 0.12 c | 3.68 ± 0.11 abc | 19.82 ± 0.05 f |
200131 | 7.14 ± 0.07 d | 18.47 ± 0.04 e | 11.66 ± 0.54 b | 59.03 ± 0.12 d | 3.71 ± 0.45 abc | 16.19 ± 0.22 e |
200231 | 13.75 ± 0.46 g | 27.24 ± 0.35 h | 11.63 ± 0.03 b | 43.99 ± 0.05 a | 3.39 ± 0.12 ab | 30.56 ± 0.01 i |
200331 | 2.39 ± 0.15 b | 15.87 ± 0.35 c | 14.02 ± 0.51 d | 62.84 ± 0.32 e | 4.88 ± 0.32 c | 7.87 ± 0.10 c |
200113 | 2.78 ± 0.01 b | 13.60 ± 0.35 b | 12.60 ± 0.20 c | 67.07 ± 0.69 f | 3.96 ± 0.84 abc | 5.53 ± 0.11 b |
200213 | 5.86 ± 0.24 c | 17.37 ± 0.03 d | 14.08 ± 0.23 d | 58.53 ± 0.47 d | 4.15 ± 0.52 bc | 12.66 ± 0.13 d |
200313 | 1.18 ± 0.01 a | 10.92 ± 0.38 a | 14.26 ± 0.29 d | 69.48 ± 0.27 g | 4.18 ± 0.17 bc | 3.25 ± 0.02 a |
Sample | α-Helix (%) | β-Sheet (%) | β-Turn (%) | Random Coil (%) | β-Sheet/α-Helix |
---|---|---|---|---|---|
200115 | 9.78 ± 0.05 a | 16.95 ± 0.11 b | 46.13 ± 0.04 b | 27.15 ± 0.12 f | 1.73 ± 0.03 e |
200215 | 18.28 ± 1.20 ef | 21.57 ± 2.37 c | 53.21 ± 3.44 c | 6.94 ± 0.14 a | 1.18 ± 0.02 c |
200315 | 16.68 ± 0.21 d | 17.64 ± 0.61 b | 48.91 ± 0.52 b | 16.76 ± 0.31 d | 1.06 ± 0.03 b |
200131 | 13.47 ± 0.14 b | 31.03 ± 0.06 e | 47.76 ± 0.19 b | 8.01 ± 0.12 a | 2.30 ± 0.05 f |
200231 | 14.78 ± 0.11 c | 23.88 ± 0.03 d | 47.20 ± 0.15 b | 14.60 ± 0.58 c | 1.62 ± 0.03 d |
200331 | 13.01 ± 0.90 b | 24.11 ± 0.61 d | 42.24 ± 3.06 a | 20.64 ± 2.77 e | 1.85 ± 0.12 e |
200113 | 14.59 ± 1.32 c | 17.44 ± 0.91 b | 47.94 ± 0.71 b | 20.02 ± 1.52 e | 1.20 ± 0.02 c |
200213 | 19.26 ± 0.07 fg | 14.37 ± 0.04 a | 46.47 ± 0.07 b | 19.90 ± 0.04 e | 0.75 ± 0.05 a |
200313 | 20.30 ± 0.07 g | 20.99 ± 0.01 c | 47.25 ± 0.57 b | 11.06 ± 0.08 b | 1.03 ± 0.02 b |
Sample | Ionic Bond (mg/mL) | Hydrogen Bond (mg/mL) | Hydrophobic Interaction (mg/mL) | Disulfide Bond (mg/mL) |
---|---|---|---|---|
200115 | 0.0020 ± 0.0002 c | 0.0170 ± 0.0005 g | 0.0175 ± 0.0004 a | 0.0174 ± 0.0006 e |
200215 | 0.0027 ± 0.0004 d | 0.0083 ± 0.0001 e | 0.0268 ± 0.0003 d | 0.0098 ± 0.0002 b |
200315 | 0.0008 ± 0.0001 a | 0.0084 ± 0.0001 e | 0.0245 ± 0.0001 c | 0.0109 ± 0.0002 b |
200131 | 0.0047 ± 0.0001 e | 0.0153 ± 0.0002 f | 0.0222 ± 0.0004 b | 0.0357 ± 0.0011 g |
200231 | 0.0015 ± 0.0002 bc | 0.0038 ± 0.0003 b | 0.0327 ± 0.0010 e | 0.0111 ± 0.0001 c |
200331 | 0.0031 ± 0.0001 d | 0.0049 ± 0.0006 cd | 0.0347 ± 0.0003 f | 0.0317 ± 0.0002 f |
200113 | 0.0058 ± 0.0003 f | 0.0058 ± 0.0003 d | 0.0230 ± 0.0007 b | 0.0126 ± 0.0010 d |
200213 | 0.0018 ± 0.0001 bc | 0.0015 ± 0.0001 a | 0.0259 ± 0.0002 d | 0.0024 ± 0.0001 a |
200313 | 0.0017 ± 0.0001 bc | 0.0055 ± 0.0001 d | 0.0186 ± 0.0003 a | 0.0100 ± 0.0003 b |
Sample | Long-Range Order by XRD | Short-Range Order by FTIR | Short-Range Order by LCM-Raman | Location and Height of the Peak at 860 cm−1 in FTIR | ||
---|---|---|---|---|---|---|
Relative Crystallinity (%) | DO (1047/1022 cm−1) | DD (995/1022 cm−1) | FWHM of the Band at 480 cm−1 | Wavelength (cm−1) | Transmittance | |
200115 | 7.22 ± 0.34 d | 1.181 ± 0.001 e | 1.327 ± 0.001 f | 18.21 ± 0.20 d | 858 | 0.920 ± 0.005 c |
200215 | 7.10 ± 0.56 cd | 1.271 ± 0.001 h | 1.437 ± 0.002 h | 15.22 ± 0.23 b | 858 | 0.900 ± 0.004 b |
200315 | 6.35 ± 0.21 c | 1.398 ± 0.002 i | 1.677 ± 0.002 i | 9.83 ± 0.12 a | 858 | 0.879 ± 0.008 a |
200131 | 6.63 ± 0.16 c | 1.136 ± 0.001 d | 1.217 ± 0.001 d | 16.32 ± 0.21 c | 860 | 0.930 ± 0.002 d |
200231 | 9.96 ± 0.56 e | 1.101 ± 0.002 c | 1.176 ± 0.002 c | 19.87 ± 0.20 e | 860 | 0.969 ± 0.006 e |
200331 | 7.28 ± 0.43 d | 1.081 ± 0.001 b | 1.109 ± 0.001 b | 15.04 ± 0.10 b | 858 | 0.965 ± 0.002 e |
200113 | 3.80 ± 0.55 a | 1.231 ± 0.001 g | 1.352 ± 0.001 g | 15.46 ± 0.25 b | 860 | 0.907 ± 0.008 bc |
200213 | 4.70 ± 0.39 b | 1.196 ± 0.002 f | 1.265 ± 0.002 e | 18.14 ± 0.13 d | 858 | 0.919 ± 0.004 c |
200313 | 3.38 ± 0.37 a | 1.069 ± 0.003 a | 1.103 ± 0.003 a | 18.57 ± 0.18 d | 856 | 0.973 ± 0.009 e |
Sample | Double Helix (%) | Single Helix (%) | PPA (%) |
---|---|---|---|
200115 | 53.36 ± 0.04 ab | 2.04 ± 0.01 d | 11.02 ± 0.01 b |
200215 | 52.20 ± 0.01 a | 1.49 ± 0.02 c | 11.07 ± 0.01 c |
200315 | 59.17 ± 0.01 f | 2.14 ± 0.01 d | 12.16 ± 0.02 g |
200131 | 55.47 ± 0.02 de | 0.91 ± 0.31 b | 10.80 ± 0.03 a |
200231 | 56.28 ± 0.01 e | 1.92 ± 0.01 d | 11.67 ± 0.04 d |
200331 | 58.19 ± 2.09 f | 3.27 ± 0.38 e | 11.85 ± 0.08 f |
200113 | 54.76 ± 0.01 cd | 0.09 ± 0.01 a | 12.48 ± 0.01 h |
200213 | 54.00 ± 0.02 bc | 0.63 ± 0.01 b | 14.90 ± 0.02 i |
200313 | 54.84 ± 0. 11 cd | 1.99 ± 0.03 d | 11.75 ± 0.01 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, X.; Wang, X.; Li, L.; Peng, P.; Ma, Q.; Hu, X.; Appels, R. Effects of Composition and Strength of Wheat Gluten on Starch Structure, Digestion Properties and the Underlying Mechanism. Foods 2022, 11, 3432. https://doi.org/10.3390/foods11213432
Zou X, Wang X, Li L, Peng P, Ma Q, Hu X, Appels R. Effects of Composition and Strength of Wheat Gluten on Starch Structure, Digestion Properties and the Underlying Mechanism. Foods. 2022; 11(21):3432. https://doi.org/10.3390/foods11213432
Chicago/Turabian StyleZou, Xiaoyang, Xiaolong Wang, Liang Li, Pai Peng, Qianying Ma, Xinzhong Hu, and Rudi Appels. 2022. "Effects of Composition and Strength of Wheat Gluten on Starch Structure, Digestion Properties and the Underlying Mechanism" Foods 11, no. 21: 3432. https://doi.org/10.3390/foods11213432
APA StyleZou, X., Wang, X., Li, L., Peng, P., Ma, Q., Hu, X., & Appels, R. (2022). Effects of Composition and Strength of Wheat Gluten on Starch Structure, Digestion Properties and the Underlying Mechanism. Foods, 11(21), 3432. https://doi.org/10.3390/foods11213432