Optimization of Extraction Process of Polysaccharides MAP-2 from Opuntia Milpa Alta by Response Surface Methodology and Evaluation of Its Potential as α-Glucosidase Inhibitor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Pretreatment
2.3. Single Factor Experiment
2.4. RSM Experimental Design
2.5. Inhibition Kinetics Experiment of MAP-2
2.5.1. Effect of Reaction pH on α-Glucosidase Inhibition
2.5.2. Effect of Reaction Time on α-Glucosidase Inhibition
2.5.3. Determination of the Reversibility of Enzyme Inhibition by MAP-2
2.5.4. Confirmation of the Inhibition Type of MAP-2
2.6. Determination of Lactase Activity
2.7. Determination of Hyaluronidase Activity
2.8. Statistical Analyses
3. Results and Discussion
3.1. Single Factor Experiment
3.2. RSM Analysis
3.2.1. Model Fitting and Statistical Analysis
3.2.2. Analysis of the Influence of Different Factors
3.2.3. Verification of the Models
3.3. Inhibition Kinetic Analysis
3.3.1. Effect of Different pH and Time on α-Glucosidase Inhibition
3.3.2. Inhibitory Kinetics Analysis of MAP-2 on α-Glucosidase
3.4. Determination of Lactase Activity
3.5. Determination of Hyaluronidase Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Hung, Y.-J.; Qamruddin, K.; Aziz, M.F.A.; Stein, H.; Schmidt, B. International Noninterventional Study of Acarbose Treatment in Patients with Type 2 Diabetes Mellitus. Diabetes Res. Clin. Pract. 2011, 92, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Puls, W.; Keup, U.; Krause, H.P.; Thomas, G.; Hoffmeister, F. Glucosidase Inhibition. A New Approach to the Treatment of Diabetes, Obesity, and Hyperlipoproteinaemia. Naturwissenschaften 1977, 64, 536–537. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, C.; Zhang, B.; Huang, Q. The Inhibitory Effects of Flavonoids on α-Amylase and α-Glucosidase. Crit. Rev. Food Sci. Nutr. 2020, 60, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Shi, S.; Wang, H.; Wang, S. Mechanisms Underlying the Effect of Polysaccharides in the Treatment of Type 2 Diabetes: A Review. Carbohydr. Polym. 2016, 144, 474–494. [Google Scholar] [CrossRef] [PubMed]
- Uzui, H.; Nakano, A.; Mitsuke, Y.; Geshi, T.; Sakata, J.; Sarazawa, K.; Morishita, T.; Satou, T.; Ishida, K.; Lee, J.-D. Acarbose Treatments Improve Arterial Stiffness in Patients with Type 2 Diabetes Mellitus. J. Diabetes Investig. 2011, 2, 148–153. [Google Scholar] [CrossRef] [Green Version]
- Kasthuri, S.; Poongothai, S.; Anjana, R.M.; Selvakumar, J.; Muthukumar, S.; Kayalvizhi, S.; Tariq, S.; Honey, E.; Gupta, P.K.; Venkatesan, U.; et al. Comparison of Glycemic Excursion Using Flash Continuous Glucose Monitoring in Patients with Type 2 Diabetes Mellitus Before and After Treatment with Voglibose. Diabetes Technol. Ther. 2021, 23, 213–220. [Google Scholar] [CrossRef]
- Scott, L.J.; Spencer, C.M. Miglitol: A Review of Its Therapeutic Potential in Type 2 Diabetes Mellitus. Drugs 2000, 59, 521–549. [Google Scholar] [CrossRef]
- Fujisawa, T.; Ikegami, H.; Inoue, K.; Kawabata, Y.; Ogihara, T. Effect of Two Alpha-Glucosidase Inhibitors, Voglibose and Acarbose, on Postprandial Hyperglycemia Correlates with Subjective Abdominal Symptoms. Metabolism. 2005, 54, 387–390. [Google Scholar] [CrossRef]
- Shu, C.; Ge, H.; Song, M.; Chen, J.; Zhou, H.; Qi, Q.; Wang, F.; Ma, X.; Yang, X.; Zhang, G.; et al. Discovery of Imigliptin, a Novel Selective DPP-4 Inhibitor for the Treatment of Type 2 Diabetes. ACS Med. Chem. Lett. 2014, 5, 921–926. [Google Scholar] [CrossRef]
- Dash, R.P.; Babu, R.J.; Srinivas, N.R. Reappraisal and Perspectives of Clinical Drug-Drug Interaction Potential of α-Glucosidase Inhibitors Such as Acarbose, Voglibose and Miglitol in the Treatment of Type 2 Diabetes Mellitus. Xenobiotica Fate Foreign Compd. Biol. Syst. 2018, 48, 89–108. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Kawai, J.; Fujitani, Y.; Kawamori, R.; Watada, H.; Hirose, T. Efficacy and Adverse Effects of Low-Dose Nateglinide in Early Type 2 Diabetes: Comparison with Acarbose in a Crossover Study. Diabetol. Int. 2010, 1, 35–41. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, R.; Yu, S.; Zhao, W. A Novel A-glucosidase Inhibitor Polysaccharide from Sargassum Fusiforme. Int. J. Food Sci. Technol. 2022, 57, 67–77. [Google Scholar] [CrossRef]
- Fu, X.; Yang, H.; Ma, C.; Li, X.; Li, D.; Yang, Y.; Xu, Y.; Wang, L. Characterization and Inhibitory Activities on α-Amylase and α-Glucosidase of the Polysaccharide from Blue Honeysuckle Berries. Int. J. Biol. Macromol. 2020, 163, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kong, F.; Ni, H.; Mo, Z.; Wan, J.-B.; Hua, D.; Yan, C. Structural Characterization, α-Glucosidase Inhibitory and DPPH Scavenging Activities of Polysaccharides from Guava. Carbohydr. Polym. 2016, 144, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Chen, Z.; Santhanam, R.K.; Xu, L.; Gao, X.; Ma, Q.; Xue, Z.; Chen, H. Hypoglycemic Effects of Polysaccharides from Corn Silk (Maydis Stigma) and Their Beneficial Roles via Regulating the PI3K/Akt Signaling Pathway in L6 Skeletal Muscle Myotubes. Int. J. Biol. Macromol. 2019, 121, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, X.; Huo, D.; Cao, C.; Li, Y.; Liang, Y.; Li, B.; Li, L. Preliminary Characterization, Antioxidant and α-Glucosidase Inhibitory Activities of Polysaccharides from Mallotus Furetianus. Carbohydr. Polym. 2019, 215, 307–315. [Google Scholar] [CrossRef]
- Wu, L.; Sun, H.; Hao, Y.; Zheng, X.; Song, Q.; Dai, S.; Zhu, Z. Chemical Structure and Inhibition on α-Glucosidase of the Polysaccharides from Cordyceps Militaris with Different Developmental Stages. Int. J. Biol. Macromol. 2020, 148, 722–736. [Google Scholar] [CrossRef]
- A Study on the Time-Effect and Dose-Effect Relationships of Polysaccharide from Opuntia Dillenii against Cadmium-Induced Liver Injury in Mice—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/35564063/ (accessed on 28 October 2022).
- Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/29786478/ (accessed on 28 October 2022).
- Zhang, H.; Wu, Q.; Qin, X. Camellia Nitidissima Chi Flower Extracts Inhibit α-Amylase and α-Glucosidase: In Vitro by Analysis of Optimization of Addition Methods, Inhibitory Kinetics and Mechanisms. Process Biochem. 2019, 86, 177–185. [Google Scholar] [CrossRef]
- Kumar, R.; Henrissat, B.; Coutinho, P.M. Intrinsic Dynamic Behavior of Enzyme:Substrate Complexes Govern the Catalytic Action of β-Galactosidases across Clan GH-A. Sci. Rep. 2019, 9, 10346. [Google Scholar] [CrossRef] [Green Version]
- Möller, S.; Schmidtke, M.; Weiss, D.; Schiller, J.; Pawlik, K.; Wutzler, P.; Schnabelrauch, M. Synthesis and Antiherpetic Activity of Carboxymethylated and Sulfated Hyaluronan Derivatives. Carbohydr. Polym. 2012, 90, 608–615. [Google Scholar] [CrossRef]
- Xu, Q.; Shen, Y.; Wang, H.; Zhang, N.; Xu, S.; Zhang, L. Application of Response Surface Methodology to Optimise Extraction of Flavonoids from Fructus Sophorae. Food Chem. 2013, 138, 2122–2129. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.-L.; Jiang, C.-J. Optimization of Extraction Process of Crude Polysaccharides from Plantago Asiatica L. by Response Surface Methodology. Carbohydr. Polym. 2011, 84, 495–502. [Google Scholar] [CrossRef]
- Cui, F.-J.; Qian, L.-S.; Sun, W.-J.; Zhang, J.-S.; Yang, Y.; Li, N.; Zhuang, H.-N.; Wu, D. Ultrasound-Assisted Extraction of Polysaccharides from Volvariella Volvacea: Process Optimization and Structural Characterization. Molecules 2018, 23, 1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muralidhar, R.V.; Chirumamila, R.R.; Marchant, R.; Nigam, P. A Response Surface Approach for the Comparison of Lipase Production by Candida Cylindracea Using Two Different Carbon Sources. Biochem. Eng. J. 2001, 9, 17–23. [Google Scholar] [CrossRef]
- Martínez-Felipe, A.; Cook, A.G.; Wallage, M.J.; Imrie, C.T. Hydrogen Bonding and Liquid Crystallinity of Low Molar Mass and Polymeric Mesogens Containing Benzoic Acids: A Variable Temperature Fourier Transform Infrared Spectroscopic Study. Phase Transit. 2014, 87, 1191–1210. [Google Scholar] [CrossRef]
- Hu, J.; Liu, Y.; Cheng, L.; Shi, R.; Qayum, A.; Bilawal, A.; Gantumur, M.-A.; Hussain, M.A.; Jiang, Z.; Tian, B. Comparison in Bioactivity and Characteristics of Ginkgo Biloba Seed Polysaccharides from Four Extract Pathways. Int. J. Biol. Macromol. 2020, 159, 1156–1164. [Google Scholar] [CrossRef]
- Li, F.; Wei, Y.; Liang, L.; Huang, L.; Yu, G.; Li, Q. A Novel Low-Molecular-Mass Pumpkin Polysaccharide: Structural Characterization, Antioxidant Activity, and Hypoglycemic Potential. Carbohydr. Polym. 2021, 251, 117090. [Google Scholar] [CrossRef]
- Hsu, W.; Hsu, T.; Lin, F.; Cheng, Y.; Yang, J.P. Separation, Purification, and α-Glucosidase Inhibition of Polysaccharides from Coriolus Versicolor LH1 Mycelia. Carbohydr. Polym. 2013, 92, 297–306. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Han, L.; Yang, S.-Y.; Meng, X.-M.; Ma, W.-F.; Wang, M. The Mechanism of Interactions between Flavan-3-Ols against a-Glucosidase and Their in Vivo Antihyperglycemic Effects. Bioorganic Chem. 2019, 85, 364–372. [Google Scholar] [CrossRef]
- He, M.; Zhai, Y.; Zhang, Y.; Xu, S.; Yu, S.; Wei, Y.; Xiao, H.; Song, Y. Inhibition of α-Glucosidase by Trilobatin and Its Mechanism: Kinetics, Interaction Mechanism and Molecular Docking. Food Funct. 2022, 13, 857–866. [Google Scholar] [CrossRef]
- Stourman, N.; Moore, J. Analysis of Lactase in Lactose Intolerance Supplements. Biochem. Mol. Biol. Educ. Bimon. Publ. Int. Union Biochem. Mol. Biol. 2018, 46, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Bayless, T.M.; Brown, E.; Paige, D.M. Lactase Non-Persistence and Lactose Intolerance. Curr. Gastroenterol. Rep. 2017, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Voisin, M.R.; Borici-Mazi, R. Anaphylaxis to Supplemental Oral Lactase Enzyme. Allergy Asthma Clin. Immunol. 2016, 12, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singla, R.K.; Singh, R.; Dubey, A.K. Important Aspects of Post-Prandial Antidiabetic Drug, Acarbose. Curr. Top. Med. Chem. 2016, 16, 2625–2633. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, B.; Huang, X.; Zhan, J.; Zhao, Y.; Zhou, M.; Guo, L. Purification and Neuroprotective Effects of Polysaccharides from Opuntia Milpa Alta in Cultured Cortical Neurons. Int. J. Biol. Macromol. 2011, 49, 681–687. [Google Scholar] [CrossRef]
- Weigel, P.H.; Hascall, V.C.; Tammi, M. Hyaluronan Synthases. J. Biol. Chem. 1997, 272, 13997–14000. [Google Scholar] [CrossRef] [Green Version]
- Noble, P.W.; Lake, F.R.; Henson, P.M.; Riches, D.W. Hyaluronate Activation of CD44 Induces Insulin-like Growth Factor-1 Expression by a Tumor Necrosis Factor-Alpha-Dependent Mechanism in Murine Macrophages. J. Clin. Investig. 1993, 91, 2368–2377. [Google Scholar] [CrossRef] [Green Version]
- Hollander, P. Safety Profile of Acarbose, an Alpha-Glucosidase Inhibitor. Drugs 1992, 44 (Suppl. 3), 47–53. [Google Scholar] [CrossRef]
- Kono, T.; Hayami, M.; Kobayashi, H.; Ishii, M.; Taniguchi, S. Acarbose-Induced Generalised Erythema Multiforme. Lancet Lond. Eng. 1999, 354, 396–397. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Koketsu, M. Isolation and Analysis of Polysaccharide Showing High Hyaluronidase Inhibitory Activity in Nostochopsis Lobatus MAC0804NAN. J. Biosci. Bioeng. 2016, 121, 345–348. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Sakamoto, T.; Koketsu, M. Comparison of Anti-Hyaluronidase Activities and Sugar Compositions of Extracts from Four Edible Species of Nostoc (Cyanobacteria). Algal Resour. 2015, 8, 137–142. [Google Scholar] [CrossRef]
Std | Run | X1 (g/mL) | X2 (h) | X3 (°C) | Extraction Yield (%) | Inhibition α-Glucosidase Activity (%) |
---|---|---|---|---|---|---|
10 | 1 | 1:4 | 1.5 | 80 | 2.58 | 80.68 |
13 | 2 | 1:4 | 1.0 | 90 | 3.48 | 92.01 |
11 | 3 | 1:4 | 0.5 | 100 | 3.56 | 88.55 |
1 | 4 | 1:2 | 0.5 | 90 | 2.98 | 90.87 |
6 | 5 | 1:6 | 1.0 | 80 | 2.3 | 81.98 |
12 | 6 | 1:4 | 1.5 | 100 | 3.64 | 90.25 |
2 | 7 | 1:6 | 0.5 | 90 | 2.93 | 87.11 |
4 | 8 | 1:6 | 1.5 | 90 | 2.9 | 89.46 |
3 | 9 | 1:2 | 1.5 | 90 | 3.04 | 88.02 |
15 | 10 | 1:4 | 1.0 | 90 | 3.48 | 92.01 |
16 | 11 | 1:4 | 1.0 | 90 | 3.28 | 90.01 |
8 | 12 | 1:6 | 1.0 | 100 | 3.45 | 89.11 |
5 | 13 | 1:2 | 1.0 | 80 | 2.26 | 78.41 |
7 | 14 | 1:2 | 1.0 | 100 | 3.4 | 88.62 |
14 | 15 | 1:4 | 1.0 | 90 | 3.28 | 90.01 |
17 | 16 | 1:4 | 1.0 | 90 | 3.48 | 91.00 |
9 | 17 | 1:4 | 0.5 | 80 | 2.37 | 81.39 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 3.38 | 9 | 0.3753 | 39.54 | <0.0001 *** | significant |
X1-Ratio of solid to liquid | 0.0013 | 1 | 0.0013 | 0.1317 | 0.7274 | |
X2-Extraction time | 0.0128 | 1 | 0.0128 | 1.35 | 0.2836 | |
X3-Extraction temperature | 2.58 | 1 | 2.58 | 271.41 | <0.0001 *** | |
AB | 0.0020 | 1 | 0.0020 | 0.2133 | 0.6582 | |
AC | 0.0000 | 1 | 0.0000 | 0.0026 | 0.9605 | |
BC | 0.0042 | 1 | 0.0042 | 0.4451 | 0.5261 | |
A2 | 0.4079 | 1 | 0.4079 | 42.97 | 0.0003 *** | |
B2 | 0.0671 | 1 | 0.0671 | 7.07 | 0.0325 * | |
C2 | 0.2350 | 1 | 0.2350 | 24.76 | 0.0016 ** | |
Residual | 0.0664 | 7 | 0.0095 | |||
Lack of Fit | 0.0184 | 3 | 0.0061 | 0.5125 | 0.6952 | not significant |
R2 | 0.9807 | |||||
Adjusted R2 | 0.9559 | |||||
Pure Error | 0.0480 | 4 | 0.0120 | |||
Cor Total | 3.44 | 16 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 281.03 | 9 | 31.23 | 23.22 | 0.0002 *** | significant |
X1-Ratio of solid to liquid | 0.3785 | 1 | 0.3785 | 0.2815 | 0.6122 | |
X2-Extraction time | 0.0300 | 1 | 0.0300 | 0.0223 | 0.8854 | |
X3-Extraction temperature | 145.10 | 1 | 145.10 | 107.91 | <0.0001 *** | |
AB | 6.76 | 1 | 6.76 | 5.03 | 0.0599 | |
AC | 2.37 | 1 | 2.37 | 1.76 | 0.2258 | |
BC | 1.45 | 1 | 1.45 | 1.08 | 0.3333 | |
A2 | 8.45 | 1 | 8.45 | 6.28 | 0.0406 * | |
B2 | 2.24 | 1 | 2.24 | 1.66 | 0.2382 | |
C2 | 107.96 | 1 | 107.96 | 80.30 | <0.0001 *** | |
Residual | 9.41 | 7 | 1.34 | |||
Lack of Fit | 5.41 | 3 | 1.80 | 1.80 | 0.2860 | not significant |
R2 | 0.9676 | |||||
Adjusted R2 | 0.9259 | |||||
Pure Error | 4.00 | 4 | 1.0000 | |||
Cor Total | 290.44 | 16 |
X1 (g/mL) | X2 (h) | X3 (°C) | Yield (%) | Inhibition α-Glucosidase Activity (%) | |
---|---|---|---|---|---|
Optimum conditions | 1:4 | 1.1 | 95 | 3.64 | 91.87 (predicted) |
Modified conditions | 1:4 | 1.0 | 90 | 3.47 | 91.13 ± 0.623 (actual) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Yang, M.; Zhou, X.; Chen, H. Optimization of Extraction Process of Polysaccharides MAP-2 from Opuntia Milpa Alta by Response Surface Methodology and Evaluation of Its Potential as α-Glucosidase Inhibitor. Foods 2022, 11, 3530. https://doi.org/10.3390/foods11213530
Yang Y, Yang M, Zhou X, Chen H. Optimization of Extraction Process of Polysaccharides MAP-2 from Opuntia Milpa Alta by Response Surface Methodology and Evaluation of Its Potential as α-Glucosidase Inhibitor. Foods. 2022; 11(21):3530. https://doi.org/10.3390/foods11213530
Chicago/Turabian StyleYang, Yan, Maohui Yang, Xin Zhou, and Huaguo Chen. 2022. "Optimization of Extraction Process of Polysaccharides MAP-2 from Opuntia Milpa Alta by Response Surface Methodology and Evaluation of Its Potential as α-Glucosidase Inhibitor" Foods 11, no. 21: 3530. https://doi.org/10.3390/foods11213530
APA StyleYang, Y., Yang, M., Zhou, X., & Chen, H. (2022). Optimization of Extraction Process of Polysaccharides MAP-2 from Opuntia Milpa Alta by Response Surface Methodology and Evaluation of Its Potential as α-Glucosidase Inhibitor. Foods, 11(21), 3530. https://doi.org/10.3390/foods11213530