Effects of Bacillus subtilis BSNK-5-Fermented Soymilk on the Gut Microbiota by In Vitro Fecal Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of B. subtilis BSNK-5-Fermented Soymilk
2.2. Collection and Pretreatment of Fecal Samples
2.3. Fecal Fermentation of BSNK-5-Fermented Soymilk
2.4. Determination of SCFAs in Fermentation Broth
2.5. Fecal Microbial DNA Extraction and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.6. Statistical Analysis
3. Results
3.1. Effects of SMF on SCFAs Production
3.2. Effects of SMF on Fecal Microbiota
3.3. Correlation Analysis between SCFAs and Gut Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. 2017, 57, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Krishnaswamy, K. Sustainable zero-waste processing system for soybeans and soy by-product valorization. Trends Food Sci. Tech. 2022, 128, 331–344. [Google Scholar] [CrossRef]
- Lawrence, S.; Lopetcharat, K.; Drake, M. Preference mapping of soymilk with different US consumers. J. Food Sci. 2016, 81, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodside, J.V.; Brennan, S.; Cantwell, M. Are Soy-Milk Products Viable Alternatives to Cow’s Milk. In Beverage Impacts on Health and Nutrition. Nutrition and Health; Humana Press: Totowa, NJ, USA, 2016; pp. 151–162. [Google Scholar]
- Zhu, Y.Y.; Thakur, K.; Feng, J.Y.; Cai, J.S.; Zhang, J.G.; Hu, F.; Wei, Z.J. B-vitamin enriched fermented soymilk: A novel strategy for soy-based functional foods development. Trends Food Sci. Tech. 2020, 105, 43–55. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, T.; Chu, X.; Tang, S.; Cao, W.; Liang, F.; Fang, Y.; Pan, S.; Xu, X. Fermented blueberry pomace with antioxidant properties improves fecal microbiota community structure and short chain fatty acids production in an in vitro mode. LWT-Food Sci. Technol. 2020, 125, 109260. [Google Scholar] [CrossRef]
- Bhushan, B.; Kumkum, C.R.; Kumari, M.; Ahire, J.J.; Dicks, L.M.T.; Mishra, V. Soymilk bio-enrichment by indigenously isolated riboflavin-producing strains of Lactobacillus plantarum. LWT-Food Sci. Technol. 2020, 119, 108871. [Google Scholar] [CrossRef]
- Ni, N.; Xin, Z.H.; Zhang, L.J.; Wang, F.Z.; Li, S.Y. Optimization of liquid fermentation conditions for the production of nattokinase from soymilk. China Curr. Biotechnol. 2019, 9, 210–225. [Google Scholar]
- Gao, Y.; Xu, B.; Fan, H.; Zhang, M.; Zhang, L.; Lu, C.; Zhang, N.; Fan, B.; Wang, F.; Li, S. 1H NMR-based chemometric metabolomics characterization of soymilk fermented by Bacillus subtilis BSNK-5. Food Res. Int. 2020, 138, 109686. [Google Scholar] [CrossRef]
- Pan, F.; Zhang, L.L.; Luo, H.J.; Chen, Y.; Long, L.; Wang, X.; Zhuang, P.T.; Li, E.M.; Xu, L.Y. Dietary riboflavin deficiency induces ariboflavinosis and esophageal epithelial atrophy in association with modification of gut microbiota in rats. Eur. J. Nutr. 2021, 60, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Keitarou, K.; Satoshi, Y. Trends in the application of Bacillus in fermented foods. Curr. Opin. Biotechnol. 2018, 56, 36–42. [Google Scholar]
- You, J.; Yang, C.; Pan, X.; Hu, M.; Du, Y.; Osire, T. Metabolic engineering of Bacillus subtilis for enhancing riboflavin production by alleviating dissolved oxygen limitation. Bioresour. Technol. 2021, 333, 125228. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, Z.; Yang, K.; Sun, P.; Cai, M. Effect of nanoemulsion loading finger citron (Citrus medica L. var. Sarcodactylis) essential oil on human gut microbiota. J. Funct. Foods 2021, 77, 104336. [Google Scholar] [CrossRef]
- Bartosch, S.; Fite, A.; Macfarlane, G.T.; McMurdo, M.E.T. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol. 2013, 70, 3575–3581. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.B.; Jiang, J.; Min, L.; Gang, W.; You, J.W.; Jian, Z. Role of intestinal flora imbalance in pathogenesis of pouchitis. Asian Pac. J. Trop. Med. 2016, 9, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Liu, J.; Cheng, H.; Wang, H.; Tan, Y.; Feng, W.; Peng, C. Interactions between polysaccharides and gut microbiota: A metabolomic and microbial review. Food Res. Int. 2022, 160, 111653. [Google Scholar] [CrossRef]
- Hills, R.D.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut microbiome: Profound implications for diet and disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef] [Green Version]
- Koh, A.; De Vadder, F.; Kovatcheva, D.P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Feng, X.; Jiang, Y.; Hu, Y.; Zhang, J.; Li, Z.; Song, C.; Li, F.; Hou, J.; Hou, J.; et al. Simulated digestion and in vitro fermentation of a polysaccharide from lotus (Nelumbo nucifera Gaertn.) root residue by the human gut microbiota. Food Res. Int. 2022, 157, 111074. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Cani, P.D. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [PubMed]
- Ma, Y.; Liu, S.; Huang, H. Alleviation effect of heat-treated and in vitro gastrointestinal digested soymilks on AAPH-induced oxidative stress in human erythrocytes: Digested soymilks alleviate oxidative stress. Food Res. Int. 2014, 66, 228–234. [Google Scholar] [CrossRef]
- Carmody, R.N.; Gerber, G.K.; Luevano, J.M.; Gatti, D.M.; Somes, L.; Svenson, K.L.; Turnbaugh, P.J. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 2015, 17, 72–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Krishnan, H.B.; Pham, Q.; Yu, L.L.; Wang, T.T. Soy and gut microbiota: Interaction and implication for human health. J. Agric. Food Chem. 2016, 64, 8695–8709. [Google Scholar] [PubMed]
- Gao, Y.; Li, D.; Tian, Z.; Hou, L.; Gao, J.; Fan, B.; Wang, F.; Li, S. Metabolomics analysis of soymilk fermented by Bacillus subtilis BSNK-5 based on UHPLC-Triple-TOF-MS/MS. LWT-Food Sci. Technol. 2022, 160, 113311. [Google Scholar]
- Hu, J.; Nie, S.; Li, C.; Xie, M. In vitro fermentation of polysaccharide from the seeds of Plantago asiatica L. by human fecal microbiota. Food Hydrocoll. 2013, 33, 384–392. [Google Scholar] [CrossRef]
- Zhang, X.; Aweya, J.J.; Huang, Z.X.; Kang, Z.Y.; Bai, Z.H.; Li, K.H.; He, X.T.; Chen, X.Q.; Cheong, K.L. In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro-oligosaccharides by human fecal inocula and its impact on microbiota. Carbohydr. Polym. 2020, 234, 115894. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar]
- Zhou, X.; Zhang, Z.; Huang, F.; Yang, C.; Huang, Q. In vitro digestion and fermentation by human fecal microbiota of polysaccharides from flaxseed. Molecules 2020, 25, 4354. [Google Scholar]
- Ge, Q.; Li, H.; Zheng, Z.; Yang, K.; Li, P.; Xiao, Z.; Xiao, G.; Mao, J. In vitro fecal fermentation characteristics of bamboo insoluble dietary fiber and its impacts on human gut microbiota. Food Res. Int. 2022, 156, 111173. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Chen, X.; Hao, L.; Du, P.; Liu, L. The bioavailability of soybean polysaccharides and their metabolites on gut microbiota in the simulator of the human intestinal microbial ecosystem (SHIME). Food Chem. 2022, 362, 130223. [Google Scholar] [CrossRef] [PubMed]
- George, T.M.; Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 2012, 95, 50–60. [Google Scholar]
- Gil-Sánchez, I.; Cueva, C.; Sanz-Buenhombre, M.; Guadarrama, A.; Moreno Arribas, M.V.; Bartolomé, B. Dynamic gastrointestinal digestion of grape pomace extracts: Bioaccessible phenolic metabolites and impact on human gut microbiota. J. Food Compos. Anal. 2018, 68, 41–52. [Google Scholar] [CrossRef]
- Wu, D.T.; Nie, X.R.; Gan, R.Y.; Guo, H.; Fu, Y.; Yuan, Q.; Zhang, Q.; Qin, W. In vitro digestion and fecal fermentation behaviors of a pectic polysaccharide from okra (Abelmoschus esculentus) and its impacts on human gut microbiota. Food Hydrocoll. 2021, 114, 106577. [Google Scholar] [CrossRef]
- Xia, Z.; Han, Y.; Wang, K.; Guo, S.S.; Wu, D.; Huang, X.; Li, Z.; Zhu, L. Oral administration of propionic acid during lactation enhances the colonic banier function. Lipids Health Dis. 2017, 16, 62. [Google Scholar] [CrossRef]
- Ding, Y.; Yan, Y.; Peng, Y.; Chen, D.; Mi, J.; Lu, L.; Luo, Q.; Li, X.; Zeng, X.; Cao, Y. In vitro digestion under simulated saliva, gastric and small intestinal conditions and fermentation by human gut microbiota of polysaccharides from the fruits of Lycium barbarum. Int. J. Biol. Macromol. 2019, 125, 751–760. [Google Scholar] [CrossRef]
- Wu, W.; Hu, J.; Gao, H.; Chen, H.; Fang, X.; Mu, H.; Han, Y.; Liu, R. The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics. Food Chem. 2020, 332, 127372. [Google Scholar] [CrossRef]
- Hong, C.J.; Chen, S.Y.; Hsu, Y.H.; Yen, G.C. Protective effect of fermented okara on the regulation of inflammation, the gut microbiota, and SCFA production in rats with TNBS-induced colitis. Food Res. Int. 2022, 157, 111390. [Google Scholar] [CrossRef]
- Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef]
- Wang, Z.; Saha, S.; Van, H.S. Gut microbiome differences between metformin- and liraglutide-treated T2DM subjects. Endocrinol. Diabetes Metab. 2017, 1, e00009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliphant, K.; Ali, M.; D’Souza, M.; Hughes, P.D.; Sulakhe, D.; Wang, A.Z.; Xie, B.; Yeasin, R.; Msall, M.E.; Andrews, B.; et al. Bacteroidota and Lachnospiraceae integration into the gut microbiome at key time points in early life are linked to infant neurodevelopment. Gut Microbes 2021, 13, 1997560. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wright, K.; Davis, J.M.; Jeraldo, P.; Marietta, E.V.; Murray, J.; Nelson, H.; Matteson, E.L.; Taneja, V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Ansarib, A.R.; Niu, X.Y.; Zou, W.H.; Lu, M.Q.; Dong, L.; Li, F.; Chen, Y.H.; Yang, K.L.; Song, H. Interaction between gut microbiota dysbiosis and lung infection as gut-lung axis caused by Streptococcus suis in mouse model. Microbiol. Res. 2022, 261, 127047. [Google Scholar] [CrossRef] [PubMed]
- Astbury, S.; Atallah, E.; Vijay, A.; Aithal, G.P.; Grove, J.I.; Valdes, A.M. Lower gut microbiome diversity and higher abundance of proinflammatory genus Collinsella are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes 2020, 11, 569–580. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Hou, L.; Hu, M.; Li, D.; Tian, Z.; Wen, W.; Fan, B.; Li, S.; Wang, F. Effects of Bacillus subtilis BSNK-5-Fermented Soymilk on the Gut Microbiota by In Vitro Fecal Fermentation. Foods 2022, 11, 3501. https://doi.org/10.3390/foods11213501
Gao Y, Hou L, Hu M, Li D, Tian Z, Wen W, Fan B, Li S, Wang F. Effects of Bacillus subtilis BSNK-5-Fermented Soymilk on the Gut Microbiota by In Vitro Fecal Fermentation. Foods. 2022; 11(21):3501. https://doi.org/10.3390/foods11213501
Chicago/Turabian StyleGao, Yaxin, Lizhen Hou, Miao Hu, Danfeng Li, Zhiliang Tian, Wei Wen, Bei Fan, Shuying Li, and Fengzhong Wang. 2022. "Effects of Bacillus subtilis BSNK-5-Fermented Soymilk on the Gut Microbiota by In Vitro Fecal Fermentation" Foods 11, no. 21: 3501. https://doi.org/10.3390/foods11213501
APA StyleGao, Y., Hou, L., Hu, M., Li, D., Tian, Z., Wen, W., Fan, B., Li, S., & Wang, F. (2022). Effects of Bacillus subtilis BSNK-5-Fermented Soymilk on the Gut Microbiota by In Vitro Fecal Fermentation. Foods, 11(21), 3501. https://doi.org/10.3390/foods11213501