Validation of a Multi-Residue Analysis Method for 287 Pesticides in Citrus Fruits Mandarin Orange and Grapefruit Using Liquid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Stock Solution Mixtures and Matrix-Matched Standard Solutions
2.3. Sample Preparation and Instrument Condition Optimization
2.4. Instrument Condition
2.5. Sample Preparation
2.6. Matrix Effect Comparison by Dilution Approach
2.7. Method Validation
3. Results and Discussion
3.1. Optimization of Sample Preparation
3.2. Injection Volume Optimization
3.3. Matrix Effect Evaluation before and after Dilution
3.4. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 15 January 2021).
- Wang, Z.; Sui, Y.; Li, J.; Tian, X.; Wang, Q. Biological control of postharvest fungal decays in citrus: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Bempelou, E.; Anagnostopoulos, C.; Kiousi, M.; Malatou, P.; Liapis, K.; Kouloussis, N.; Mavraganis, V.; Papadopoulos, N.T. Temporal variation in pesticide residues in citrus fruits from Chios, Greece, before and after the development of an integrated pest management strategy (IPMS): A five-year study (LIFE13 ENV GR/000414). Toxics 2021, 9, 323. [Google Scholar] [CrossRef] [PubMed]
- Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. Pesticides: Formulants, distribution pathways and effects on human health—A review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chen, L.; Pan, L.; Liu, R.; Guo, J.; Fan, M.; Wang, X.; Liu, H.; Liu, S. Simultaneous analysis of multiple pesticide residues in tobacco by magnetic carbon composite-based QuEChERS method and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2022, 1668, 462913. [Google Scholar] [CrossRef]
- Drábová, L.; Mráz, P.; Krátký, F.; Uttl, L.; Vacková, P.; Schusterova, D.; Zadražilová, B.; Kadlec, V.; Kocourek, V.; Hajšlová, J. Assessment of pesticide residues in citrus fruit on the Czech market. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2022, 39, 311–319. [Google Scholar] [CrossRef]
- Eslami, Z.; Mahdavi, V.; Mofrad, A.A. Simultaneous multi-determination of pesticide residues in barberry: A risk assessment study. J. Food Compos. Anal. 2022, 110, 104576. [Google Scholar] [CrossRef]
- Shida, S.S.; Nemoto, S.; Matsuda, R. Simultaneous determination of acidic pesticides in vegetables and fruits by liquid chromatography-tandem mass spectrometry. J. Environ. Sci. Health B 2015, 50, 151–162. [Google Scholar] [CrossRef]
- Khezri, A.; Ansari, M.; Amirahmadi, M.; Shahidi, M.; Mohamadi, N.; Kazemipour, M. Pesticide residues in dates using a modified QuEChERS method and GC-MS/MS. Food Addit. Contam. Part B Surveill. 2022, 15, 168–176. [Google Scholar] [CrossRef]
- Kang, H.S.; Kim, M.; Kim, E.J. High-throughput simultaneous analysis of multiple pesticides in grain, fruit, and vegetables by GC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2020, 37, 963–972. [Google Scholar] [CrossRef]
- Pang, G.F.; Liu, Y.M.; Fan, C.L.; Zhang, J.J.; Cao, Y.Z.; Li, X.M.; Li, Z.Y.; Wu, Y.P.; Guo, T.T. Simultaneous determination of 405 pesticide residues in grain by accelerated solvent extraction then gas chromatography-mass spectrometry or liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2006, 384, 1366–1408. [Google Scholar] [CrossRef]
- Picó, Y.; Font, G.; Moltó, J.C.; Mañes, J. Pesticide residue determination in fruit and vegetables by liquid chromatography-mass spectrometry. J. Chromatogr. A 2000, 882, 153–173. [Google Scholar] [CrossRef]
- Kruve, A.; Künnapas, A.; Herodes, K.; Leito, I. Matrix effects in pesticide multi-residue analysis by liquid chromatography-mass spectrometry. J. Chromatogr. A 2008, 1187, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.A.; Feng, Y.N.; Zhu, Y.Z.; Kim, J.H. Multi-residue method for determination of 238 pesticides in Chinese cabbage and cucumber by liquid chromatography-tandem mass spectrometry: Comparison of different purification procedures. J. Agric. Food Chem. 2014, 62, 11449–11456. [Google Scholar] [CrossRef] [PubMed]
- Okihashi, M.; Takatori, S.; Kitagawa, Y.; Tanaka, Y. Simultaneous analysis of 260 pesticide residues in agricultural products by gas chromatography/triple quadrupole mass spectrometry. J. AOAC Int. 2007, 90, 1165–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, Y.; Kim, C.J.; Baek, S.; Kim, L.; Son, K.A.; Lee, H.D.; Kim, D.; Kim, J.H.; Noh, H.H. Liquid chromatography-tandem mass spectrometry for the simultaneous analysis of 353 pesticides in the edible insect Tenebrio molitor larvae (mealworms). Molecules 2020, 25, 5866. [Google Scholar] [CrossRef]
- Lee, J.; Han, H.; Yuan, X.; Park, E.; Lee, J.; Kim, J.H. A rapid, simultaneous and quantitative analysis of 26 ginsenosides in white and red panax ginseng using LC-MS/MS. Appl. Biol. Chem. 2021, 64, 13. [Google Scholar] [CrossRef]
- Acosta-Dacal, A.; Rial-Berriel, C.; Díaz-Díaz, R.; del Mar Bernal-Suárez, M.; Luzardo, O.P. Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. Sci. Total Environ. 2021, 753, 142015. [Google Scholar] [CrossRef]
- Shin, Y.; Lee, J.; Park, E.; Lee, J.; Lee, H.S.; Kim, J.H. A quantitative tandem mass spectrometry and scaled-down QuEChERS approach for simultaneous analysis of pesticide multiresidues in human urine. Molecules 2019, 24, 1330. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.; Lee, J.; Lee, J.; Lee, J.; Kim, E.; Liu, K.H.; Lee, H.S.; Kim, J.H. Validation of a multiresidue analysis method for 379 pesticides in human serum using liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2018, 66, 3550–3560. [Google Scholar] [CrossRef]
- Nasrollahi, S.; Ghoreishi, S.M.; Ebrahimabadi, A.H.; Khoobi, A. Gas chromatography-mass spectrometry analysis and antimicrobial, antioxidant and anti-cancer activities of essential oils and extracts of Stachys schtschegleevii plant as biological macromolecule. Int. J. Biol. Macromol. 2019, 128, 718–723. [Google Scholar] [CrossRef]
- Yuan, X.; Lee, J.H.; Park, E.Y.; Lee, H.K.; Kim, J.H. Toxicometabolomics of lindane in adult zebrafish (Danio rerio) using GC-MS/MS and LC-Orbitrap-MS/MS. Appl. Biol. Chem. 2021, 64, 52. [Google Scholar] [CrossRef]
- Kmellár, B.; Abrankó, L.; Fodor, P.; Lehotay, S.J. Routine approach to qualitatively screening 3000 pesticides and quantification of those frequently detected in fruit and vegetables using liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 1415–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demir, E.; Göktug, Ö.; İnam, R.; Doyduk, D. Development and characterization of iron (III) phthalocyanine modified carbon nanotube paste electrodes and application for determination of fluometuron herbicides as an electrochemical sensor. J. Electroanal. Chem. 2021, 895, 115389. [Google Scholar] [CrossRef]
- Krone, N.; Hughes, B.A.; Lavery, G.G.; Stewart, P.M.; Arlt, W.; Shackleton, C.H. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J. Steroid Biochem. Mol. Biol. 2010, 121, 496–504. [Google Scholar] [CrossRef]
- Nasiri, A.; Jahani, R.; Mokhtari, S.; Yazdanpanah, H.; Daraei, B.; Faizi, M.; Kobarfard, F. Overview, consequences, and strategies for overcoming matrix effects in LC-MS analysis: A critical review. Analyst 2021, 20, 6049–6063. [Google Scholar] [CrossRef]
- Ferrer, C.; Lozano, A.; Agüera, A.; Girón, A.J.; Fernández-Alba, A.R. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. J. Chromatogr. A 2011, 1218, 7634–7639. [Google Scholar] [CrossRef]
- Kwon, H.; Lehotay, S.J.; Geis-Asteggiante, L. Variability of matrix effects in liquid and gas chromatography-mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops. J. Chromatogr. A 2012, 1270, 235–245. [Google Scholar] [CrossRef]
- Chung, S.J.; Kim, H.J.; Kim, J.H.; Yeom, M.S.; Cho, J.H.; Lee, S.Y. Monitoring of pesticide residues and risk assessment in some fruits on the market in Incheon, Korea. Korean J. Environ Agric. 2014, 33, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Dušek, M.; Jandovská, V.; Olšovská, J. Analysis of multiresidue pesticides in dried hops by LC–MS/MS using QuEChERS extraction together with dSPE clean-up. J. Inst. Brew. 2018, 124, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Chawla, S.; Patel, H.K.; Gor, H.N.; Vaghela, K.M.; Solanki, P.P.; Shah, P.G. Evaluation of matrix effects in multiresidue analysis of pesticide residues in vegetables and spices by LC–MS/MS. J. AOAC Int. 2017, 100, 616–623. [Google Scholar] [CrossRef]
- Fu, Y.; Lu, Q.; Dou, X.; Luo, J.; Yang, M. Matrix-matched monitoring ion selection strategy for improving the matrix effect and qualitative accuracy in pesticide detection based on UFLC-ESI-MS/MS: A case of Chrysanthemum. Microchem. J. 2021, 160, 105681. [Google Scholar] [CrossRef]
- Niessen, W.M.A.; Manini, P.; Andreoli, R. Matrix effects in quantitative pesticide analysis using liquid chromatography-mass spectrometry. Mass Spectrom. Rev. 2006, 25, 881–899. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.G.D.; Aquino, A.; Dórea, H.S.; Navickiene, S. Simultaneous determination of eight pesticide residues in coconut using MSPD and GC/MS. Talanta 2008, 76, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; Qiu, F.; Kong, W.; Luo, J.; Cheng, H.; Yang, M. Simultaneous quantification of mycotoxins and pesticides residues in ginseng with one-step extraction using ultrahigh performance liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 939, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Lee, J.; Lee, J.; Lee, J.; Lee, H.S.; Shin, Y.; Kim, J.H. Method for the simultaneous analysis of 300 pesticide residues in hair by LC-MS/MS and GC-MS/MS, and its application to biomonitoring of agricultural workers. Chemosphere 2021, 277, 130215. [Google Scholar] [CrossRef] [PubMed]
- Konatu, F.R.B.; Breitkreitz, M.C.; Jardim, I.C.S.F. Revisiting quick, easy, cheap, effective, rugged, and safe parameters for sample preparation in pesticide residue analysis of lettuce by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2017, 1482, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Shin, Y.; Lee, J.; Lee, J.; Kim, B.J.; Kim, J.H. Simultaneous analysis of 310 pesticide multiresidues using UHPLC-MS/MS in brown rice, orange, and spinach. Chemosphere 2018, 207, 519–526. [Google Scholar] [CrossRef]
- Musarurwa, H.; Chimuka, L.; Pakade, V.E.; Tavengwa, N.T. Recent developments and applications of QuEChERS-based techniques on food samples during pesticide analysis. J. Food Compos. Anal. 2019, 84, 103314. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Hong, S.M.; Lee, H.S.; Moon, B.C.; Kim, D.; Kwon, H. Identification and characterization of matrix components in spinach during QuEChERS sample preparation for pesticide residue analysis by LC-ESI-MS/MS, GC-MS and UPLC-DAD. J. Food Sci. Technol. 2018, 55, 3930–3938. [Google Scholar] [CrossRef]
- Varela-Martínez, D.A.; González-Curbelo, M.Á.; González-Sálamo, J.; Hernández-Borges, J. Analysis of multiclass pesticides in dried fruits using QuEChERS-gas chromatography tandem mass spectrometry. Food Chem. 2019, 297, 124961. [Google Scholar] [CrossRef]
- Cieślik, E.; Sadowska-Rociek, A.; Ruiz, J.M.M.; Surma-Zadora, M. Evaluation of QuEChERS method for the determination of organochlorine pesticide residues in selected groups of fruits. Food Chem. 2011, 125, 773–778. [Google Scholar] [CrossRef]
- Khan, Z.S.; Ghosh, R.K.; Girame, R.; Utture, S.C.; Gadgil, M.; Banerjee, K.; Reddy, D.D.; Johnson, N. Optimization of a sample preparation method for multiresidue analysis of pesticides in tobacco by single and multi-dimensional gas chromatography-mass spectrometry. J. Chromatogr. A 2014, 1343, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, S.S.; Poulsen, M.E. Clean-up of cereal extracts for gas chromatography-tandem quadrupole mass spectrometry pesticide residues analysis using primary secondary amine and C18. J. Chromatogr. A 2015, 1423, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Wang, J.; Li, L.; Wang, Y. Determination of 103 pesticides and their main metabolites in animal origin food by QuEChERS and liquid chromatography-tandem mass spectrometry. Food Anal. Methods 2017, 10, 1826–1843. [Google Scholar] [CrossRef]
- Kecojević, I.; Đekić, S.; Lazović, M.; Mrkajić, D.; Baošić, R.; Lolić, A. Evaluation of LC-MS/MS methodology for determination of 179 multi-class pesticides in cabbage and rice by modified QuEChERS extraction. Food Control 2021, 123, 107693. [Google Scholar] [CrossRef]
- Charalampous, A.C.; Miliadis, G.E.; Koupparis, M.A. A new multiresidue method for the determination of multiclass pesticides, degradation products and PCBs in water using LC-MS/MS and GC-MS systems. Int. J. Environ. Anal. Chem. 2015, 95, 1283–1298. [Google Scholar] [CrossRef]
- Golge, O.; Koluman, A.; Kabak, B. Validation of a modified QuEChERS method for the determination of 167 pesticides in milk and milk products by LC-MS/MS. Food Anal. Methods 2018, 11, 1122–1148. [Google Scholar] [CrossRef]
- Morris, B.D.; Schriner, R.B. Development of an automated column solid-phase extraction cleanup of QuEChERS extracts, using a zirconia-based sorbent, for pesticide residue analyses by LC-MS/MS. J. Agric. Food Chem. 2015, 63, 5107–5199. [Google Scholar] [CrossRef]
- Besil, N.; Pérez-Parada, A.; Bologna, F.; Cesio, M.V.; Rivas, F.; Heinzen, H. Dissipation of selected insecticides and fungicides applied during pre-harvest on mandarin and orange trees in Uruguay. Sci. Hortic. 2019, 248, 34–40. [Google Scholar] [CrossRef]
Study | Matrix | Contents | Improvements |
---|---|---|---|
Kang et al. [10] | Mandarin orange | 100 mL extraction solvents | Less time consuming sample preparation processRequires less solvents for sample preparation |
SPE-Floril purification | |||
Kecojević et al. [46] | Cabbage | Compare injection volume to obtain best peak shape | Evaluation of matrix effect by injection volume |
Rice | |||
Ferrer et al. [27] | Orange | Reduce matrix effect by dilution for 53 pesticides | Greater number of pesticides |
Tomato | Suggests three cases of change in matrix effect | ||
Leak |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Kim, C.J.; Lee, R.; Kim, M.; Shin, H.J.; Kim, L.; Jeong, W.T.; Shin, Y.; Kyung, K.S.; Noh, H.H. Validation of a Multi-Residue Analysis Method for 287 Pesticides in Citrus Fruits Mandarin Orange and Grapefruit Using Liquid Chromatography–Tandem Mass Spectrometry. Foods 2022, 11, 3522. https://doi.org/10.3390/foods11213522
Yuan X, Kim CJ, Lee R, Kim M, Shin HJ, Kim L, Jeong WT, Shin Y, Kyung KS, Noh HH. Validation of a Multi-Residue Analysis Method for 287 Pesticides in Citrus Fruits Mandarin Orange and Grapefruit Using Liquid Chromatography–Tandem Mass Spectrometry. Foods. 2022; 11(21):3522. https://doi.org/10.3390/foods11213522
Chicago/Turabian StyleYuan, Xiu, Chang Jo Kim, Raekeun Lee, Min Kim, Hee Jeong Shin, Leesun Kim, Won Tae Jeong, Yongho Shin, Kee Sung Kyung, and Hyun Ho Noh. 2022. "Validation of a Multi-Residue Analysis Method for 287 Pesticides in Citrus Fruits Mandarin Orange and Grapefruit Using Liquid Chromatography–Tandem Mass Spectrometry" Foods 11, no. 21: 3522. https://doi.org/10.3390/foods11213522
APA StyleYuan, X., Kim, C. J., Lee, R., Kim, M., Shin, H. J., Kim, L., Jeong, W. T., Shin, Y., Kyung, K. S., & Noh, H. H. (2022). Validation of a Multi-Residue Analysis Method for 287 Pesticides in Citrus Fruits Mandarin Orange and Grapefruit Using Liquid Chromatography–Tandem Mass Spectrometry. Foods, 11(21), 3522. https://doi.org/10.3390/foods11213522