Influence of Peanut Varieties on the Sensory Quality of Peanut Butter
Abstract
:1. Introduction
2. Peanut Varieties and Cultivars
3. Influence of Peanut Variety on Peanut Butter Flavor
3.1. Effects of Variation of Lipids Composition on Peanut Butter Flavor
3.2. Effects of Lipid Composition of Peanuts on Oxidation Stability
3.3. Variations in Mineral Constituent of Peanut Cultivar and Oxidative Stability
3.4. Varieties of Peanuts on Flavor Loss during Peanut Butter Storage
4. Varieties of Peanuts and the Final Color of Peanut Butter
Effects of Variations in Peanut Cultivars on Blanchability and Peanut Butter Color
5. Effects of Variation in Peanut Varieties on the Textural Properties of Peanut Butter
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arya, S.S.; Salve, A.R.; Chauhan, S. Peanuts as functional food: A review. J. Food Sci. Technol. 2016, 53, 31–41. Available online: https://pubmed.ncbi.nlm.nih.gov/26787930 (accessed on 5 January 2022).
- IMARC Group. Peanut Butter Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2022–2027 Sheridan. Available online: https://www.imarcgroup.com/peanut-butter-manufacturing-plant (accessed on 10 July 2022).
- Markert Research. Peanut Butter Market by Product Type (Regular Peanut Butter, Low Sodium Peanut Butter, Low Sugar Peanut Butter) by Distribution Channel (Hypermarket, Supermarket, Convenience Stores) and Region-Global Forecast 2026. New York. Available online: https://marketresearch.biz/report/peanut-butter-market/ (accessed on 5 January 2022).
- Gorrepati, K.; Balasubramanian, S.; Chandra, P. Plant based butters. J. Food Sci. Technol. 2015, 52, 3965–3976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CBI Ministry of Foreign Affairs of the Netherlands (CBIN). The European Market Potential for Groundnuts. Retrieved from CBI Ministry of Foreign Affairs of the Netherlands. Available online: https://www.cbi.eu/market-information/processed-fruit-vegetables-edible-nuts/groundnuts/market-potential (accessed on 4 January 2022).
- Jesner, L. Peanut Butter for Weight Loss Verywellfit. Available online: https://www.verywellfit.com/how-eating-peanut-butter-can-help-you-lose-weight-3495815 (accessed on 10 July 2022).
- Lykomitros, D.; Fogliano, V.; Capuano, E. Drivers of Preference and Perception of Freshness in Roasted Peanuts (Arachis spp.) for European Consumers. J. Food Sci. 2018, 83, 1103–1115. [Google Scholar] [CrossRef]
- Meng, T.; Florkowski, W.J.; Klepacka, A.M.; Sarpong, D.B.; Resurreccion, A.V.A.; Chinnan, M.S.; Ekielski, A. Preferences for groundnut products among urban residents in Ghana. J. Sci. Food Agric. 2017, 98, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Gills, L.A.; Resurreccion, A.V.A. Overall Acceptability and Sensory Profiles of Unstabilized Peanut Butter and Peanut Butter Stabilized with Palm Oil. J. Food Process Preserv. 2000, 24, 495–516. [Google Scholar] [CrossRef]
- Román, S.; Sánchez-Siles, L.M.; Siegrist, M. The importance of food naturalness for consumers: Results of a systematic review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Spence, C. The Psychological Effects of Food Colors. In Handbook on Natural Pigments in Food and Beverages; Woodhead Publishing: Cambridge, UK, 2016; pp. 29–58. [Google Scholar] [CrossRef]
- Arslan, Y.; Yıldırım, E.; Dinçer, M.A.M.; Türkmen Barutçu, M. Examining consumers’ anti-consumption tendencies towards food products. Br. Food J. 2018, 120, 1980–1993. [Google Scholar] [CrossRef]
- Deloitte. The Deloitte Consumer Review, The Growing Power of Consumers; Deloitte: London, UK, 2014. [Google Scholar]
- Moreira, I.P.C.; Acevedo, C.R. Resistance to consumption and Veganism: A Study about motivations, values, and feelings. Rev. Gestão Tecnol. 2015, 15, 50–67. [Google Scholar]
- Murley, T.; Chambers, 4th., 4th. The Influence of Colorants, Flavorants and Product Identity on Perceptions of Naturalness. Foods 2019, 8, 317. Available online: https://pubmed.ncbi.nlm.nih.gov/31382670/ (accessed on 16 February 2022).
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C.F.R. Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. Compr. Rev. Food Sci. Food Saf. 2014, 13, 377–399. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Natural food additives: Quo vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef] [Green Version]
- Cowling, W. Consumers Continue to Seek Products with Natural Ingredients Candy Industry. 2020. Available online: https://www.candyindustry.com/articles/88953-consumers-continue-to-seek-products-with-natural-ingredients (accessed on 14 July 2022).
- Lykomitros, D.; Fogliano, V.; Capuano, E. Flavor of roasted peanuts (Arachis hypogaea)—Part I: Effect of raw material and processing technology on flavor, color and fatty acid composition of peanuts. Food Res. Int. 2016, 89, 860–869. [Google Scholar] [CrossRef]
- Shakerardekani, A.; Karim, R.; Ghazali, H.M.; Chin, N.L. Textural, rheological and sensory properties and oxidative stability of nut spreads—A review. Int. J. Mol. Sci. 2013, 14, 4223–4241. Available online: https://pubmed.ncbi.nlm.nih.gov/23429239 (accessed on 16 February 2022).
- Sithole, T.R.; Ma, Y.; Qin, Z.; Liu, H.; Wang, X. Technical aspects of peanut butter production processes: Roasting and grinding processes review. J. Food Process. Preserv. 2022, 46, e16430. [Google Scholar] [CrossRef]
- Yu, H.; Liu, H.; Erasmus, S.W.; Zhao, S.; Wang, Q.; van Ruth, S.M. An explorative study on the relationships between the quality traits of peanut varieties and their peanut butters. LWT 2021, 151, 112068. [Google Scholar] [CrossRef]
- Patel, N.C. Standardizing peanut roasting process of peanut butter production. Int. J. Eng. Res. Technol. 2013, 2, 713–717. [Google Scholar]
- Sindhal, V.D.; Dhamsaniya, N.K.; Patel, U.V. Effect of Roasting Method on Fatty Acid Composition of Peanut Kernels. Int J Curr. Microbiol. Appl. Sci. 2019, 8, 2581–2589. [Google Scholar] [CrossRef]
- Norazatul Hanim, M.R.; Chin, N.L.; Yusof, Y.A. Effects of Grinding Time on Rheological, Textural and Physical Properties of Natural Peanut Butter Stored at Different Temperatures. J. Texture Stud. 2015, 47, 131–141. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, B.; Yu, P.; Jia, Y.; Zhou, Q.; Sun, J. Flavor characteristics of peanut butter pretreated by radio frequency heating, explosion puffing, microwave, and oven heating. Food Chem. 2022, 394, 133487. [Google Scholar] [CrossRef]
- Degon, J.G.; Zheng, C.; Elkhedir, A.; Yang, B.; Zhou, Q.; Li, W. Effect of microwave pre-treatment on physical quality, bioactive compounds, safety risk factor, and storage stability of peanut butter. Oil Crop Sci. 2021, 6, 137–141. [Google Scholar] [CrossRef]
- Nepote, V.; Olmedo, R.H.; Mestrallet, M.G.; Grosso, N.R. A study of the relationships among consumer acceptance, oxidation chemical indicators, and sensory attributes in high-oleic and normal peanuts. J. Food Sci. 2009, 74, S1–S8. [Google Scholar] [CrossRef]
- Moretzsohn M de, C.; Hopkins, M.S.; Mitchell, S.E.; Kresovich, S.; Valls, J.F.M.; Ferreira, M.E. Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol. 2004, 4, 11. Available online: https://pubmed.ncbi.nlm.nih.gov/15253775 (accessed on 17 February 2022).
- Yang, X.; Luo, L.; Yu, W.; Mo, B.; Liu, L. Recent Advances in the Acclimation Mechanisms and Genetic Improvement of Peanut for Drought Tolerance. Agric. Sci. 2019, 10, 1178–1193. [Google Scholar] [CrossRef] [Green Version]
- Janila, P.; Nigam, S.N.; Pandey, M.K.; Nagesh, P.; Varshney, R.K. Groundnut improvement: Use of Genetic and Genomic Tools. Front. Plant Sci. 2013, 4, 23. Available online: https://pubmed.ncbi.nlm.nih.gov/23443056 (accessed on 17 February 2022).
- Jung, S. The Phylogenetic Relationship of Possible Progenitors of the Cultivated Peanut. J. Hered. 2003, 94, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Janila, P.; Variath, M.T.; Pandey, M.K.; Desmae, H.; Motagi, B.N.; Okori, P.; Manohar, S.S. Genomic Tools in Groundnut Breeding Program: Status and Perspectives. Front. Plant Sci. 2016, 7, 289. Available online: https://pubmed.ncbi.nlm.nih.gov/27014312 (accessed on 5 March 2022).
- Chriscoe, S. Characterization of Transgenic Peanuts Expressing Oxalate Oxidase for Governmental Approval of Their Release for Control of Sclerotinia Blight. Virginia Polytechnic Institute and State University. Available online: https://vtechworks.lib.vt.edu/handle/10919/30951 (accessed on 4 January 2022).
- González, T.O.A.; Acevedo, E. Manejo Agronómico De Cultivos Textiles Y Oleaginosos. Available online: https://blogtextilesyoleaginosasfagroucv.files.wordpress.com/2015/10/semana_1_morfologia-cultivos-oleaginosos-20016.pdf (accessed on 4 January 2022).
- Larum, D. Peanuts. Gardening Know How. Available online: https://www.gardeningknowhow.com/edible/vegetables/peanuts/different-varieties-of-peanut.htm (accessed on 5 January 2022).
- United States Department of Agriculture (USDA). Farmers’ Stock Peanut Inspection Instructions; United States Department of Agriculture: Washington, DC, USA, 2019. Available online: https://www.ams.usda.gov/sites/default/files/media/FarmersStockPeanutsInspectionInstructions.pdf (accessed on 10 September 2022).
- Sanders, T.H.; Calhoun, R.S. Effect of Oil and Dry Roasting of Peanuts at Various Temperatures and Times on Survival of Salmonella and Enterococcus faecium. Peanut Sci. 2014, 41, 65–71. [Google Scholar] [CrossRef]
- López, Y.; Smith, O.D.; Senseman, S.A.; Rooney, W.L. Genetic Factors Influencing High Oleic Acid Content in Spanish Market-Type Peanut Cultivars. Crop Sci. 2001, 41, 51–56. [Google Scholar] [CrossRef] [Green Version]
- National Peanut Board. Peanut Types. Available online: https://www.nationalpeanutboard.org/peanut-info/peanut-types.htm (accessed on 5 January 2022).
- Abady, S.; Shimelis, H.; Janila, P.; Yaduru, S.; Shayanowako, A.I.T.; Deshmukh, D.; Chaudhari, S.; Manohar, S.S. Assessment of the genetic diversity and population structure of groundnut germplasm collections using phenotypic traits and SNP markers: Implications for drought tolerance breeding. PLoS ONE 2021, 16, e0259883. Available online: https://pubmed.ncbi.nlm.nih.gov/34788339 (accessed on 22 June 2022).
- Chamberlin, K.D. Not Your Grandma’s Goobers: Designing the Future of Peanut Breeding. Peanut Sci. 2019, 46, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Konate, M.; Sanou, J.; Miningou, A.; Okello, D.K.; Desmae, H.; Janila, P.; Mumm, R.H. Past, Present and Future Perspectives on Groundnut Breeding in Burkina Faso. Agronomy 2020, 10, 704. [Google Scholar] [CrossRef]
- Atlin, G.N.; Cairns, J.E.; Das, B. Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob. Food Sec. 2017, 12, 31–37. Available online: https://pubmed.ncbi.nlm.nih.gov/28580238 (accessed on 22 June 2022).
- Banla, E.M.; Dzidzienyo, D.K.; Beatrice, I.E.; Offei, S.K.; Tongoona, P.; Desmae, H. Groundnut production constraints and farmers’ trait preferences: A pre-breeding study in Togo. J. Ethnobiol. Ethnomed. 2018, 14, 75. Available online: https://pubmed.ncbi.nlm.nih.gov/30497497 (accessed on 22 June 2022).
- Huang, B.; Qi, F.; Sun, Z.; Miao, L.; Zhang, Z.; Liu, H.; Fang, Y.; Dong, W.; Tang, F.; Zheng, Z.; et al. Marker-assisted backcrossing to improve seed oleic acid content in four elite and popular peanut (Arachis hypogaea L.) cultivars with high oil content. Breed. Sci. 2019, 69, 234–243. Available online: https://pubmed.ncbi.nlm.nih.gov/31481832 (accessed on 22 June 2022).
- Hasan, N.; Choudhary, S.; Naaz, N.; Sharma, N.; Laskar, R.A. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J. Genet. Eng. Biotechnol. 2021, 19, 128. Available online: https://pubmed.ncbi.nlm.nih.gov/34448979 (accessed on 10 September 2022). [CrossRef]
- Pandey, M.K.; Pandey, A.K.; Kumar, R.; Nwosu, C.V.; Guo, B.; Wright, G.C.; Bhat, R.S.; Chen, X.; Bera, S.K.; Yuan, M.; et al. Translational genomics for achieving higher genetic gains in groundnut. Theor. Appl. Genet. 2020, 133, 1679–1702. Available online: https://pubmed.ncbi.nlm.nih.gov/32328677 (accessed on 22 June 2022).
- Samaha, G.M.; Ahmed, M.A.; Abd El-Hameid, A.R. Assessment of growth and productivity of five peanut cultivars and genetic diversity using RAPD markers. Bull. Natl. Res. Cent. 2019, 43, 168. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.K.; Sudini, H.K.; Upadhyaya, H.D.; Varshney, R.K.; Pandey, M.K. Hypoallergen Peanut Lines Identified Through Large-Scale Phenotyping of Global Diversity Panel: Providing Hope Toward Addressing One of the Major Global Food Safety Concerns. Front. Genet. 2019, 10, 1117. Available online: https://pubmed.ncbi.nlm.nih.gov/31827488 (accessed on 22 June 2022).
- Wann, D.Q.; Falco, A.; Cavigliasso, M.; Cassano, C. Phenotypic Variation of Peanut Smut (Thecaphora frezii) Incidence and Severity in the U.S. Peanut Mini-Core Collection. Peanut Sci. 2020, 47, 46–53. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, R.; Xu, Y.; Zhong, K.; Bu, Q.; Gao, H. A Comparison of Lipid Contents in Different Types of Peanut Cultivars Using UPLC-Q-TOF-MS-Based Lipidomic Study. Foods 2021, 11, 4. Available online: https://pubmed.ncbi.nlm.nih.gov/35010129 (accessed on 16 February 2022).
- Abady, S.; Shimelis, H.; Janila, P.; Mashilo, J. Groundnut (Arachis hypogaea L.) improvement in sub-Saharan Africa: A review. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2019, 69, 528–545. [Google Scholar] [CrossRef]
- Gong, A.; Shi, A.; Liu, H.; Yu, H.; Liu, L.; Lin, W.; Wang, Q. Relationship of chemical properties of different peanut varieties to peanut butter storage stability. J. Integr. Agric. 2018, 17, 1003–1010. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, K.; Wang, S. Extensions Publications; Roasted Peanut Flavour. University of Georgia. 2017. Available online: https://extension.uga.edu/publications/detail.html?number=B1478&title=RoastedPeanutFlavor (accessed on 16 February 2022).
- Davis, J.P.; Dean, L.O.; Faircloth, W.H.; Sanders, T.H. Physical and Chemical Characterizations of Normal and High-Oleic Oils from Nine Commercial Cultivars of Peanut. J. Am. Oil. Chem. Soc. 2008, 85, 235–243. [Google Scholar] [CrossRef]
- (IBPGR) IB for PGR. Descriptors of Groundnuts. Patancheru. Available online: https://www.genesys-pgr.org/descriptorlists/e08e59de-450d-42f4-b3c1-c867c10bdc5e (accessed on 16 February 2022).
- Jimenez-Lopez, J.C. Functional uses of peanut (arachis hypogaea l.) seed storage proteins. In Grain and Seed Proteins Functionality; Singh, A., Raina, S.N., Sharma, A.M., Chaudhary, M., Sharma, S., Rajpal, R., Eds.; IntechOpen: London, UK, 2021. [Google Scholar]
- Gundaraniya, S.A.; Ambalam, P.S.; Tomar, R.S. Metabolomic Profiling of Drought-Tolerant and Susceptible Peanut (Arachis hypogaea L.) Genotypes in Response to Drought Stress. ACS Omega. 2020, 5, 31209–31219. Available online: https://pubmed.ncbi.nlm.nih.gov/33324830 (accessed on 21 June 2022).
- Mora-Escobedo, R.; Hernández-Luna, P.; Joaquín-Torres, I.C.; Ortiz-Moreno, A.; Robles-Ramírez M del, C. Physicochemical properties and fatty acid profile of eight peanut varieties grown in Mexico. CyT-J. Food 2014, 13, 300–304. [Google Scholar] [CrossRef]
- Yol, E.; Ustun, R.; Golukcu, M.; Uzun, B. Oil Content, Oil Yield and Fatty Acid Profile of Groundnut Germplasm in Mediterranean Climates. J. Am. Oil Chem. Soc. 2017, 94, 787–804. [Google Scholar] [CrossRef]
- Salve, A.; Arya, S. Physical, chemical and nutritional evaluation of Arachis hypogaea L. seeds and its oil. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 835–841. [Google Scholar] [CrossRef]
- Asibuo, J.; Akromah, R.; Adu-Dapaah, H.K.; Safo-Kantanka, O. Evaluation of nutritional quality of groundnut (Arachis hypogaea L.) from Ghana. African. J. Food Agric. Nutr. Dev. 2008, 8, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, F.N.; Hossain, D.; Hosen, M.; Rahman, S. Comparative Study on Chemical Composition of Five Varieties of Groundnut (Arachis hypogaea). World J. Agric. Sci. 2015, 11, 247–254. Available online: https://www.idosi.org/wjas/wjas11(5)15/1.pdf (accessed on 5 May 2022).
- Ergun, Z.; Zarifikhosroshani, M. A comparative analysis of oil content and fatty acid in different varieties of Arachis hypogaea L. from turkey. Int. J. Agric. Life Sci. 2020, 4, 42–47. Available online: https://dergipark.org.tr/en/pub/ijafls/issue/51802/691351 (accessed on 5 May 2022).
- Dhamsaniya, N.K.; Patel, N.C.; Dabhi, M.N. Selection of groundnut variety for making a good quality peanut butter. J. Food Sci. Technol. 2012, 49, 115–118. Available online: https://pubmed.ncbi.nlm.nih.gov/23572834 (accessed on 4 January 2022).
- Zahran, H.A.; Tawfeuk, H.Z. Physicochemical properties of new peanut (Arachis hypogaea L.) varieties. OCL 2019, 26, 19. [Google Scholar] [CrossRef] [Green Version]
- Jolly, C.M.; Hinds, M.J.; Lindo, P.; Ligeon, C.; Weiss, H. Consumers Acceptance of Peanut Butter and Products Containing Peanut Butter in Two Southeastern States in the U.S. J. Int Food Agribus. Mark. 2005, 17, 87–105. [Google Scholar] [CrossRef]
- Shibli, S.; Siddique, F.; Raza, S.; Ahsan, Z.; Raza, I. Chemical Composition and Sensory Analysis of Peanut Butter from Indigenous Peanut Cultivars of Pakistan. Pakistan J. Agric. Res. 2019, 32, 159. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, H.; Liu, H.; Wang, Q. Recent Advances for the Developing of Instant Flavor Peanut Powder: Generation and Challenges. Foods 2022, 11, 1544. Available online: https://pubmed.ncbi.nlm.nih.gov/35681294 (accessed on 17 July 2022).
- Neta, E.R.; Sanders, T.; Drake, M.A. Understanding Peanut Flavor: A Current Review. In Handbook of Fruit and Vegetable Flavors; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 985–1022. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Role of Lipids in Food Flavor Generation. Molecules 2022, 27, 5014. Available online: https://pubmed.ncbi.nlm.nih.gov/35956962 (accessed on 17 July 2022).
- Sanders, T.H.; Pattee, H.E.; Vercellotte, J.R.; Bett, K.L. Advances in peanut flavour quality. In Advances in Peanut Science; Pattee, H.E., Stalker, H., Eds.; Tifton, American Peanut Research and Education Society: Alexandria, VA, USA, 1995; pp. 528–553. [Google Scholar]
- Hu, H.; Shi, A.; Liu, H.; Liu, L.; Fauconnier, M.L.; Wang, Q. Study on Key Aroma Compounds and Its Precursors of Peanut Oil Prepared with Normal- and High-Oleic Peanuts. Foods 2021, 10, 3036. Available online: https://pubmed.ncbi.nlm.nih.gov/34945587 (accessed on 5 May 2022).
- Zook, D.E.; Macku, C.; Deming, D. Effect of microwave heating on roasted nut flavor. Dev. Food Sci. 1995, 37, 1493–1518. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Champagne, E.T. Allergenicity of Maillard Reaction Products from Peanut Proteins. J. Agric. Food Chem. 1999, 47, 5227–5231. [Google Scholar] [CrossRef] [PubMed]
- Teodorowicz, M.; van Neerven, J.; Savelkoul, H. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins. Nutrients 2017, 9, 835. Available online: https://pubmed.ncbi.nlm.nih.gov/28777346 (accessed on 13 February 2022).
- Lin, M.; Long, M.; Li, G.; Chen, X.; Zheng, J.; Li, C.; Kan, J. Analysis of Peanut Using Near-Infrared Spectroscopy and Gas Chromatography–Mass Spectrometry: Correlation of Chemical Components and Volatile Compounds. Int. J. Food Prop. 2015, 19, 508–520. [Google Scholar] [CrossRef]
- Arihara, K.; Zhou, L.; Ohata, M. Bioactive Properties of Maillard Reaction Products Generated from Food Protein-derived Peptides. In Advances in Food Research and Nutrition; Elsevier: Amsterdam, The Netherlands, 2017; pp. 161–185. [Google Scholar]
- Lykomitros, D.; Fogliano, V.; Capuano, E. Flavor of roasted peanuts (Arachis hypogaea)—Part II: Correlation of volatile compounds to sensory characteristics. Food Res. Int. 2016, 89, 870–881. [Google Scholar] [CrossRef] [PubMed]
- Chetschik, I.; Granvogl, M.; Schieberle, P. Quantitation of Key Peanut Aroma Compounds in Raw Peanuts and Pan-Roasted Peanut Meal. Aroma Reconstitution and Comparison with Commercial Peanut Products. J. Agric. Food Chem. 2010, 58, 11018–11026. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Sakai, R.; Kumazawa, K.; Usuki, M.; Nishimura, O. Key Aroma Compounds in Roasted In-shell Peanuts. Biosci. Biotechnol. Biochem. 2013, 77, 1467–1473. [Google Scholar] [CrossRef]
- Baker, G.L.; Cornell, J.A.; Gorbet, D.W.; O’Keefe, S.F.; Sims, C.A.; Talcott, S.T. Determination of Pyrazine and Flavor Variations in Peanut Genotypes During Roasting. J. Food Sci. 2003, 68, 394–400. [Google Scholar] [CrossRef]
- Shen, J.; Tieman, D.; Jones, J.B.; Taylor, M.G.; Schmelz, E.; Huffaker, A.; Bies, D.; Chen, K.; Klee, H.J. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. J. Exp. Bot. 2014, 65, 419–428. Available online: https://pubmed.ncbi.nlm.nih.gov/24453226 (accessed on 5 May 2022).
- Newell, J.A.; Mason, M.E.; Matlock, R.S. Precursors of typical and atypical roasted peanut flavor. J. Agric. Food Chem. 1967, 15, 767–772. [Google Scholar] [CrossRef] [Green Version]
- Young, C.T. Amino Acid Composition of Three Commercial Peanut Varieties. J. Food Sci. 1980, 45, 1086–1087. [Google Scholar] [CrossRef]
- Pattee, H.E.; Isleib, T.G.; Giesbrecht, F.G.; McFeeters, R.F. Relationships of Sweet, Bitter, and Roasted Peanut Sensory Attributes with Carbohydrate Components in Peanuts. J. Agric. Food Chem. 2000, 48, 757–763. [Google Scholar] [CrossRef]
- Pattee, H.E.; Pearson, J.L.; Young, C.T.; Giesbrecht, F.G. Changes in roasted peanut flavor and other quality factors with seed size and storage time. J. Food Sci. 1982, 47, 455–456. [Google Scholar] [CrossRef]
- Hajisaheb, L.N.; Ramesh, S.B.; Kavera, B.; M.angesh, P.J.; Malagoud, D. Innovative breeding methods to enhance the oleic acid content in peanut for better oil quality and human health. Nov. Tech. Nutr. Food Sci. 2020, 4, 382–385. [Google Scholar] [CrossRef]
- Holbrook, C.C.; Stalker, H. Peanut breeding and genetic resources. In Pant Breeding Reviews; Janick, J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002; pp. 297–356. [Google Scholar] [CrossRef]
- Grosso, N.R.; Riveros, C.G.; Mestrallet, M.G.; Nepote, V. Chemical composition and sensory analysis of peanut pastes elaborated with high-oleic and regular peanuts from Argent. Grasas Y Aceites 2009, 60, 388–395. [Google Scholar] [CrossRef] [Green Version]
- Isleib, T.G.; Pattee, H.E.; Tubbs, R.S.; Sanders, T.H.; Dean, L.O.; Hendrix, K.W. Intensities of Sensory Attributes in High- and Normal-Oleic Cultivars in the Uniform Peanut Performance Test. Peanut Sci. 2015, 42, 83–91. [Google Scholar] [CrossRef]
- Isleib, T.G.; Pattee, H.E.; Sanders, T.H.; Hendrix, K.W.; Dean, L.O. Compositional and Sensory Comparisons between Normal- and High-Oleic Peanuts. J. Agric. Food Chem. 2006, 54, 1759–1763. [Google Scholar] [CrossRef]
- Wang, S.; Adhikari, K.; Hung, Y.-C. Acceptability and Preference Drivers of Freshly Roasted Peanuts. J. Food Sci. 2016, 82, 174–184. [Google Scholar] [CrossRef]
- Chamberlin, K.D.; Grey, T.L.; Puppala, N.; Holbrook, C.C.; Isleib, T.G.; Dunne, J.; Dean, L.; Hurdle, N.; Payton, M. Comparison of Field Emergence and Thermal Gradient Table Germination Rates of Seed from High Oleic and Low Oleic Near Isogenic Peanut Lines. Peanut Sci. 2021, 48, 131–143. [Google Scholar] [CrossRef]
- de Camargo, A.C.; de Souza Vieira, T.M.F.; Regitano-D’Arce, M.A.B.; de Alencar, S.M.; Calori-Domingues, M.A.; Canniatti-Brazaca, S.G. Gamma radiation induced oxidation and tocopherols decrease in in-shell, peeled and blanched peanuts. Int. J. Mol. Sci. 2012, 13, 2827–2845. Available online: https://pubmed.ncbi.nlm.nih.gov/22489128 (accessed on 13 February 2022).
- Davis, J.P.; Price, K.M.; Dean, L.L.; Sweigart, D.S.; Cottonaro, J.M.; Sanders, T.H. Peanut Oil Stability and Physical Properties Across a Range of Industrially Relevant Oleic Acid/Linoleic Acid Ratios. Peanut Sci. 2016, 43, 1–11. [Google Scholar] [CrossRef]
- Norden, A.J.; Gorbet, D.W.; Knauft, D.A.; Young, C.T. Variability in Oil Quality Among Peanut Genotypes in the Florida Breeding Program. Peanut Sci. 1987, 14, 7–11. [Google Scholar] [CrossRef]
- Felland, S.L.; Koehler, P.E. Sensory, Chemical, and Physical Changes in Increased Water Activity Peanut Butter Products. J. Food Qual. 1997, 20, 145–156. [Google Scholar] [CrossRef]
- Mohd Rozalli, N.H.; Chin, N.L.; Yusof, Y.A.; Mahyudin, N. Quality changes of stabilizer-free natural peanut butter during storage. J. Food Sci. Technol. 2016, 53, 694–702. Available online: https://pubmed.ncbi.nlm.nih.gov/26787989 (accessed on 13 February 2022).
- Warner, K.J.H.; Dimick, P.S.; Ziegler, G.R.; Mumma, R.O.; Hollender, R. “Flavor-fade” and Off-Flavors in Ground Roasted Peanuts As Related to Selected Pyrazines and Aldehydes. J. Food Sci. 1996, 61, 469–472. [Google Scholar] [CrossRef]
- Schirack, A.V.; Drake, M.A.; Sanders, T.H.; Sandeep, K.P. Characterization of Aroma-Active Compounds in Microwave Blanched Peanuts. J. Food Sci. 2006, 71, C513–C520. [Google Scholar] [CrossRef]
- Bett, K.L.; Boylston, T.D. Effect of Storage on Roasted Peanut Quality. In ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1992; pp. 322–343. [Google Scholar] [CrossRef]
- Mugendi, J.B.; Sims, C.A.; Gorbet, D.W.; O’Keefe, S.F. Flavor stability of high-oleic peanuts stored at low humidity. J. Am. Oil. Chem. Soc. 1998, 75, 21–25. [Google Scholar] [CrossRef]
- Riveros, C.G.; Mestrallet, M.G.; Gayol, M.F.; Quiroga, P.R.; Nepote, V.; Grosso, N.R. Effect of storage on chemical and sensory profiles of peanut pastes prepared with high-oleic and normal peanuts. J. Sci. Food Agric. 2010, 90, 2694–2699. [Google Scholar] [CrossRef]
- Sundaram, J.; Kandala, C.V.; Butts, C.L.; Chen, C.Y.; Sobolev, V. Nondestructive NIR Reflectance Spectroscopic Method for Rapid Fatty Acid Analysis of Peanut Seeds. Peanut Sci. 2011, 38, 85–92. [Google Scholar] [CrossRef]
- Bansod, B.; Thakur, R.; Holser, R. Analysis of Peanut Seed Oil by NIR. Am. J. Anal. Chem. 2015, 6, 917–922. [Google Scholar] [CrossRef] [Green Version]
- Lawless, H.T.; Heymann, H. Color and Appearance. Sensory Evaluation of Food; Springer: Manhattan, NY, USA, 1999; pp. 406–429. [Google Scholar] [CrossRef]
- León, K.; Mery, D.; Pedreschi, F.; León, J. Color measurement in L∗a∗b∗ units from RGB digital images. Food Res. Int. 2006, 39, 1084–1091. [Google Scholar] [CrossRef]
- Spence, C. On the Relationship(s) Between Color and Taste/Flavor. Exp. Psychol. 2019, 66, 99–111. Available online: https://pubmed.ncbi.nlm.nih.gov/30895915 (accessed on 13 February 2022). [CrossRef]
- McNeill, K.A.Y.L.; Sanders, T.H.; Civille, G.V. Using Focus Groups to Develop a Quantitative Consumer Questionnaire for Peanut Butter. J. Sens. Stud. 2000, 15, 163–178. [Google Scholar] [CrossRef]
- McDaniel, K.A.; White, B.L.; Dean, L.L.; Sanders, T.H.; Davis, J.P. Compositional and Mechanical Properties of Peanuts Roasted to Equivalent Colors using Different Time/Temperature Combinations. J. Food Sci. 2012, 77, C1293–C1299. [Google Scholar] [CrossRef]
- Shi, X.; Sandeep, K.P.; Davis, J.P.; Sanders, T.H.; Dean, L.L. Kinetics of color development of peanuts during dry roasting using a batch roaster. J. Food Process. Eng. 2016, 40, e12498. [Google Scholar] [CrossRef]
- Janila, P.; Aruna, R.; Jagadish, E.; Nigam, S. Variation in blanchability in Virginia groundnuts (Arachis hypogaea L). J. Oilseeds Res. 2012, 29, 116–120. Available online: http://oar.icrisat.org/id/eprint/7059 (accessed on 10 September 2022).
- Wright, G.C.; Borgognone, M.G.; OConnor, D.J.; Rachaputi, R.C.N.; Henry, R.J.; Furtado, A.; Anglin, N.; Freischfresser, D.B. Breeding for improved blanchability in peanut: Phenotyping, genotype × environment interaction and selection. Crop. Pasture Sci. 2018, 69, 1237. [Google Scholar] [CrossRef]
- Shieh, C.-J.; Akoh, C.C.; Koehler, P.E. Optimizing Low Fat Peanut Spread Containing Sucrose Polyester. J. Food Sci. 1996, 61, 1227–1229. [Google Scholar] [CrossRef]
- Crippen, K.L.; Hamann, D.D.; Young, C.T. Effects of Grind Size, Sucrose Concentration and Salt Concentration on Peanut Butter Texture. J. Texture Stud. 1989, 20, 29–41. [Google Scholar] [CrossRef]
- Chen, B.; Li, Q.; Hu, H.; Meng, S.; Shah, F.; Wang, Q.; Liu, H.Z. An optimized industry processing technology of peanut tofu and the novel prediction model for suitable peanut varieties. J. Integr. Agric. 2020, 19, 2340–2351. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Liu, L.; Wang, Q.; Li, Q.; Du, Y.; Zhang, J. Protein Contents in Different Peanut Varieties and Their Relationship to Gel Property. Int. J Food Prop. 2014, 17, 1560–1576. [Google Scholar] [CrossRef]
- Liu, L.; Xu, F.; Deleu, M.; Wang, Q. Structure and thermal properties of arachin from six varieties: Effect of 35.5 kDa subunit. Int. J. Food Prop. 2020, 23, 908–917. [Google Scholar] [CrossRef]
- Mohd Rozalli, N.; Chin, N.; Yusof, Y. Simultaneous multiple responses modelling, optimisation and correlation of Asian type peanuts (Arachis hypogaea L.) roasting using response surface methodology. Acta Aliment. 2014, 43, 142–157. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, E.M.; Ali, T. Textural Quality of Peanut Butter as Influenced by Peanut Seed and Oil Contents. Peanut Sci. 1986, 13, 18–20. [Google Scholar] [CrossRef]
- Wang, C.; Tang, Y.; Wang, X.; Chen, D.; Cui, F.; Chi, Y.C.; Zhang, J.; Yu, S.L. Evaluation of groundnut genotypes from China for quality traits. J. Agric. Res. 2011, 9, 1–15. Available online: http://ejournal.icrisat.org/Volume9/Groundnut/Evaluation.pdf (accessed on 12 September 2022).
Popular Varieties in US | Characteristics | Popular Uses | |
---|---|---|---|
Virginia | Bailey, Champs, Florida Fancy, Gregory, Perry, Phillips, Sugg, Sullivan, Titan, and Wynne | Large-sized kernel, generally elongated, and tapered towards the sprout end. Pinkish-tan skins when fresh, which change to reddish-brown color with storage. Skin texture is comparable to the Runner variety. | Snacking cocktails and partial use in peanut butter. |
Runner | Florunner, Sunrunner, Southern Runner, Georgia Runner, Georgia Green, and Flavor Runner 458 | Medium-sized, uniformly shaped kernels that are elongated with blunt flattened ends. Rougher skins in comparison to the Spanish type. Color is generally pinkish-brown when fresh and turns to reddish brown with storage. Large yield output and medium-sized and uniformly shaped kennels. Relative uniformity during roasting. | Peanut butter production. |
Valencia | Tennessee Reds | Cylindrical and slender pods, containing two to four kernels with blocky, flattened ends. Kernels are small to medium in size with a distinctive bright red color when fresh, turning dark red with storage. A distinctive sweet taste. | Homemade peanut butter and fresh boiled peanuts. |
Spanish | Georgia-045, Olin, Pronto, Spanco, and Tamspan 90 | Distinctive rounded shape and relatively small-sized kernels for older varieties and medium-sized kernels for new varieties. Smooth skin and delicate texture; color changes from pinkish buff when fresh to a light brown with an increase in storage time. Their distinctive reddish-brown color and small size make them most suitable for candies and salted-shell nuts. High oil content and a distinctively strong nutty flavor. | Oil production, candies, and salted shelled nuts. |
Components | Class | Types | Amount (Per 100 g of Dry Roasted Peanuts) |
---|---|---|---|
Lipids | Fatty acids | Saturated | 6.893 g |
Monosaturated | 24.640 g | ||
Polysaturated | 15.694 g | ||
Vitamins | Fat soluble | E (tocopherol) | 8.2 mg (raw), 4.1 mg/100 g roasted |
Water soluble | B2 (Riboflavin) | 0.098 mg | |
B1 (Thiamine) | 1.0 mg | ||
B5 (Panthothenic acid) | 1.395 mg | ||
B3 (Niacin) | 13.525 mg | ||
B6 (Pyridoxine) | 0.256 mg | ||
B9 (Folate) | 145 mg | ||
Choline | 55.3 mg | ||
Minerals | Macro | Potassium | 658 mg |
Sodium | Approx. 5.56 mg | ||
Calcium | 54 mg | ||
Magnesium | 175 mg | ||
Phosphorus | 358 mg | ||
Micro | * Selenium | 7.5 mg | |
* Copper | 0.671 mg | ||
* Manganese | Approx. 2.06 mg | ||
Iron | 2.26 mg | ||
Zinc | 3.31 mg | ||
(* antioxidant minerals) | |||
Amino acids | Essential | Tryptophan | 0.230 gm |
Leucine | 1.535 gm | ||
Isoleucine | 0.833 gm | ||
Methioione | 0.291 gm | ||
Phenyalanine | 0.304 gm | ||
Valine | 0.993 gm | ||
Lysine | 0.850 gm | ||
Threonine | 0.811 gm | ||
Non-essential | Glycine | 1.427 gm | |
Alanine | 0.941 gm | ||
Cysteine | 0.304 gm | ||
Tyrosine | 0.963 gm | ||
Arginine | 2.832 gm | ||
Histidine | 0.599 gm | ||
Aspartic acid | 2.888 gm | ||
Glutamic acid | 4.949 gm | ||
Proline | 1.045 gm | ||
Serine | 1.167 gm | ||
Others | Total carbohydrates | 21.51 gm | |
Total sugars | 4.18 gm | ||
Dietary fibers | 8.0 gm | ||
Bioactive Compounds | Isoflavonoid | Daidzein | 49.7 mg |
Genistein | 82.6 mg | ||
Phenolic acids | p-coumaric acid | 6.9 mg | |
Phytosterols | b-sitosterol | 61 mg to 114 mg | |
Stilbenes | Resveratrol | 0.48 mg to 3.96 mg | |
Coenzyme Q10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sithole, T.R.; Ma, Y.-X.; Qin, Z.; Liu, H.-M.; Wang, X.-D. Influence of Peanut Varieties on the Sensory Quality of Peanut Butter. Foods 2022, 11, 3499. https://doi.org/10.3390/foods11213499
Sithole TR, Ma Y-X, Qin Z, Liu H-M, Wang X-D. Influence of Peanut Varieties on the Sensory Quality of Peanut Butter. Foods. 2022; 11(21):3499. https://doi.org/10.3390/foods11213499
Chicago/Turabian StyleSithole, Tapiwa Reward, Yu-Xiang Ma, Zhao Qin, Hua-Min Liu, and Xue-De Wang. 2022. "Influence of Peanut Varieties on the Sensory Quality of Peanut Butter" Foods 11, no. 21: 3499. https://doi.org/10.3390/foods11213499
APA StyleSithole, T. R., Ma, Y. -X., Qin, Z., Liu, H. -M., & Wang, X. -D. (2022). Influence of Peanut Varieties on the Sensory Quality of Peanut Butter. Foods, 11(21), 3499. https://doi.org/10.3390/foods11213499