An Equality-Based Approach to Analysing the Global Food System’s Fair Share, Overshoot, and Responsibility for Exceeding the Climate Change Planetary Boundary
Abstract
:1. Introduction
2. Methodology
2.1. Quantifying the Safe Climate Space of the Global Food System
2.2. Quantifying Fair Share, Overshoot, and Responsibility
3. Results
3.1. Temporal Change of GHG Emissions and Overshoots Globally from Food Systems (1990–2018)
3.2. Overshoots of GHG Emissions and Annual Comparative Share of Exceeding SCS at the Country Level
3.3. Overshoots of GHG Emissions from the Food System and Annual Comparative Share of Exceeding SCS at Continent Scale (1990–2018)
3.4. Overshoots of GHG Emissions and Annual Comparative Share of Exceeding SCS at Group Levels
3.5. Absolute Overshooters at Different Scales and Levels
3.6. Who Bears Responsibility for Emissions from Global Food Systems?
3.7. GHG Emissions of Food System from Different Substances and Stages
4. Discussion
5. Conclusions & Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
Term | Explanation |
Absolute overshooters | The nations that have overshot their own fair shares of emissions beginning from the first year of calculated period. |
Carbon budget | The total cumulative net worldwide anthropogenic CO2 emissions that, after accounting for the impact of other human climatic forcings, would result in limiting global warming to a particular level with a given likelihood. |
Carbon-neutral (or carbon neutrality) | The state of balance between emission (from carbon source) and accumulation of carbon (from carbon sinks) in any form, i.e., perfect equilibrium of input and output in terms of amount of carbon. |
Climate debt | The amount that one country is alleged to owe another country for the harm that its disproportionately significant climate change contributions have created. |
Fair share | The understanding that all peoples have equal rights to resource consumption or emission within the limits of the planet’s carrying capacity. |
Food system (FS) | The interrelated systems and processes that have an impact on agriculture, food, nutrition, health, and community development. Growing, harvesting, processing, packaging, shipping, selling, consuming, distributing, and disposing of food and food-related things are all included in this. |
Human development index (HDI) | A statistical composite index that ranks nations into four stages of human development (viz., very-high, high, medium, and low) based on life expectancy, education (mean and expected years of schooling), and per capita income indicators. |
Material footprint (MF) | The relationship between global material extraction and a nation’s domestic end demand. It is the total of the material footprints for metal ores, non-metal ores, metal ores, biomass, and fossil fuels. |
Planetary boundaries (PB) concept | Ten environmental boundaries that will allow mankind to progress and flourish for many more centuries. |
Safe climate space (SCS) | The safe operating space related to the planetary boundary of climate change. |
Safe operating space (SOS) | A scenario in which Earth’s ability to maintain human life is not in jeopardy and human cultures’ capacity for adaptation is not necessarily overburdened. |
Sustainable food system (SFS) | A food system that ensures everyone has access to food security and nutrient-dense food while maintaining the economic, social, and environmental foundations necessary to provide food security and nutrition for both current and future generations. |
References
- Tansey, G.; Worsley, A. The Food System; Routledge: London, UK, 2014. [Google Scholar] [CrossRef]
- Chaudhary, A.; Gustafson, D.; Mathys, A. Multi-indicator sustainability assessment of global food systems. Nat. Commun. 2018, 9, 848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H. Sustainable Food Systems Concept and Framework; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; Available online: https://www.fao.org/3/ca2079en/CA2079EN.pdf (accessed on 5 August 2022).
- FAO. Tracking Progress on Food and Agriculture-Related SDG Indicators 2021: A Report on the Indicators under FAO Custodianship; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; De Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Clark, M.A.; Domingo, N.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global food system emissions could preclude achieving the 1.5° and 2 °C climate change targets. Science 2020, 370, 705–708. [Google Scholar] [CrossRef]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Cambridge, UK, 2019; Available online: https://www.ipcc.ch/srccl/ (accessed on 5 August 2022).
- Rosenzweig, C.; Mbow, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.T.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Climate change responses benefit from a global food system approach. Nat. Food 2020, 1, 94–97. [Google Scholar] [CrossRef] [Green Version]
- Gerten, D.; Heck, V.; Jägermeyr, J.; Bodirsky, B.L.; Fetzer, I.; Jalava, M.; Kummu, M.; Lucht, W.; Rockström, J.; Schaphoff, S.; et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 2020, 3, 200–208. [Google Scholar] [CrossRef]
- Hu, Y.; Su, M.; Wang, Y.; Cui, S.; Meng, F.; Yue, W.; Liu, Y.; Xu, C.; Yang, Z. Food production in China requires intensified measures to be consistent with national and provincial environmental boundaries. Nat. Food 2020, 1, 572–582. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Campbell, B.M.; Beare, D.J.; Bennett, E.M.; Hall-Spencer, J.M.; Ingram, J.S.; Jaramillo, F.; Ortiz, R.; Ramankutty, N.; Sayer, J.A.; Shindell, D. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 2017, 22, 8. [Google Scholar] [CrossRef]
- Conijn, J.G.; Bindraban, P.S.; Schröder, J.J.; Jongschaap, R.E.E. Can our global food system meet food demand within planetary boundaries? Agric. Ecosyst. Environ. 2018, 251, 244–256. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Wollenberg, E.; Richards, M.; Smith, P.; Havlík, P.; Obersteiner, M.; Tubiello, F.N.; Herold, M.; Gerber, P.; Carter, S.; Reisinger, A.; et al. Reducing emissions from agriculture to meet the 2 °C target. Glob Chang. Biol. 2016, 22, 3859–3864. [Google Scholar] [CrossRef] [Green Version]
- Rockström, J.; Edenhofer, O.; Gaertner, J.; DeClerck, F. Planet-proofing the global food system. Nat. Food 2020, 1, 3–5. [Google Scholar] [CrossRef] [Green Version]
- World Bank. World Development Indicators. 2022. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL?locations=1W (accessed on 5 August 2022).
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Rosenzweig, C.; Conchedda, G.; Karl, K.; Gütschow, J.; Xueyao, P.; Obli-Laryea, G.; Wanner, N.; Qiu, S.Y.; De Barros, J.; et al. Greenhouse gas emissions from food systems: Building the evidence base. Environ. Res. Lett. 2021, 16, 065007. [Google Scholar] [CrossRef]
- Hickel, J. Quantifying national responsibility for climate breakdown: An equality-based attribution approach for carbon dioxide emissions in excess of the planetary boundary. Lancet Planet. Health 2020, 4, e399–e404. [Google Scholar] [CrossRef]
- Fanning, A.L.; O’Neill, D.W.; Hickel, J.; Roux, N. The social shortfall and ecological overshoot of nations. Nat. Sustain. 2022, 5, 26–36. [Google Scholar] [CrossRef]
- Hickel, J.; O’Neill, D.W.; Fanning, A.L.; Zoomkawala, H. National responsibility for ecological breakdown: A fair-shares assessment of resource use, 1970–2017. Lancet Planet. Health 2022, 6, e342–e349. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Tubiello, F.N.; Leip, A. Climate goals require food systems emission inventories. Nat. Food 2022, 3, 1. [Google Scholar] [CrossRef]
- Foong, A.; Pradhan, P.; Frör, O.; Kropp, J.P. Adjusting agricultural emissions for trade matters for climate change mitigation. Nat. Commun. 2022, 13, 3024. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P. Food transport emissions matter. Nat. Food 2022, 3, 406–407. [Google Scholar] [CrossRef]
- Pinero, P.; Aguilera, E.; Travieso, E.; Infante-Amate, J.; Bruckner, M.; Gerber, J.; Lassaletta, L.; Mueller, N.; Sanz-Cobena, A. Agro-Food Greenhouse Gas Emissions Are Increasingly Driven by Foreign Demand. 2022. Available online: https://www.researchsquare.com/article/rs-1838737/v1 (accessed on 5 August 2022).
- Li, M.; Jia, N.; Lenzen, M.; Malik, A.; Wei, L.; Jin, Y.; Raubenheimer, D. Global food-miles account for nearly 20% of total food-systems emissions. Nat. Food 2022, 3, 445–453. [Google Scholar] [CrossRef]
- The Economist Group. Global Food Security Index. 2022. Available online: https://impact.economist.com/sustainability/project/food-security-index (accessed on 5 August 2022).
- Global Hunger Index—Food Systems Transformations and Local Governance. 2022. Available online: https://www.globalhungerindex.org/ (accessed on 5 August 2022).
- Bennetzen, E.H.; Smith, P.; Porter, J.R. Agricultural production and greenhouse gas emissions from world regions—The major trends over 40 years. Glob. Environ. Chang. 2016, 37, 43–55. [Google Scholar] [CrossRef]
- Rockström, J.; Gaffney, O.; Rogelj, J.; Meinshausen, M.; Nakicenovic, N.; Schellnhuber, H.J. A roadmap for rapid decarbonization. Science 2017, 355, 1269–1271. [Google Scholar] [CrossRef]
- Geels, F.W.; Sovacool, B.K.; Schwanen, T.; Sorrell, S. Sociotechnical transitions for deep decarbonization. Science 2017, 357, 1242–1244. [Google Scholar] [CrossRef]
- Bodirsky, B.L.; Chen, D.M.C.; Weindl, I.; Sörgel, B.; Beier, F.; Molina Bacca, E.J.; Gaupp, F.; Popp, A.; Lotze-Campen, H. Integrating degrowth and efficiency perspectives enables an emission-neutral food system by 2100. Nat. Food 2022, 3, 341–348. [Google Scholar] [CrossRef]
- Lenzen, M.; Keyβer, L.; Hickel, J. Degrowth scenarios for emissions neutrality. Nat. Food 2022, 3, 308–309. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Wirsenius, S.; Beringer, T.; Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 2018, 564, 249–253. [Google Scholar] [CrossRef]
- Mohareb, E.A.; Heller, M.C.; Guthrie, P.M. Cities’ role in mitigating United States food system greenhouse gas emissions. Environ. Sci. Technol. 2018, 52, 5545–5554. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Traub, G.; Obersteiner, M.; Mosnier, A. Fix the broken food system in three steps. Nature 2019, 569, 181–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sovacool, B.K.; Bazilian, M.; Griffiths, S.; Kim, J.; Foley, A.; Rooney, D. Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options. Renew. Sustain. Energy Rev. 2021, 143, 110856. [Google Scholar] [CrossRef]
- Tribaldos, T.; Kortetmäki, T. Just transition principles and criteria for food systems and beyond. Environ. Innov. Soc. Transit. 2022, 43, 244–256. [Google Scholar] [CrossRef]
- Costa, C., Jr.; Wollenberg, E.; Benitez, M.; Newman, R.; Gardner, N.; Bellone, F. Roadmap for achieving net-zero emissions in global food systems by 2050. Sci. Rep. 2022, 12, 15064. [Google Scholar] [CrossRef]
- Bekun, F.V. Mitigating emissions in India: Accounting for the role of real income, renewable energy consumption and investment in energy. Int. J. Energy Econ. Policy 2022, 12, 188–192. [Google Scholar] [CrossRef]
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.; Wiedenhofer, D.; Mattioli, G.; Al Khourdajie, A.; House, J.; et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- He, P.; Cai, B.; Baiocchi, G.; Liu, Z. Drivers of GHG emissions from dietary transition patterns in China: Supply versus demand options. J. Ind. Ecol. 2021, 25, 707–719. [Google Scholar] [CrossRef]
- Bassi, C.; Maysels, R.; Anex, R. Declining greenhouse gas emissions in the US diet (2003–2018): Drivers and demographic trends. J. Clean. Prod. 2022, 351, 131465. [Google Scholar] [CrossRef]
- Hong, C.; Burney, J.A.; Pongratz, J.; Nabel, J.E.; Mueller, N.D.; Jackson, R.B.; Davis, S.J. Global and regional drivers of land-use emissions in 1961–2017. Nature 2021, 589, 554–561. [Google Scholar] [CrossRef]
- Qin, Y.; Horvath, A. What contributes more to life-cycle greenhouse gas emissions of farm produce: Production, transportation, packaging, or food loss? Resour. Conserv. Recycl. 2022, 176, 105945. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, L.; Hao, Y.; Zhang, P.; Shi, Z.; Zhang, T. How urbanization and ecological conditions affect urban diet-linked GHG emissions: New evidence from China. Resour. Conserv. Recycl. 2022, 176, 105903. [Google Scholar] [CrossRef]
- Northrup, D.L.; Basso, B.; Wang, M.Q.; Morgan, C.L.; Benfey, P.N. Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. Proc. Natl. Acad. Sci. USA 2021, 118, e2022666118. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef] [PubMed]
- Maraseni, T.; An-Vo, D.A.; Mushtaq, S.; Reardon-Smith, K. Carbon smart agriculture: An integrated regional approach offers significant potential to increase profit and resource use efficiency, and reduce emissions. J. Clean. Prod. 2021, 282, 124555. [Google Scholar] [CrossRef]
Rank | Country (Overshooters or Climate Debtors) | Cumulative Emission (Gt CO2-e) | Cumulative Overshoot (Gt CO2-e) | Overshoot (%) | Mean Annual Overshoot (Gt CO2-e) | Responsibility in the World (%) |
---|---|---|---|---|---|---|
1 | Brazil | 56.71 | 52.85 | 1369.17 | 1.88 | 16.37 |
2 | China | 60.72 | 33.36 | 121.92 | 1.19 | 10.33 |
3 | Indonesia | 35.69 | 30.95 | 652.95 | 1.1 | 9.58 |
4 | The U.S.A. | 35.22 | 29.03 | 468.98 | 1.03 | 8.99 |
5 | Congo D.R. (Kinshasa) | 13.78 | 12.62 | 1087.93 | 0.45 | 3.9 |
6 | Russia | 11.69 | 8.58 | 275.88 | 0.3 | 2.65 |
7 | Argentina | 8.47 | 7.65 | 932.92 | 0.27 | 2.37 |
8 | Canada | 7.86 | 7.18 | 1055.88 | 0.25 | 2.22 |
9 | Australia | 6.8 | 6.36 | 1445.45 | 0.22 | 1.97 |
10 | India | 29.61 | 5.89 | 24.83 | 0.21 | 1.82 |
11 | Myanmar | 6.46 | 5.44 | 533.33 | 0.19 | 1.68 |
12 | Venezuela | 4.99 | 4.45 | 824.07 | 0.159 | 1.38 |
13 | Colombia | 5.25 | 4.37 | 496.59 | 0.156 | 1.35 |
14 | Mexico | 6.32 | 4.1 | 184.68 | 0.14 | 1.27 |
15 | Germany | 5.36 | 3.61 | 206.28 | 0.12 | 1.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Roy, A.; Dong, X. An Equality-Based Approach to Analysing the Global Food System’s Fair Share, Overshoot, and Responsibility for Exceeding the Climate Change Planetary Boundary. Foods 2022, 11, 3459. https://doi.org/10.3390/foods11213459
Li Y, Roy A, Dong X. An Equality-Based Approach to Analysing the Global Food System’s Fair Share, Overshoot, and Responsibility for Exceeding the Climate Change Planetary Boundary. Foods. 2022; 11(21):3459. https://doi.org/10.3390/foods11213459
Chicago/Turabian StyleLi, Yan, Ajishnu Roy, and Xuhui Dong. 2022. "An Equality-Based Approach to Analysing the Global Food System’s Fair Share, Overshoot, and Responsibility for Exceeding the Climate Change Planetary Boundary" Foods 11, no. 21: 3459. https://doi.org/10.3390/foods11213459
APA StyleLi, Y., Roy, A., & Dong, X. (2022). An Equality-Based Approach to Analysing the Global Food System’s Fair Share, Overshoot, and Responsibility for Exceeding the Climate Change Planetary Boundary. Foods, 11(21), 3459. https://doi.org/10.3390/foods11213459