Ficus carica (Linn.) Leaf and Bud Extracts and Their Combination Attenuates Type-1 Diabetes and Its Complications via the Inhibition of Oxidative Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extracts Preparation
2.2. Quantification of Phenolic Content (TPC)
2.3. Quantification of Flavonoids Content (TFC)
2.4. Antioxidant Activity
2.5. Ethical Approval
2.6. Experimental Design and Treatment Schedule
2.7. Biochemical Analysis
2.8. Blood Sampling and Tissue Preparation
2.9. Catalase Activity in the Pancreas, Liver, and Kidneys of Normal and Diabetic Rats
2.10. Glutathione (GSH) Activity in the Pancreas, Liver, and Kidneys of Normal and Diabetic Rats
2.11. Peroxidase Activity in the Pancreas, Liver, and Kidneys of Normal and Diabetic Rats
2.12. Malondialdehyde MDA Levels in the Pancreas, Liver, and Kidneys of Normal and Diabetic Rats
2.13. Statistical Analysis
3. Results
3.1. Quantification of Phenolic and Flavonoid Contents and Antioxidant Activity
3.2. Biological Assessments
3.2.1. Impact of Different Treatments on Body Weight
3.2.2. Impact of Different Treatments on Blood Sugar Levels
3.2.3. Impact of Different Treatments on Lipid Profile
3.2.4. Impact of Different Extracts on Liver Enzymes
3.2.5. Impact of Different Treatments on Serum and Urinary Kidney Parameters
3.2.6. Impact of Different Treatments on the Kidney, Pancreas, and Liver Enzymatic Antioxidants and Lipid Peroxidation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Basit, A.; Fawwad, A.; Qureshi, H.; Shera, A.S. Prevalence of Diabetes, Pre-Diabetes and Associated Risk Factors: Second National Diabetes Survey of Pakistan (NDSP), 2016–2017. BMJ Open 2018, 8, e020961. [Google Scholar] [PubMed]
- Mukherjee, T.; Robbins, T.; Lim Choi Keung, S.N.; Sankar, S.; Randeva, H.; Arvanitis, T.N. A Systematic Review Considering Risk Factors for Mortality of Patients Discharged from Hospital with a Diagnosis of Diabetes. J. Diabetes Complicat. 2020, 34, 107705. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.B.; Florez, J.C. Genetics of Diabetes Mellitus and Diabetes Complications. Nat. Rev. Nephrol. 2020, 16, 377–390. [Google Scholar] [CrossRef]
- Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global Trends in Diabetes Complications: A Review of Current Evidence. Diabetologia 2019, 62, 3–16. [Google Scholar] [CrossRef]
- Yang, W.; Cintina, I.; Hoerger, T.; Neuwahl, S.J.; Shao, H.; Laxy, M.; Zhang, P. Estimating Costs of Diabetes Complications in People <65 years in the U.S. Using Panel Data. J. Diabetes Complicat. 2020, 34, 107735. [Google Scholar] [CrossRef]
- Agochukwu-Mmonu, N.; Pop-Busui, R.; Wessells, H.; Sarma, A.V. Autonomic Neuropathy and Urologic Complications in Diabetes. Auton. Neurosci. 2020, 229, 102736. [Google Scholar] [CrossRef]
- Ansari, P.; Azam, S.; Hannan, J.M.A.; Flatt, P.R.; Wahab, Y.H.A. Anti-Hyperglycaemic Activity of H. Rosa-Sinensis Leaves Is Partly Mediated by Inhibition of Carbohydrate Digestion and Absorption, and Enhancement of Insulin Secretion. J. Ethnopharmacol. 2020, 253, 112647. [Google Scholar]
- Egbuna, C.; Awuchi, C.G.; Kushwaha, G.; Rudrapal, M.; Patrick-Iwuanyanwu, K.C.; Singh, O.; Odoh, U.E.; Khan, J.; Jeevanandam, J.; Kumarasamy, S. Bioactive Compounds Effective against Type 2 Diabetes Mellitus: A Systematic Review. Curr. Top. Med. Chem. 2021, 21, 1067–1095. [Google Scholar]
- Ansari, P.; Flatt, P.R.; Harriott, P.; Abdel-Wahab, Y.H. Anti-Hyperglycaemic and Insulin-Releasing Effects of Camellia Sinensis Leaves and Isolation and Characterisation of Active Compounds. Br. J. Nutr. 2021, 126, 1149–1163. [Google Scholar] [CrossRef]
- Kooti, W.; Farokhipour, M.; Asadzadeh, Z.; Ashtary-Larky, D.; Asadi-Samani, M. The Role of Medicinal Plants in the Treatment of Diabetes: A Systematic Review. Electron. Physician 2016, 8, 1832–1842. [Google Scholar] [CrossRef] [PubMed]
- Hridoy, M.; Gorapi, M.Z.H.; Noor, S.; Chowdhury, N.S.; Rahman, M.M.; Muscari, I.; Masia, F.; Adorisio, S.; Delfino, D.V.; Mazid, M.A. Putative Anticancer Compounds from Plant-Derived Endophytic Fungi: A Review. Molecules 2022, 27, 296. [Google Scholar] [CrossRef] [PubMed]
- Saklani, A.; Kutty, S.K. Plant-Derived Compounds in Clinical Trials. Drug Discov. Today 2008, 13, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Irudayaraj, S.S.; Christudas, S.; Antony, S.; Duraipandiyan, V.; Abdullah, A.-D.N.; Ignacimuthu, S. Protective Effects of Ficus Carica Leaves on Glucose and Lipids Levels, Carbohydrate Metabolism Enzymes and β-Cells in Type 2 Diabetic Rats. Pharm. Biol. 2017, 55, 1074–1081. [Google Scholar] [CrossRef]
- Fouad, Z.; Lahcen, Z. Antidiabetic Medicinal Plants in Morocco: Ethnobotanical Survey of the Population of Beni Mellal. Plant Arch. 2020, 20, 337–343. [Google Scholar]
- Mechchate, H.; Es-safi, I.; Jawhari, F.Z.; Bari, A.; Grafov, A.; Bousta, D. Ethnobotanical Survey About the Management of Diabetes With Medicinal Plants Used by Diabetic Patients in Region of FezMeknes, Morocco; Social Science Research Network: Rochester, NY, USA, 2020. [Google Scholar]
- Naceiri Mrabti, H.; Bouyahya, A.; Naceiri Mrabti, N.; Jaradat, N.; Doudach, L.; Faouzi, M.E.A. Ethnobotanical Survey of Medicinal Plants Used by Traditional Healers to Treat Diabetes in the Taza Region of Morocco. Evid.-Based Complement. Altern. Med. 2021, 2021, e5515634. [Google Scholar] [CrossRef]
- Achtak, H.; Ater, M.; Oukabli, A.; Santoni, S.; Kjellberg, F.; Khadari, B. Traditional Agroecosystems as Conservatories and Incubators of Cultivated Plant Varietal Diversity: The Case of Fig (Ficus Carica L.) in Morocco. BMC Plant Biol. 2010, 10, 28. [Google Scholar] [CrossRef]
- Baraket, G.; Saddoud, O.; Chatti, K.; Mars, M.; Marrakchi, M.; Trifi, M.; Salhi-Hannachi, A. Sequence Analysis of the Internal Transcribed Spacers (ITSs) Region of the Nuclear Ribosomal DNA (NrDNA) in Fig Cultivars (Ficus Carica L.). Sci. Hortic. 2009, 120, 34–40. [Google Scholar] [CrossRef]
- Shi, Y.; Mon, A.M.; Fu, Y.; Zhang, Y.; Wang, C.; Yang, X.; Wang, Y. The Genus Ficus (Moraceae) Used in Diet: Its Plant Diversity, Distribution, Traditional Uses and Ethnopharmacological Importance. J. Ethnopharmacol. 2018, 226, 185–196. [Google Scholar] [CrossRef]
- Caliskan, O. Chapter 56-Mediterranean Figs (Ficus Carica L.) Functional Food Properties. In The Mediterranean Diet; Preedy, V.R., Watson, R.R., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 629–637. ISBN 978-0-12-407849-9. [Google Scholar]
- Teruel-Andreu, C.; Andreu-Coll, L.; López-Lluch, D.; Sendra, E.; Hernández, F.; Cano-Lamadrid, M. Ficus carica Fruits, By-Products and Based Products as Potential Sources of Bioactive Compounds: A Review. Agronomy 2021, 11, 1834. [Google Scholar] [CrossRef]
- Hssaini, L.; Hernandez, F.; Viuda-Martos, M.; Charafi, J.; Razouk, R.; Houmanat, K.; Ouaabou, R.; Ennahli, S.; Elothmani, D.; Hmid, I.; et al. Survey of Phenolic Acids, Flavonoids and In Vitro Antioxidant Potency Between Fig Peels and Pulps: Chemical and Chemometric Approach. Molecules 2021, 26, 2574. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yu, M.; Li, S.; Yang, X.; Qiao, B.; Shi, S.; Zhao, C.; Fu, Y. Valorization of Fig (Ficus Carica L.) Waste Leaves: HPLC-QTOF-MS/MS-DPPH System for Online Screening and Identification of Antioxidant Compounds. Plants 2021, 10, 2532. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Li, S.; Li, C.; Wang, T.; Tian, Y.; Li, X. Flavonoids from Fig (Ficus Carica Linn.) Leaves: The Development of a New Extraction Method and Identification by UPLC-QTOF-MS/MS. Appl. Sci. 2021, 11, 7718. [Google Scholar] [CrossRef]
- Toma, C.C.; Casacchia, T.; D’IPPOLITO, C.; Statti, G. Ficus carica SSP Dottato Buds by Intercropping Different Species: Metabolites, Antioxidant Activity and Endogenous Plant Hormones (IAA, ABA). Rev. Chim. 2017, 68, 1628. [Google Scholar]
- Nicoletti, M.; di Clima, F.P. Gemmotherapy, and the Scientific Foundations of a Modern Meristemotherapy; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2020; ISBN 1-5275-5873-8. [Google Scholar]
- Donno, D.; Turrini, F.; Boggia, R.; Guido, M.; Gamba, G.; Mellano, M.G.; Riondato, I.; Beccaro, G.L. Sustainable Extraction and Use of Natural Bioactive Compounds from the Waste Management Process of Castanea Spp. Bud-Derivatives: The FINNOVER Project. Sustainability 2020, 12, 10640. [Google Scholar] [CrossRef]
- Bakour, M.; Al-Waili, N.S.; El Menyiy, N.; Imtara, H.; Figuira, A.C.; Al-Waili, T.; Lyoussi, B. Antioxidant Activity and Protective Effect of Bee Bread (Honey and Pollen) in Aluminum-Induced Anemia, Elevation of Inflammatory Makers and Hepato-Renal Toxicity. J. Food Sci. Technol. 2017, 54, 4205–4212. [Google Scholar] [CrossRef]
- Bakour, M.; Soulo, N.; Hammas, N.; Fatemi, H.; Aboulghazi, A.; Taroq, A.; Abdellaoui, A.; Al-Waili, N.; Lyoussi, B. The Antioxidant Content and Protective Effect of Argan Oil and Syzygium Aromaticum Essential Oil in Hydrogen Peroxide-Induced Biochemical and Histological Changes. Int. J. Mol. Sci. 2018, 19, 610. [Google Scholar] [CrossRef]
- Kong, K.W.; Mat-Junit, S.; Aminudin, N.; Ismail, A.; Abdul-Aziz, A. Antioxidant Activities and Polyphenolics from the Shoots of Barringtonia Racemosa (L.) Spreng in a Polar to Apolar Medium System. Food Chem. 2012, 134, 324–332. [Google Scholar] [CrossRef]
- Laaroussi, H.; Bouddine, T.; Bakour, M.; Ousaaid, D.; Lyoussi, B. Physicochemical Properties, Mineral Content, Antioxidant Activities, and Microbiological Quality of Bupleurum Spinosum Gouan Honey from the Middle Atlas in Morocco. J. Food Qual. 2020, 2020, 7609454. [Google Scholar] [CrossRef]
- Sharma, A.; Fish, B.L.; Moulder, J.E.; Medhora, M.; Baker, J.E.; Mader, M.; Cohen, E.P. Safety and Blood Sample Volume and Quality of a Refined Retro-Orbital Bleeding Technique in Rats Using a Lateral Approach. Lab Anim. 2014, 43, 63–66. [Google Scholar] [CrossRef]
- El-Haskoury, R.; Al-Waili, N.; Kamoun, Z.; Makni, M.; Al-Waili, H.; Lyoussi, B. Antioxidant Activity and Protective Effect of Carob Honey in CCl4-Induced Kidney and Liver Injury. Arch. Med. Res. 2018, 49, 306–313. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in Vitro. Meth. Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue Sulfhydryl Groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Flohé, L.; Günzler, W.A. Assays of Glutathione Peroxidase. Meth. Enzymol. 1984, 105, 114–121. [Google Scholar] [CrossRef]
- Kassan, M.; Montero, M.J.; Sevilla, M.A. Chronic Treatment with Pravastatin Prevents Early Cardiovascular Changes in Spontaneously Hypertensive Rats. Br. J. Pharmacol. 2009, 158, 541–547. [Google Scholar]
- Cheng, J.; Zhang, B.; Zhu, W.; Zhang, C.; Qin, Y.; Abe, M.; Akihisa, T.; Liu, W.; Feng, F.; Zhang, J. Traditional Uses, Phytochemistry, and Pharmacology of Ficus Hispida Lf: A Review. J. Ethnopharmacol. 2020, 248, 112204. [Google Scholar]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H.; Mahajan, R.T. Traditional Uses, Phytochemistry and Pharmacology of Ficus Carica: A Review. Pharm. Biol. 2014, 52, 1487–1503. [Google Scholar]
- Sajid, M.; Khan, M.R.; Ismail, H.; Latif, S.; Rahim, A.A.; Mehboob, R.; Shah, S.A. Antidiabetic and Antioxidant Potential of Alnus Nitida Leaves in Alloxan Induced Diabetic Rats. J. Ethnopharmacol. 2020, 251, 112544. [Google Scholar] [CrossRef]
- Turrini, F.; Donno, D.; Beccaro, G.L.; Pittaluga, A.; Grilli, M.; Zunin, P.; Boggia, R. Bud-Derivatives, a Novel Source of Polyphenols and How Different Extraction Processes Affect Their Composition. Foods 2020, 9, 1343. [Google Scholar]
- Iftikhar, A.; Aslam, B.; Iftikhar, M.; Majeed, W.; Batool, M.; Zahoor, B.; Amna, N.; Gohar, H.; Latif, I. Effect of Caesalpinia Bonduc Polyphenol Extract on Alloxan-Induced Diabetic Rats in Attenuating Hyperglycemia by Upregulating Insulin Secretion and Inhibiting JNK Signaling Pathway. Oxidative Med. Cell. Longev. 2020, 2020, 9020219. [Google Scholar]
- Zhang, S.; Ma, X.; Zhang, L.; Sun, H.; Liu, X. Capsaicin Reduces Blood Glucose by Increasing Insulin Levels and Glycogen Content Better than Capsiate in Streptozotocin-Induced Diabetic Rats. J. Agric. Food Chem. 2017, 65, 2323–2330. [Google Scholar]
- Perez, C.; Dominguez, E.; Ramiro, J.M.; Romero, A.; Campillo, J.E.; Torres, M.D. A Study on the Glycaemic Balance in Streptozotocin-Diabetic Rats Treated with an Aqueous Extract of Ficus Carica (Fig Tree) Leaves. Phytother. Res. 1996, 10, 82–83. [Google Scholar]
- El-Shobaki, F.A.; El-Bahay, A.M.; Esmail, R.S.A.; El-Megeid, A.A.A.; Esmail, N.S. Effect of Figs Fruit (Ficus Carica L.) and Its Leaves on Hyperglycemia in Alloxan Diabetic Rats. World J. Dairy Food Sci. 2010, 5, 47–57. [Google Scholar]
- Paşayeva, L.; Özalp, B.; Fatullayev, H. Potential Enzyme Inhibitory Properties of Extracts and Fractions from Fruit Latex of Ficus Carica-Based on Inhibition of α-Amylase and α-Glucosidase. J. Food Meas. Charact. 2020, 14, 2819–2827. [Google Scholar] [CrossRef]
- Mopuri, R.; Ganjayi, M.; Meriga, B.; Koorbanally, N.A.; Islam, M.S. The Effects of Ficus Carica on the Activity of Enzymes Related to Metabolic Syndrome. J. Food Drug Anal. 2018, 26, 201–210. [Google Scholar] [CrossRef]
- Sundus, S.; Hira, K.; Sohail, N.; Habiba; Ara, J.; Sultana, V.; Ehteshamul-Haque, S. Protective Role of Pandanus Tectorius Parkinson Ex Du Roi in Diabetes, Hyperlipidemia, Liver and Kidney Dysfunction in Alloxan Diabetic Rats. Clin. Phytosci. 2021, 7, 1–13. [Google Scholar] [CrossRef]
- Abdel-Karim, O.H.; Abo-Shady, A.M.; Ismail, G.A.; Gheda, S.F. Potential Effect of Turbinaria Decurrens Acetone Extract on the Biochemical and Histological Parameters of Alloxan-Induced Diabetic Rats. Int. J. Environ. Health Res. 2021, 32, 1447–1468. [Google Scholar] [CrossRef]
- Canal, J.R.; Torres, M.D.; Romero, A.; Pérez, C. A Chloroform Extract Obtained from a Decoction of Ficus Carica Leaves Improves the Cholesterolaemic Status of Rats with Streptootocin-Includede Diabetes. Acta Physiol. Hung. 2000, 87, 71–76. [Google Scholar] [CrossRef]
- Asadi, F.; Pourkabir, M.; Maclaren, R.; Shahriari, A. Alterations to Lipid Parameters in Response to Fig Tree (Ficus Carica) Leaf Extract in Chicken Liver Slices. Turk. J. Vet. Anim. Sci. 2006, 30, 315–318. [Google Scholar]
- Nemiche, S.; Ait Hamadouche, N.; Nemmiche, S.; Fauconnier, M.-L.; Tou, A. Ameliorative or Corrective Effects of Fig “Ficus carica” Extract on Nickel-Induced Hepatotoxicity in Wistar Rats. Toxicol. Res. 2022, 38, 311–321. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Liu, M.; Zhang, C.; Shao, J.; Hou, X.; Tian, J.; Cui, Q. A Comprehensive Review on Phytochemistry, Bioactivities, Toxicity Studies, and Clinical Studies on Ficus Carica Linn. Leaves. Biomed. Pharmacother. 2021, 137, 111393. [Google Scholar] [CrossRef] [PubMed]
- Fouad, D.; Alhatem, H.; Abdel-Gaber, R.; Ataya, F. Hepatotoxicity and Renal Toxicity Induced by Gamma-Radiation and the Modulatory Protective Effect of Ficus Carica in Male Albino Rats. Res. Vet. Sci. 2019, 125, 24–35. [Google Scholar]
- Ramadan, S.; Hegab, A.M.; Al-Awthan, Y.S.; Al-Duais, M.A.; Tayel, A.A.; Al-Saman, M.A. Comparison of the Efficiency of Lepidium Sativum, Ficus Carica, and Punica Granatum Methanolic Extracts in Relieving Hyperglycemia and Hyperlipidemia of Streptozotocin-Induced Diabetic Rats. J. Diabetes Res. 2021, 2021, e6018835. [Google Scholar] [CrossRef]
- Ghafoor, A.; Tahir, M.; Lone, K.P.; Faisal, B.; Latif, W. The Effect of Ficus Carica l.(Anjir) Leaf Extract on Gentamicin Induced Nephrotoxicity in Adult Male Albino Mice. J. Ayub Med. Coll. Abbottabad 2015, 27, 398–401. [Google Scholar]
- Eguchi, N.; Vaziri, N.D.; Dafoe, D.C.; Ichii, H. The Role of Oxidative Stress in Pancreatic β Cell Dysfunction in Diabetes. Int. J. Mol. Sci. 2021, 22, 1509. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Sathyapalan, T.; Atkin, S.L.; Sahebkar, A. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxidative Med. Cell. Longev. 2020, 2020, e8609213. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.M.P.; Linhares, B.S.; Oliveira, J.M.; Leite, J.P.V.; da Matta, S.L.P.; Gonçalves, R.V.; Freitas, M.B. Tebuconazole-Induced Toxicity and the Protective Effect of Ficus Carica Extract in Neotropical Fruit-Eating Bats. Chemosphere 2021, 275, 129985. [Google Scholar] [CrossRef]
- Elghareeb, M.M.; Elshopakey, G.E.; Hendam, B.M.; Rezk, S.; Lashen, S. Synergistic Effects of Ficus Carica Extract and Extra Virgin Olive Oil against Oxidative Injury, Cytokine Liberation, and Inflammation Mediated by 5-Fluorouracil in Cardiac and Renal Tissues of Male Albino Rats. Environ. Sci. Pollut. Res. 2021, 28, 4558–4572. [Google Scholar] [CrossRef]
TPC mg GAE/g DW | TFC mg QE/g DW | DPPH IC50 mg/mL | |
---|---|---|---|
Buds of Ficus carica | 148.17 ± 8.54 a | 1.01 ± 0.02 c | 0.26 ± 0.05 b |
Leaves of Ficus carica | 74.58 ± 3.02 b | 11.47 ± 0.01 a | 0.31 ± 0.04 a |
Body Weight (g) | |||||
---|---|---|---|---|---|
Days of Treatment | Day 0 | Day 7 | Day 14 | Day 21 | Day 30 |
NC | 220 ± 5 | 210 ± 6 | 224 ± 11 | 226 ± 9 | 230 ± 12 |
NC + L | 222 ± 7 | 224 ± 5 | 226 ± 9 | 229 ± 10 | 232 ± 11 |
NC + B | 224 ± 8 | 225 ± 3 | 229 ± 8 | 230 ± 10 | 232 ± 9 |
NC + LB | 228 ± 7 | 230 ± 7 | 232 ± 10 | 230 ± 6 | 233 ± 7 |
DC | 230 ± 6 | 220 ± 8 | 200 ± 14 *** | 197 ± 8 *** | 189 ± 6 *** |
DC + L | 231 ± 7 | 229 ± 8 | 227 ± 5 | 225 ± 7 | 220 ± 8 * |
DC + B | 224 ± 5 | 225 ± 7 | 222 ± 8 | 220 ± 6 | 218 ± 7 |
DC + LB | 225 ± 7 | 224 ± 5 | 220 ± 7 | 218 ± 9 | 219 ± 8 |
Blood Glucose (g/L) | |||||||
---|---|---|---|---|---|---|---|
Days of Treatment | Day 0 | Day 5 | Day 10 | Day 15 | Day 20 | Day 25 | Day 30 |
NC | 1 ± 0.5 | 0.95 ± 0.12 | 1.02 ± 0.10 | 0.99 ± 0.14 | 1.10 ± 0.08 | 1.12 ± 0.08 | 0.99 ± 0.09 |
NC + L | 1.10 ± 0.7 | 0.98 ± 0.11 | 0.93 ± 0.11 | 0.97 ± 0.18 | 1.16 ± 0.06 | 1.10 ± 0.10 | 1.05 ± 0.05 |
NC + B | 0.96 ± 0.20 | 0.99 ± 0.07 | 1.18 ± 0.05 | 1.02 ± 0.10 | 1.11 ± 0.06 | 1.02 ± 0.07 | 1.03 ± 0.10 |
NC + LB | 1.12 ± 0.5 | 1.10 ± 0.10 | 1.08 ± 0.04 | 1.09 ± 0.06 | 1.07 ± 0.05 | 1.09 ± 0.04 | 0.98 ± 0.06 |
DC | 2.92 ± 0.50 | 3.99 ± 0.15 *** | 4 ± 0.21 *** | 3.98 ± 0.36 *** | 4.20 ± 0.41 *** | 3.92 ± 0.45 *** | 4.19 ± 0.56 *** |
DC + L | 3.89 ± 0.62 | 3.52 ± 0.12 * | 2.99 ± 0.10 * | 2.88 ± 0.62 ** | 2.72 ± 0.59 *** | 1.98 ± 0.36 *** | 1.90 ± 0.52 *** |
DC + B | 3.91 ± 0.38 | 3.88 ± 0.45 | 3.62 ± 0.48 *** | 2.11 ± 0.25 *** | 1.99 ± 0.25 *** | 1.62 ± 0.39 *** | 1.27 ± 0.30 *** |
DC + LB | 3.95 ± 0.40 | 3.20 ± 0.30 * | 3.11 ± 0.25 *** | 2.40 ± 0.90 *** | 1.92 ± 0.60 *** | 1.78 ± 0.36 *** | 1.62 ± 0.40 *** |
Variables in the Kidney | Interventions | |||||||
---|---|---|---|---|---|---|---|---|
NC | NC + L | NC + B | NC + LB | DC | DC + L | DC + B | DC + LB | |
Proteins (mg/g org) | 6.15 ± 0.5 | 5.09 ± 0.23 | 5.04 ± 0.17 | 5.85 ± 0.37 | 8.03 ± 0.53 a*** | 5.54 ± 0.45 a**, b*** | 4.76 ± 0.19 b*** | 5.06 ± 0.54 b*** |
Catalase (µmol H2 O2/min/mg pr) | 32.19 ± 2.05 | 29.23 ± 1.41 | 21.23 ± 1.58 | 30.18 ± 2.21 | 15.90 ± 2.14 a*** | 20.45 ± 1,21 a**,b*** | 31.96 ± 2.45 b*** | 29.68 ± 1.67 b*** |
GSH (µg/g org) | 220.13 ± 5.23 | 211.09 ± 3.54 | 229.19 ± 5.09 | 226.12 ± 4.23 | 59.78 ± 4.09 a*** | 190.67 ± 4.06 a**,b*** | 231.22 ± 4.17 a*,b*** | 229.89 ± 5.67 b*** |
GPx (nmol GSH/min/mg pr) | 15.34 ± 1.54 | 17.19 ± 1.78 | 18.09 ± 1.06 | 15.23 ± 0.98 | 6.67 ± 0.31 a*** | 13.27 ± 1.45 a**b*** | 15.98 ± 1.69 b*** | 14.54 ± 0.78 a**,b*** |
MDA (nmol/g org) | 24.67 ± 2.09 | 23.96 ± 2.23 | 23.45 ± 1.89 | 24.06 ± 1.22 | 85.09 ± 3.52 a*** | 52.16 ± 2.34 a***,b*** | 20.56 ± 4.81 a*,b*** | 22.62 ± 2.61 a*,b*** |
Variables in the Liver | Interventions | |||||||
---|---|---|---|---|---|---|---|---|
NC | NC + L | NC + B | NC + LB | DC | DC + L | DC + B | DC + LB | |
Proteins (mg/g org) | 8.14 ± 1.63 | 7.97 ± 1.63 | 8.53 ± 1.56 | 7.77 ± 2.05 | 12.02 ± 2.8 a*** | 9.56 ± 2.04 a*, b*** | 9.06 ± 1.91 b*** | 8.63 ± 2.06 b** |
Catalase (µmol H2 O2/min/mg pr) | 30.14 ± 0.52 | 28.98 ± 0.5 | 32.69 ± 1.65 | 31.38 ± 1.44 | 15.58 ± 2.55 a*** | 22.54 ± 2.12 a***,b*** | 29.89 ± 2.07 b*** | 29.08 ± 2.67 b*** |
GSH (µg/g org) | 356.47 ± 5.12 | 368.06 ± 3.98 | 349.06 ± 6.08 | 352.05 ± 4.94 | 194.56 ± 3.34 a*** | 233.54 ± 5.33 a***,b*** | 370.51 ± 5.45 b*** | 359 ± 5.78 b*** |
GPx (nmol GSH/min/mg pr) | 11.29 ± 1.59 | 10.95 ± 0.93 | 11.56 ± 1.79 | 10.39 ± 1.23 | 5.67 ± 1.45 a*** | 8.67 ± 2.50 a**, b** | 11.96 ± 0.54 b*** | 9.49 ± 1.56 b*** |
MDA (nmol/g rg) | 29.81 ± 0.59 | 25.88 ± 1.15 | 26.39 ± 2.05 | 25.09 ± 1.45 | 70.29 ± 2.19 a*** | 45.55 ± 1.91 a***,b*** | 31.06 ± 2.19 b*** | 27.79 ± 2.39 b*** |
Variables in the Pancreas | Interventions | |||||||
---|---|---|---|---|---|---|---|---|
NC | NC + L | NC + B | NC + LB | DC | DC + L | DC + B | DC + LB | |
Proteins (mg/g org) | 4.26 ± 1.05 | 4.08 ± 1.12 | 3.89 ± 0.92 | 4.28 ± 0.94 | 3.15 ± 0.19 a*** | 5.23 ± 1.18 a*, b*** | 6.53 ± 0.19 b*** | 6.27 ± 2.03 b*** |
Catalase (µmol H2 O2/min/mg pr) | 29.67 ± 3.13 | 27.97 ± 2.67 | 30.28 ± 2.78 | 30.29 ± 1.89 | 12.29 ± 1.77 a*** | 25.08 ± 1.72 a*,b*** | 31.71 ± 2.09 b*** | 29.12 ± 1.89 b*** |
GSH (µg/g org) | 295.93 ± 4.27 | 289.18 ± 3.78 | 300.28 ± 5.03 | 302.05 ± 2.95 | 100.28 ± 4.08 a*** | 196.15 ± 4.66 a**,b*** | 312.28 ± 3.88 b*** | 301.17 ± 2.19 b*** |
GPx (nmol GSH/min/mg pr) | 12.62 ± 1.67 | 11.92 ± 1.77 | 12.92 ± 0.69 | 12.32 ± 1.27 | 6.19 ± 0.96 a*** | 10.07 ± 1.89 a*,b*** | 13.09 ± 2.13 b*** | 11.95 ± 2.02 b*** |
MDA (nmol/g org) | 22.92 ± 3.05 | 20.34 ± 2.54 | 20.69 ± 1.92 | 19.84 ± 2.71 | 59.29 ± 3.97 a*** | 31.96 ± 3.18 a***,b*** | 20.15 ± 1.39 b*** | 21.62 ± 1.37 b*** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Ghouizi, A.; Ousaaid, D.; Laaroussi, H.; Bakour, M.; Aboulghazi, A.; Soutien, R.S.; Hano, C.; Lyoussi, B. Ficus carica (Linn.) Leaf and Bud Extracts and Their Combination Attenuates Type-1 Diabetes and Its Complications via the Inhibition of Oxidative Stress. Foods 2023, 12, 759. https://doi.org/10.3390/foods12040759
El Ghouizi A, Ousaaid D, Laaroussi H, Bakour M, Aboulghazi A, Soutien RS, Hano C, Lyoussi B. Ficus carica (Linn.) Leaf and Bud Extracts and Their Combination Attenuates Type-1 Diabetes and Its Complications via the Inhibition of Oxidative Stress. Foods. 2023; 12(4):759. https://doi.org/10.3390/foods12040759
Chicago/Turabian StyleEl Ghouizi, Asmae, Driss Ousaaid, Hassan Laaroussi, Meryem Bakour, Abderrazak Aboulghazi, Rose Strutch Soutien, Christophe Hano, and Badiaa Lyoussi. 2023. "Ficus carica (Linn.) Leaf and Bud Extracts and Their Combination Attenuates Type-1 Diabetes and Its Complications via the Inhibition of Oxidative Stress" Foods 12, no. 4: 759. https://doi.org/10.3390/foods12040759
APA StyleEl Ghouizi, A., Ousaaid, D., Laaroussi, H., Bakour, M., Aboulghazi, A., Soutien, R. S., Hano, C., & Lyoussi, B. (2023). Ficus carica (Linn.) Leaf and Bud Extracts and Their Combination Attenuates Type-1 Diabetes and Its Complications via the Inhibition of Oxidative Stress. Foods, 12(4), 759. https://doi.org/10.3390/foods12040759