Butterfly Pea Flower as a Novel Ingredient to Produce Antioxidant-Enriched Yellow Pea-Based Breakfast Cereals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extrusion Processing
2.3. Total Phenolic Compounds (TPC) and Antioxidant Properties
2.3.1. Sample Extraction
2.3.2. TPC
2.3.3. DPPH (1,1-Diphenyl-2-picryl-hydrazil) Scavenging Ability
2.3.4. Reducing Power
2.4. Physical Properties
2.4.1. Expansion Index
2.4.2. Texture Analysis
2.4.3. Color
2.5. Statistical Analysis
3. Results and Discussion
3.1. TPC and Antioxidant Properties
3.2. Dietary Fiber Content
3.3. Physical Properties
3.3.1. Expansion Index
3.3.2. Texture
3.3.3. Color Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alam, M.S.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 445–475. [Google Scholar] [CrossRef] [PubMed]
- Prabha, K.; Ghosh, P.; Abdullah, S.; Joseph, R.M.; Krishnan, R.; Rana, S.S.; Pradhan, R.C. Recent development, challenges, and prospects of extrusion technology. Future Foods 2021, 3, 100019. [Google Scholar] [CrossRef]
- Brennan, M.A.; Derbyshire, E.; Tiwari, B.K.; Brennan, C.S. Ready-to-eat snack products: The role of extrusion technology in developing consumer acceptable and nutritious snacks. Int. J. Food Sci. Technol. 2013, 48, 893–902. [Google Scholar] [CrossRef]
- Guy, R. Raw materials for extrusion cooking. In Extrusion Cooking—Technologies and Applications; Guy, R., Ed.; Woodhead Publishing: Boca Raton, FL, USA, 2001; pp. 5–28. [Google Scholar]
- Pasqualone, A.; Costantini, M.; Coldea, T.E.; Summo, C. Use of Legumes in Extrusion Cooking: A Review. Foods 2020, 9, 958. [Google Scholar] [CrossRef]
- Maskus, H.; Arntfield, S. Extrusion Processing and Evaluation of an Expanded, Puffed Pea Snack Product. J. Nutr. Food Sci. 2015, 5, 1–6. [Google Scholar]
- Luo, S.; Koksel, F. Physical and technofunctional properties of yellow pea flour and bread crumb mixtures processed with low moisture extrusion cooking. J. Food Sci. 2020, 85, 2688–2698. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.; Masatcioglu, T.M.; Koksel, F. Effects of different blowing agents on physical properties of extruded puffed snacks made from yellow pea and red lentil flours. J. Food Process Eng. 2019, 42, e12989. [Google Scholar] [CrossRef]
- Fenn, D.; Wang, N.; Maximiuk, L. Physicochemical, anti-nutritional, and functional properties of air-classified protein concentrates from commercially grown Canadian yellow pea (Pisum sativum) varieties with variable protein levels. Cereal Chem. 2022, 99, 157–168. [Google Scholar] [CrossRef]
- Wang, N.; Hatcher, D.W.; Gawalko, E.J. Effect of variety and processing on nutrients and certain anti-nutrients in field peas (Pisum sativum). Food chemistry 2008, 111, 132–138. [Google Scholar] [CrossRef]
- Dahl, W.J.; Foster, L.M.; Tyler, R.T. Review of the health benefits of peas (Pisum sativum L.). Br. J. Nutr. 2012, 108, S3–S10. [Google Scholar] [CrossRef] [Green Version]
- Udahogora, M. Health Benefits and Bioactive Compounds in Field Peas, Faba Beans, and Chickpeas. In Cereals and Pulses: Nutraceutical Properties and Health Benefits; Yu, L.L., Tsao, R., Shahidi, F., Eds.; Wiley-Blackwell: Oxford, UK, 2012; pp. 199–215. [Google Scholar]
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Vuong, T.T.; Hongsprabhas, P. Influences of pH on binding mechanisms of anthocyanins from butterfly pea flower (Clitoria ternatea) with whey powder and whey protein isolate. Cogent Food Agric. 2021, 7, 1889098. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Kumar, V.; Kumar, N.S.; Heinrich, M. The Ayurvedic medicine Clitoria ternatea—From traditional use to scientific assessment. J. Ethnopharmacol. 2008, 120, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Lakshan, S.A.T.; Jayanath, N.Y.; Abeysekera, W.P.K.M.; Abeysekera, W.K.S.M. A Commercial Potential Blue Pea (Clitoria ternatea L.) Flower Extract Incorporated Beverage Having Functional Properties. Evid. Based Complement. Altern. Med. 2019, 2019, 2916914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamage, G.C.V.; Lim, Y.Y.; Choo, W.S. Anthocyanins From Clitoria ternatea Flower: Biosynthesis, Extraction, Stability, Antioxidant Activity, and Applications. Front. Plant Sci. 2021, 12, 792303. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraj, E.J.; Lim, Y.Y.; Choo, W.S. Effect of Organic Solvents and Water Extraction on the Phytochemical Profile and Antioxidant Activity of Clitoria ternatea Flowers. ACS Food Sci. Technol. 2021, 1, 1567–1577. [Google Scholar] [CrossRef]
- Adhikary, R.; Sultana, S.; Bishayi, B. Clitoria ternatea flower petals: Effect on TNFR1 neutralization via downregulation of synovial matrix metalloproteases. J. Ethnopharmacol. 2018, 210, 209–222. [Google Scholar] [CrossRef]
- Singh, N.K.; Garabadu, D.; Sharma, P.; Shrivastava, S.K.; Mishra, P. Anti-allergy and anti-tussive activity of Clitoria ternatea L. in experimental animals. J. Ethnopharmacol. 2018, 224, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wu, Q.; Wang, J.; Chen, Y.; Zhu, G.; Zhu, Z. Spectral Characteristic, Storage Stability and Antioxidant Properties of Anthocyanin Extracts from Flowers of Butterfly Pea (Clitoria ternatea L.). Molecules 2021, 26, 7000. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Koprowska, K.; Gottschling, A.; Janda-Milczarek, K. Edible Flowers as a Source of Dietary Fibre (Total, Insoluble and Soluble) as a Potential Athlete’s Dietary Supplement. Nutrients 2022, 14, 2470. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef] [PubMed]
- Kantrong, H.; Klongdee, S.; Jantapirak, S.; Limsangouan, N.; Pengpinit, W. Effects of extrusion temperature and puffing technique on physical and functional properties of purpled third-generation snack after heat treatment. J. Food Sci. Technol. 2022, 59, 2209–2219. [Google Scholar] [CrossRef] [PubMed]
- AACC. Approved Methods of the American Association of Cereal Chemists International, 11th ed.; AACC International Press: St. Paul, MN, USA, 1999. [Google Scholar]
- Min, D.B.; Ellefson, W.C. Fat analysis. In Food Analysis; Nielsen, S.S., Ed.; Springer: New York, NY, USA, 2010; pp. 117–132. [Google Scholar]
- Marshall, M.R. Ash analysis. In Food Analysis; Nielsen, S.S., Ed.; Springer: New York, NY, USA, 2010; pp. 105–115. [Google Scholar]
- Koksel, F.; Masatcioglu, M.T. Physical properties of puffed yellow pea snacks produced by nitrogen gas assisted extrusion cooking. Food Sci. Technol. 2018, 93, 592–598. [Google Scholar] [CrossRef]
- Altemimi, A.; Watson, D.G.; Choudhary, R.; Dasari, M.R.; Lightfoot, D.A. Ultrasound Assisted Extraction of Phenolic Compounds from Peaches and Pumpkins. PLoS ONE 2016, 11, e0148758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oktay, M.; Gülçin, İ.; Küfrevioğlu, Ö.İ. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT Food Sci. Technol. 2003, 36, 263–271. [Google Scholar] [CrossRef]
- Li, X.; Guillermic, R.-M.; Nadimi, M.; Paliwal, J.; Koksel, F. Physical and microstructural quality of extruded snacks made from blends of barley and green lentil flours. Cereal Chem. 2022, 99, 1112–1123. [Google Scholar] [CrossRef]
- Davies-Hoes, L.D.; Scanlon, M.G.; Girgih, A.T.; Aluko, R.E. Effect of Pea Flours with Different Particle Sizes on Antioxidant Activity in Pan Breads. Cereal Chem. 2017, 94, 866–872. [Google Scholar] [CrossRef]
- Mehmood, A.; Ishaq, M.; Zhao, L.; Yaqoob, S.; Safdar, B.; Nadeem, M.; Munir, M.; Wang, C. Impact of ultrasound and conventional extraction techniques on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.). Ultrason. Sonochem. 2019, 51, 12–19. [Google Scholar] [CrossRef]
- Lakshan, S.A.T.; Pathirana, C.K.; Jayanath, N.Y.; Abeysekara, W.P.K.M.; Abeysekera, W.K.S.M. Antioxidant and selected chemical properties of the flowers of three different varieties of Butterfly Pea (Clitoria ternatea L.). Ceylon J. Sci. 2020, 49, 195–201. [Google Scholar] [CrossRef]
- Rabeta, M.S.; An Nabil, Z.A. Total phenolic compounds and scavenging activity in Clitoria ternatea and Vitex negundo Linn. Int. Food Res. J. 2013, 20, 495–500. [Google Scholar]
- Anton, A.A.; Fulcher, R.G.; Arntfield, S.D. Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chem. 2009, 113, 989–996. [Google Scholar] [CrossRef]
- Brennan, C.; Brennan, M.; Derbyshire, E.; Tiwari, B.K. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends Food Sci. Technol. 2011, 22, 570–575. [Google Scholar] [CrossRef]
- Šárka, E.; Sluková, M.; Henke, S. Changes in Phenolics during Cooking Extrusion: A Review. Foods 2021, 10, 2100. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S.; Singh, B. Antioxidant activity of barley as affected by extrusion cooking. Food Chem. 2012, 131, 1406–1413. [Google Scholar] [CrossRef]
- Bisharat, G.I.; Lazou, A.E.; Panagiotou, N.M.; Krokida, M.K.; Maroulis, Z.B. Antioxidant potential and quality characteristics of vegetable-enriched corn-based extruded snacks. J. Food Sci. Technol. 2015, 52, 3986–4000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, P.; Cebadera-Miranda, L.; Cámara, R.M.; Reis, F.S.; Barros, L.; Berrios, J.D.J.; Ferreira, I.C.F.R.; Cámara, M. Lentil flour formulations to develop new snack-type products by extrusion processing: Phytochemicals and antioxidant capacity. J. Funct. Foods 2015, 19, 537–544. [Google Scholar] [CrossRef]
- Stoughton-Ens, M.D.; Hatcher, D.W.; Wang, N.; Warkentin, T.D. Influence of genotype and environment on the dietary fiber content of field pea (Pisum sativum L.) grown in Canada. Food Res. Int. 2010, 43, 547–552. [Google Scholar] [CrossRef]
- Frias, J.; Giacomino, S.; Peñas, E.; Pellegrino, N.; Ferreyra, V.; Apro, N.; Carrión, M.O.; Vidal-Valverde, C. Assessment of the nutritional quality of raw and extruded Pisum sativum L. var. laguna seeds. LWT Food Sci. Technol. 2011, 44, 1303–1308. [Google Scholar] [CrossRef] [Green Version]
- Gajula, H.; Alavi, S.; Adhikari, K.; Herald, T. Precooked Bran-Enriched Wheat Flour Using Extrusion: Dietary Fiber Profile and Sensory Characteristics. J. Food Sci. 2008, 73, S173–S179. [Google Scholar] [CrossRef]
- Wang, W.-M.; Klopfenstein, C.F.; Ponte, J.G. Effects of twin-screw extrusion on the physical properties of dietary fiber and other components of whole wheat and wheat bran and on the baking quality of the wheat bran. Cereal Chem. 1993, 70, 707–711. [Google Scholar]
- Aktas-Akyildiz, E.; Masatcioglu, M.T.; Köksel, H. Effect of extrusion treatment on enzymatic hydrolysis of wheat bran. J. Cereal Sci. 2020, 93, 102941. [Google Scholar] [CrossRef]
- Robin, F.; Schuchmann, H.P.; Palzer, S. Dietary fiber in extruded cereals: Limitations and opportunities. Trends Food Sci. Technol. 2012, 28, 23–32. [Google Scholar] [CrossRef]
- Camire, M.E.; Zhao, J.; Violette, D.A. In vitro binding of bile acids by extruded potato peels. J. Agric. Food Chem. 1993, 41, 2391–2394. [Google Scholar] [CrossRef]
- Berrios, J.D.J.; Morales, P.; Cámara, M.; Sánchez-Mata, M.C. Carbohydrate composition of raw and extruded pulse flours. Food Res. Int. 2010, 43, 531–536. [Google Scholar] [CrossRef]
- Lotfi Shirazi, S.; Koocheki, A.; Milani, E.; Mohebbi, M. Production of high fiber ready-to-eat expanded snack from barley flour and carrot pomace using extrusion cooking technology. J. Food Sci. Technol. 2020, 57, 2169–2181. [Google Scholar] [CrossRef] [PubMed]
- Tobias-Espinoza, J.L.; Amaya-Guerra, C.A.; Quintero-Ramos, A.; Pérez-Carrillo, E.; Núñez-González, M.A.; Martínez-Bustos, F.; Meléndez-Pizarro, C.O.; Báez-González, J.G.; Ortega-Gutiérrez, J.A. Effects of the Addition of Flaxseed and Amaranth on the Physicochemical and Functional Properties of Instant-Extruded Products. Foods 2019, 8, 183. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Pabon, K.S.; Parra-Polanco, A.S.; Roa-Acosta, D.F.; Hoyos-Concha, J.L.; Bravo-Gomez, J.E. Physical and Paste Properties Comparison of Four Snacks Produced by High Protein Quinoa Flour Extrusion Cooking. Front. Sustain. Food Syst. 2022, 6, 54. [Google Scholar] [CrossRef]
- Wang, S.; Nosworthy, M.G.; House, J.D.; Ai, Y.; Hood-Niefer, S.; Nickerson, M.T. Effect of barrel temperature and feed moisture on the physical properties of chickpea–sorghum and chickpea–maize extrudates, and the functionality and nutritional value of their resultant flours—Part II. Cereal Chem. 2019, 96, 621–633. [Google Scholar] [CrossRef]
- Geetha, R.; Mishra, H.N.; Srivastav, P.P. Twin screw extrusion of kodo millet-chickpea blend: Process parameter optimization, physico-chemical and functional properties. J. Food Sci. Technol. 2014, 51, 3144–3153. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Ai, Y.; Hood-Niefer, S.; Nickerson, M.T. Effect of barrel temperature and feed moisture on the physical properties of chickpea, sorghum, and maize extrudates and the functionality of their resultant flours—Part 1. Cereal Chem. 2019, 96, 609–620. [Google Scholar] [CrossRef]
- Singh, R.; Koksel, F. Effects of particle size distribution and processing conditions on the techno-functional properties of extruded soybean meal. LWT 2021, 152, 112321. [Google Scholar] [CrossRef]
- Moraru, C.I.; Kokini, J.L. Nucleation and Expansion During Extrusion and Microwave Heating of Cereal Foods. Compr. Rev. Food Sci. Food Saf. 2003, 2, 147–165. [Google Scholar] [CrossRef] [PubMed]
- Altan, A.; McCarthy, K.L.; Maskan, M. Evaluation of snack foods from barley–tomato pomace blends by extrusion processing. J. Food Eng. 2008, 84, 231–242. [Google Scholar] [CrossRef]
- Ding, Q.-B.; Ainsworth, P.; Plunkett, A.; Tucker, G.; Marson, H. The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. J. Food Eng. 2006, 73, 142–148. [Google Scholar] [CrossRef]
- Oliveira, L.C.; Alencar, N.M.M.; Steel, C.J. Improvement of sensorial and technological characteristics of extruded breakfast cereals enriched with whole grain wheat flour and jabuticaba (Myrciaria cauliflora) peel. LWT 2018, 90, 207–214. [Google Scholar] [CrossRef]
- Thanh, V.T.; Tran, N.Y.T.; Linh, N.T.V.; Vy, T.A.; Truc, T.T. Application of anthocyanin natural colors from Butterfly Pea (Clitoria ternatea L.) extracts to cupcake. Proc. Mater. Sci. Eng. Conf. Ser. 2020, 736, 062014. [Google Scholar] [CrossRef]
- Kaur, S.; Sharma, S.; Singh, B.; Dar, B.N. Effect of extrusion variables (temperature, moisture) on the antinutrient components of cereal brans. J. Food Sci. Technol. 2015, 52, 1670–1676. [Google Scholar] [CrossRef] [Green Version]
- Nayak, B.; Berrios Jde, J.; Powers, J.R.; Tang, J. Effect of extrusion on the antioxidant capacity and color attributes of expanded extrudates prepared from purple potato and yellow pea flour mixes. J. Food Sci. 2011, 76, C874–C883. [Google Scholar] [CrossRef]
- Ilo, S.; Berghofer, E. Kinetics of colour changes during extrusion cooking of maize grits. J. Food Eng. 1999, 39, 73–80. [Google Scholar] [CrossRef]
Blend | Die Temperature (°C) | IDF (g/100 g, db) | SDF (g/100 g, db) | TDF (g/100 g, db) |
---|---|---|---|---|
Raw yellow pea | - | 13.59 ± 0.14 b,c | 1.89 ± 0.02 b | 15.48 ± 0.12 b,c |
Raw butterfly pea flower | - | 25.86 ± 0.25 a | 4.54 ± 0.21 a | 29.37 ± 0.95 a |
0% BP | 130 | 10.10 ± 0.21 f | 1.45 ± 0.03 b,c | 11.56 ± 0.21 f |
150 | 10.02 ± 0.46 f | 1.99 ± 0.16 b,c | 12.01 ± 0.38 f | |
5% BP | 130 | 11.20 ± 0.27 e,f | 2.08 ± 0.09 b | 13.31 ± 0.21 e |
150 | 11.79 ± 0.23 d,e | 2.04 ± 0.04 b,c | 13.83 ± 0.25 d,e | |
10% BP | 130 | 13.08 ± 0.40 c,d | 1.67 ± 0.17 b,c | 14.78 ± 0.28 c,d |
150 | 15.12 ± 0.08 b | 1.32 ± 0.16 c | 16.44 ± 0.11 b |
Blend | Die Temperature (°C) | Hardness (N) | Crunchiness (Ns) | Crispiness |
---|---|---|---|---|
Dry texture | ||||
0% BP | 130 | 11.25 ± 0.66 a,b | 40.83 ± 5.07 a | 6.10 ± 1.37 b |
150 | 6.78 ± 1.01 e,f | 33.88 ± 2.72 a,b | 10.63 ± 2.10 a | |
5% BP | 130 | 11.71 ± 1.64 a | 40.20 ± 6.88 a | 6.00 ± 1.04 b |
150 | 7.58 ± 1.54 d,e,f | 36.64 ± 5.67 a,b | 9.73 ± 1.23 a | |
10% BP | 130 | 10.10 ± 0.68 a,b,c | 38.06 ± 4.79 a,b | 6.23 ± 1.49 b |
150 | 7.44 ± 1.30 d,e,f | 29.99 ± 4.59 b,c,d | 7.23 ± 1.46 b | |
Wet texture (bowl-life) | ||||
0% BP | 130 | 9.95 ± 1.23 a,b,c | 33.23 ± 3.18 a,b | 6.57 ± 1.06 b |
150 | 3.34 ± 1.17 g | 13.05 ± 4.61 e | 6.27 ± 1.29 b | |
5% BP | 130 | 9.11 ± 1.40 b,c,d | 34.23 ± 4.12 a,b | 6.80 ± 0.61 b |
150 | 5.49 ± 0.82 f,g | 20.92 ± 4.73 d,e | 6.76 ± 0.96 b | |
10% BP | 130 | 8.58 ± 0.86 c,d,e | 32.13 ± 6.75 a,b,c | 6.67 ± 1.06 b |
150 | 6.19 ± 0.53 f | 23.41 ± 3.19 c,d | 7.17 ± 0.53 b |
Blend | Die Temperature (°C) | L* | a* | b* | ΔE |
---|---|---|---|---|---|
Raw 0% BP | - | 89.46 ± 0.06 a | 0.73 ± 0.03 b | 16.05 ± 0.13 b | - |
0% BP | 130 | 83.15 ± 0.25 c | 2.04 ± 0.08 a | 22.91 ± 0.55 a | 9.42 ± 0.56 e |
150 | 80.72 ± 0.33 d | 1.73 ± 0.36 a | 22.25 ± 0.77 a | 10.79 ± 0.26 d | |
Raw 5% BP | - | 84.30 ± 0.27 b | −1.13 ± 0.07 c | 11.15 ± 0.27 c | - |
5%BP | 130 | 50.86 ± 0.71 e | −4.32 ± 0.08 g | −8.62 ± 0.13 g | 38.98 ± 0.65 b |
150 | 49.68 ± 0.41 f | −4.59 ± 0.08 g | −4.31 ± 0.81 e | 38.08 ± 0.61 c | |
Raw 10% BP | - | 80.15 ± 0.08 d | −1.71 ± 0.04 d | 9.33 ± 0.08 d | - |
10% BP | 130 | 43.39 ± 0.43 g | −2.80 ± 0.08 e | −11.32 ± 0.09 h | 42.17 ± 0.36 a |
150 | 41.84 ± 0.28 h | −3.35 ± 0.10 f | −6.74 ± 0.28 f | 41.58 ± 0.23 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.; Yu, C.-C.; Chen, G.-W.; Chen, C.-H.; Sinaki, N.Y.; Lin, J.; Koksel, F. Butterfly Pea Flower as a Novel Ingredient to Produce Antioxidant-Enriched Yellow Pea-Based Breakfast Cereals. Foods 2022, 11, 3447. https://doi.org/10.3390/foods11213447
Singh R, Yu C-C, Chen G-W, Chen C-H, Sinaki NY, Lin J, Koksel F. Butterfly Pea Flower as a Novel Ingredient to Produce Antioxidant-Enriched Yellow Pea-Based Breakfast Cereals. Foods. 2022; 11(21):3447. https://doi.org/10.3390/foods11213447
Chicago/Turabian StyleSingh, Ravinder, Cheng-Chia Yu, Guan-Wei Chen, Ching-Hsueh Chen, Nasibeh Y. Sinaki, Jenshinn Lin, and Filiz Koksel. 2022. "Butterfly Pea Flower as a Novel Ingredient to Produce Antioxidant-Enriched Yellow Pea-Based Breakfast Cereals" Foods 11, no. 21: 3447. https://doi.org/10.3390/foods11213447
APA StyleSingh, R., Yu, C. -C., Chen, G. -W., Chen, C. -H., Sinaki, N. Y., Lin, J., & Koksel, F. (2022). Butterfly Pea Flower as a Novel Ingredient to Produce Antioxidant-Enriched Yellow Pea-Based Breakfast Cereals. Foods, 11(21), 3447. https://doi.org/10.3390/foods11213447