Changes in Protein Degradation and Non-Volatile Flavor Substances of Swimming Crab (Portunus trituberculatus) during Steaming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sample
2.3. Moisture Content
2.4. Total Nitrogen (TN)
2.5. Non-Protein Nitrogen (NPN)
2.6. Protein Degradation Index (PI)
2.7. FAAs
2.8. Nucleotides
2.9. TAV and EUC
2.10. Electronic Tongue
2.11. Sensory Assessment
2.12. Statistical Analysis
3. Results and Discussion
3.1. Moisture Content Analysis
3.2. Protein Degradation Analysis
3.3. FAAs Analysis
3.4. Nucleotide Analysis
3.5. EUC and TAV Analysis
3.6. Electronic Tongue Analysis
3.7. Sensory Evaluation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethical Guidelines
References
- Jin, M.; Wang, M.; Huo, Y.; Huang, W.; Mai, K.; Zhou, Q. Dietary lysine requirement of juvenile swimming crab, Portunus trituberculatus. Aquaculture 2015, 448, 1–7. [Google Scholar] [CrossRef]
- Sun, P.; Jin, M.; Ding, L.; Lu, Y.; Ma, H.; Yuan, Y.; Zhou, Q. Dietary lipid levels could improve growth and intestinal microbiota of juvenile swimming crab, Portunus trituberculatus. Aquaculture 2018, 490, 208–216. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022; Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Hackett, S.; Krachey, M.; Dewees, C.; Hankin, D.; Sortais, K. An economic overview of dungeness carb (Cancer magister) processing in California. Calif. Coop. Ocean. Fish. Investig. Rep. 2003, 44, 86–93. [Google Scholar]
- Risso, S.J.; Carelli, A.A. Nutrient composition of raw and cooked meat of male southern King Crab (Lithodes santolla Molina, 1782). J. Aquat. Food Prod. Technol. 2012, 21, 433–444. [Google Scholar] [CrossRef]
- Luo, X.; Xiao, S.; Ruan, Q.; Gao, Q.; An, Y.; Hu, Y.; Xiong, S. Differences in flavor characteristics of frozen surimi products reheated by microwave, water boiling, steaming, and frying. Food Chem. 2022, 372, 131260. [Google Scholar] [CrossRef]
- Li, X.; Xie, W.; Bai, F.; Wang, J.; Zhou, X.; Gao, R.; Xu, X.; Zhao, Y. Influence of thermal processing on flavor and sensory profile of sturgeon meat. Food Chem. 2022, 374, 131689. [Google Scholar] [CrossRef]
- Wang, S.; Hu, M.; Zhao, L.; Liu, Q.; Cao, R. Changes in lipid profiles and volatile compounds of shrimp (Penaeus vannamei) submitted to different cooking methods. Int. J. Food Sci. Technol. 2022, 57, 4234–4244. [Google Scholar] [CrossRef]
- Yu, H.-Z.; Chen, S.-S. Identification of characteristic aroma-active compounds in steamed mangrove crab (Scylla serrata). Food Res. Int. 2010, 43, 2081–2086. [Google Scholar] [CrossRef]
- Shi, S.; Wang, X.; Wu, X.; Shi, W. Effects of four cooking methods on sensory and taste quality of Portunus trituberculatus. Food Sci. Nutr. 2020, 8, 1115–1124. [Google Scholar] [CrossRef] [Green Version]
- Dima, J.B.; Barón, P.J.; Zaritzky, N.E. Mathematical modeling of the heat transfer process and protein denaturation during the thermal treatment of Patagonian marine crabs. J. Food Eng. 2012, 113, 623–634. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Shi, W.; Huang, H.; Shen, S.; Yang, F.; Chen, S. Changes of the flavor substances and protein degradation of black carp (Mylopharyngodon piceus) pickled products during steaming. J. Sci. Food Agric. 2021, 101, 4033–4041. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wang, H.; Wu, X.; Wang, X.; Shi, W. The flavor of gonad and meat of female Portunus Trituberculatus cultured in indoor and outdoor. J. Food Biochem. 2019, 43, e12743. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhou, B.; Cheng, Y.; Zeng, C.; Wang, C.; Feng, L. Comparison of gender differences in biochemical composition and nutritional value of various edible parts of the blue swimmer crab. J. Food Compos. Anal. 2010, 23, 154–159. [Google Scholar] [CrossRef]
- Luo, J.; Monroig, O.; Zhou, Q.; Tocher, D.R.; Yuan, Y.; Zhu, T.; Lu, J.; Song, D.; Jiao, L.; Jin, M. Environmental salinity and dietary lipid nutrition strategy: Effects on flesh quality of the marine euryhaline crab Scylla paramamosain. Food Chem. 2021, 361, 130160. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wang, X.; Jin, M.; Jiao, L.; Sun, P.; Betancor, M.B.; Tocher, D.R.; Zhou, Q. Modification of nutritional values and flavor qualities of muscle of swimming crab (Portunus trituberculatus): Application of a dietary lipid nutrition strategy. Food Chem. 2020, 308, 125607. [Google Scholar] [CrossRef] [PubMed]
- Tu, L.; Wu, X.; Wang, X.; Shi, W. Effects of fish oil replacement by blending vegetable oils in fattening diets on nonvolatile taste substances of swimming crab (Portunus trituberculatus). J. Food Biochem. 2020, 44, e13345. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, M. Non-volatile taste active compounds in the meat of Chinese mitten crab (Eriocheir sinensis). Food Chem. 2007, 104, 1200–1205. [Google Scholar] [CrossRef]
- Liu, C.; Meng, F.; Tang, X.; Shi, Y.; Wang, A.; Gu, Z.; Pan, Z. Comparison of nonvolatile taste active compounds of wild and cultured mud crab Scylla paramamosain. Fish. Sci. 2018, 84, 897–907. [Google Scholar] [CrossRef]
- Official Methods of Analysis of AOAC International; 4th Revision; 1998; Volume Edition 16; Volume I and II.
- Cambero, M.I.; Jaramillo, C.J.; Ordonez, J.A.; Cobos, A.; pereira-Lima, C.I. Effect of cooking conditions on the flavour compounds and composition of shrimp (Parapenaeus longirostris) broth. Z. Lwbensm Unters. A 1998, 206, 311–322. [Google Scholar] [CrossRef]
- Zhuang, K.; Wu, N.; Wang, X.; Wu, X.; Wang, S.; Long, X.; Wei, X. Effects of 3 feeding modes on the volatile and nonvolatile compounds in the edible tissues of female Chinese mitten crab (Eriocheir sinensis). J. Food Sci. 2016, 81, S968–S981. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, M.; Zheng, Y.; Xu, C.; Tao, N.; Wu, X.; Wang, X. Brackish water improves the taste quality in meat of adult male Eriocheir sinensis during the postharvest temporary rearing. Food Chem. 2021, 343, 128409. [Google Scholar] [CrossRef]
- Rotzoll, N.; Dunkel, A.; Hofmann, T. Quantitative studies, taste reconstitution, and omission experiments on the key taste compounds in morel mushrooms (Morchella deliciosa Fr.). J. Agric. Food Chem. 2006, 54, 2705–2711. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; He, Y.; Wang, Y.; Tao, N.; Wu, X.; Wang, X.; Qiu, W.; Ma, M. Comparison of flavour qualities of three sourced Eriocheir sinensis. Food Chem. 2016, 200, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Yoshikawa, T.; Ikeda, S.; Ninomiya, T. Measurement of the relative taste intensity of some L-α-amino acids and 5’-nucleotides. J. Food Sci. 1971, 36, 846–849. [Google Scholar] [CrossRef]
- Yang, W.; Shi, W.; Zhou, S.; Qu, Y.; Wang, Z. Research on the changes of water-soluble flavor substances in grass carp during steaming. J. Food Biochem. 2019, 43, e12993. [Google Scholar] [CrossRef]
- Combes, S.; Lepetit, J.; Darche, B.; Lebas, F. Effect of cooking temperature and cooking time on Warner–Bratzler tenderness measurement and collagen content in rabbit meat. Meat Sci. 2003, 39, 91–96. [Google Scholar] [CrossRef]
- Sun, L.; Xia, W. Effect of steam cooking on muscle and protein heat-denature of tuna. Food Mach. 2010, 26, 22–25. [Google Scholar] [CrossRef]
- Rabie, M.A.; Peres, C.; Malcata, F.X. Evolution of amino acids and biogenic amines throughout storage in sausages made of horse, beef and turkey meats. Meat Sci. 2014, 96, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Fuke, S.; Konosu, S. Taste-active components in some foods: A review of Japanese research. Physiol. Behav. 1991, 49, 863–868. [Google Scholar] [CrossRef]
- Lioe, H.N.; Apriyantono, A.; Takara, K.; Wada, K.; Yasuda, M. Umami taste enhancement of MSG/NaCl mixtures by subthreshold L-α-Aromatic amino acids. J. Food Sci. 2005, 70, s401–s405. [Google Scholar] [CrossRef]
- Li, X.; Luan, A.; Li, X.; Wang, F.; Huang, Y.; Li, A.; Liu, Y. Protein degradation and aggregation in silver carp (Hypophthalmichthys molitrix) muscle during hot air drying. LWT-Food Sci. Technol. 2022, 163, 113540. [Google Scholar] [CrossRef]
- Xie, Q.; Xu, B.; Xu, Y.; Yao, Z.; Zhu, B.; Li, X.; Sun, Y. Effects of different thermal treatment temperatures on volatile flavour compounds of water-boiled salted duck after packaging. LWT 2022, 154, 112625. [Google Scholar] [CrossRef]
- Hong, H.; Regenstein, J.M.; Luo, Y. The importance of ATP-related compounds for the freshness and flavor of post-mortem fish and shellfish muscle: A review. Food Sci. Nutr. 2017, 57, 1787–1798. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Cai, C.; Ye, Y.; Chen, D.; Wu, P.; Li, E.; Chen, L.; Song, L. Comparison of non-volatile compounds and sensory characteristics of Chinese mitten crabs (Eriocheir sinensis) reared in lakes and ponds: Potential environmental factors. Aquaculture 2012, 364–365, 96–102. [Google Scholar] [CrossRef]
- Zhang, R.; Qiu, W.; Zhang, M.; Ho Row, K.; Cheng, Y.; Jin, Y. Effects of different heating methods on the contents of nucleotides and related compounds in minced Pacific white shrimp and Antarctic krill. LWT-Food Sci Technol 2018, 87, 142–150. [Google Scholar] [CrossRef]
- Mendes, R.; Quinta, R.; Nunes, M.L. Changes in baseline levels of nucleotides during ice storage of fish and crustaceans from the Portuguese coast. Eur. Food Res. Technol. 2001, 212, 141–146. [Google Scholar] [CrossRef]
- Gorbatov, V.M.; Lyaskovskaya, Y.N. Review of the flavour-contributing volatiles and water-soluble non-volatiles in pork meat and derived products. Meat Sci. 1980, 4, 209–225. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, W.; Li, B.; Liu, Y. Non-volatile taste active compounds and umami evaluation in two aquacultured pufferfish (Takifugu obscurus and Takifugu rubripes). Food Biosci. 2019, 32, 100468. [Google Scholar] [CrossRef]
- Liu, T.; Xia, N.; Wang, Q.; Chen, D. Identification of the non-volatile taste-active components in crab sauce. Foods 2019, 8, 324. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.; Tian, L.; Jiao, Y.; Tan, Y.; Liu, C.; Luo, Y.; Hong, H. The effect of steam cooking on the proteolysis of pacific oyster (Crassostrea gigas) proteins: Digestibility, allergenicity, and bioactivity. Food Chem. 2022, 379, 132160. [Google Scholar] [CrossRef]
- Haddi, Z.; Mabrouk, S.; Bougrini, M.; Tahri, K.; Sghaier, K.; Barhoumi, H.; El Bari, N.; Maaref, A.; Jaffrezic-Renault, N.; Bouchikhi, B. E-Nose and e-Tongue combination for improved recognition of fruit juice samples. Food Chem. 2014, 150, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Garcia Hernandez, C.; Salvo Comino, C.; Martin Pedrosa, F.; Garcia Cabezon, C.; Rodriguez Mendez, M.L. Analysis of red wines using an electronic tongue and infrared spectroscopy. Correlations with phenolic content and color parameters. LWT-Food Sci. Technol. 2020, 118, 108785. [Google Scholar] [CrossRef]
- Deng, Y.; Luo, Y.; Wang, Y.; Yue, J.; Liu, Z.; Zhong, Y.; Zhao, Y.; Yang, H. Drying-induced protein and microstructure damages of squid fillets affected moisture distribution and rehydration ability during rehydration. J. Food Eng. 2014, 123, 23–31. [Google Scholar] [CrossRef]
Score | |||||
---|---|---|---|---|---|
Index | 1–4 | 5–8 | 9–12 | 13–16 | 17–20 |
Order | Unacceptable | No inherent aroma | Slight inherent aroma | Inherent aroma | Strong inherent aroma |
Taste | Unacceptable | No inherent umami | Slightly inherent umami | Inherent umami | Strong inherent umami |
Appearance | Dim | Slightly dim | Fairly bright | Bright | Translucent |
Morphology | Very loose | Loose | Partial loose | Tight | Very tight |
Texture | Very soft or stiff | Soft | Slight elastic | Elastic | Firm |
0 min | 5 min | 10 min | 15 min | 20 min | 25 min | |
---|---|---|---|---|---|---|
Moisture content (%) | 79.85 ± 0.35 b | 80.84 ± 0.07 a | 78.28 ± 0.17 d | 78.64 ± 0.19 cd | 78.68 ± 0.33 cd | 78.82 ± 0.25 c |
TN (g/100 g) | 86.80 ± 2.22 b | 90.12 ± 0.71 a | 85.19 ± 0.90 b | 85.97 ± 0.33 b | 82.55 ± 0.91 c | 82.06 ± 0.28 c |
NPN (g/100 g) | 8.88 ± 0.05 c | 10.2 ± 0.51 bc | 12.23 ± 1.05 a | 11.39 ± 0.46 ab | 9.19 ± 0.00 c | 9.71 ± 0.28 c |
PI (%) | 10.23 | 11.32 | 14.36 | 13.25 | 11.13 | 11.83 |
Content (mg/100 g) | |||||||
---|---|---|---|---|---|---|---|
Amino Acid | Threshold (mg/100 g) | 0 min | 5 min | 10 min | 15 min | 20 min | 25 min |
Asp | 100 | 109.93 ± 19.74 b | 106.5 ± 18.08 b | 144.37 ± 5.17 a | 110.64 ± 5.24 b | 91.24 ± 8.73 bc | 73.57 ± 2.24 c |
Thr | 260 | 503.59 ± 44.39 a | 297.36 ± 51.86 b | 436.84 ± 114.29 a | 221.49 ± 33.89 b | 187.15 ± 29.86 b | 295.65 ± 2.31 b |
Ser | 150 | 44.72 ± 3.36 b | 54.76 ± 3.85 a | 25.87 ± 6.43 c | 22.17 ± 2.08 cd | 17.8 ± 1.53 d | 42.59 ± 4.2 b |
Glu | 30 | 261.45 ± 10.64 bc | 253.01 ± 30.13 bc | 329.41 ± 92.37 ab | 409.59 ± 16.41 a | 409.02 ± 75.62 a | 166.92 ± 4.12 c |
Gly | 130 | 2530.88 ± 89.82 a | 2422.71 ± 168.64 a | 2622.46 ± 390.54 a | 1757.4 ± 62.35 b | 1652.2 ± 243.43 b | 1940.14 ± 51.97 b |
Ala | 60 | 683.76 ± 27.2 a | 432.38 ± 52.15 c | 551.5 ± 73.52 b | 432.65 ± 44.95 c | 671.45 ± 74.86 a | 484.54 ± 12.28 bc |
Cys | - | 14.88 ± 0.36 b | 9.72 ± 1.35 bc | 12.6 ± 3.89 bc | 14.35 ± 1.92 b | 23.64 ± 3.99 a | 8.24 ± 0.54 c |
Val | 40 | 129.99 ± 5.19 ab | 96.62 ± 8.44 c | 145.61 ± 27.54 a | 113.96 ± 18.68 bc | 146.41 ± 10.05 a | 133.41 ± 3.59 ab |
Met | 30 | 182.7 ± 7.19 a | 93.61 ± 11.23 c | 127.65 ± 24.12 bc | 112.24 ± 27.33 bc | 182.42 ± 31.89 a | 140.94 ± 5.17 ab |
Ile | 90 | 55.59 ± 3.04 a | 34.1 ± 5.19 b | 69.26 ± 19.43 a | 53.22 ± 12.79 ab | 58.03 ± 4.42 a | 59.49 ± 1.09 a |
Leu | 190 | 106.35 ± 5.11 a | 94.23 ± 9.84 a | 137.14 ± 41.15 a | 104.06 ± 25.35 a | 123.73 ± 11.99 a | 113.89 ± 3.37 a |
Tyr | - | 115.35 ± 3.27 b | 159.66 ± 19.27 a | 168.45 ± 37.47 a | 135.29 ± 20.61 ab | 132.5 ± 16.88 ab | 150.46 ± 1.02 ab |
Phe | 90 | 168.66 ± 2.8 a | 167.34 ± 38.02 a | 167.51 ± 26.28 a | 151.74 ± 17.33 a | 153.21 ± 16.41 a | 159.11 ± 0.62 a |
Lys | 50 | 183.5 ± 7.65 a | 152.91 ± 30.99 a | 188.84 ± 30.43 a | 181.98 ± 24.39 a | 172.03 ± 26.51 a | 147.18 ± 2.35 a |
His | 20 | 92.01 ± 5.89 a | 63.4 ± 7.81 b | 86.54 ± 16.03 a | 65.12 ± 12.11 b | 73.91 ± 9.95 ab | 88.34 ± 0.23 a |
Arg | 50 | 3327.15 ± 71.78 bc | 3482.12 ± 261.82 bc | 4336.19 ± 925.95 ab | 2772.98 ± 88.97 c | 3572.72 ± 779.01 bc | 4695.08 ± 217.29 a |
Pro | 300 | 1132.15 ± 120.49 b | 612.5 ± 123.95 c | 1445.99 ± 194.25 a | 689.76 ± 205.87 c | 1024.22 ± 155.7 b | 1431.03 ± 75.79 a |
Total | 9642.67 ± 349.39 ab | 8532.94 ± 653.29 bc | 10,996.21 ± 1167.47 a | 7348.65 ± 576.23 c | 8691.67 ± 1249.04 bc | 10130.57 ± 236.49 ab | |
SFAs | 8222.25 ± 312.44 abc | 7301.83 ± 606.14 bcd | 9418.84 ± 1326.57 a | 5896.45 ± 424.85 d | 7125.54 ± 1202.59 cd | 8889.03 ± 255.27 ab | |
BFAs | 1034.15 ± 39.09 a | 861.87 ± 109.28 a | 1090.99 ± 220.55 a | 917.61 ± 157.33 a | 1042.22 ± 11.34 a | 992.81 ± 17.44 a | |
UFAs | 371.39 ± 30.38 bc | 359.52 ± 46.27 c | 473.77 ± 89.07 ab | 520.24 ± 21.34 a | 500.26 ± 84.32 a | 240.49 ± 1.88 d |
Content (mg/100 g) | TAV | |||||
---|---|---|---|---|---|---|
Steaming Time (min) | GMP | IMP | AMP | GMP | IMP | AMP |
0 | 6.7 ± 0.15 a | 307.49 ± 18.56 a | 119.85 ± 22.48 d | 0.54 | 12.3 | 2.40 |
5 | 0.83 ± 0.05 b | 105.78 ± 0.05 b | 227.99 ± 0.1 c | 0.07 | 4.23 | 4.56 |
10 | - | 18.51 ± 2.76 c | 333.54 ± 9.47 a | - | 0.74 | 6.67 |
15 | - | 15.26 ± 0.51 c | 296.26 ± 2.06 b | - | 0.61 | 5.93 |
20 | - | 8.58 ± 0.38 e | 332.83 ± 18.88 a | - | 0.34 | 6.66 |
25 | - | 9.82 ± 0.05 d | 280.78 ± 0.19 b | - | 0.39 | 5.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Zhang, Y.; Jing, L.; Xiao, N.; Wu, X.; Shi, W. Changes in Protein Degradation and Non-Volatile Flavor Substances of Swimming Crab (Portunus trituberculatus) during Steaming. Foods 2022, 11, 3502. https://doi.org/10.3390/foods11213502
Chen Q, Zhang Y, Jing L, Xiao N, Wu X, Shi W. Changes in Protein Degradation and Non-Volatile Flavor Substances of Swimming Crab (Portunus trituberculatus) during Steaming. Foods. 2022; 11(21):3502. https://doi.org/10.3390/foods11213502
Chicago/Turabian StyleChen, Qin, Yurui Zhang, Lunan Jing, Naiyong Xiao, Xugan Wu, and Wenzheng Shi. 2022. "Changes in Protein Degradation and Non-Volatile Flavor Substances of Swimming Crab (Portunus trituberculatus) during Steaming" Foods 11, no. 21: 3502. https://doi.org/10.3390/foods11213502
APA StyleChen, Q., Zhang, Y., Jing, L., Xiao, N., Wu, X., & Shi, W. (2022). Changes in Protein Degradation and Non-Volatile Flavor Substances of Swimming Crab (Portunus trituberculatus) during Steaming. Foods, 11(21), 3502. https://doi.org/10.3390/foods11213502