Immune-Boosting Potentiating Properties of Brassica nigra Hydroalcoholic Extract in Cyclophosphamide-Induced Immunosuppression in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Mustard Seeds
2.2. Preparation of Sprouts
2.3. Preparation of Extracts for Phytochemicals Analysis
2.4. Determination of TPC, TCs, TFs, and TFLs in B. nigra Seeds and Their Sprouts
2.5. Determination of Antioxidant Capacity
2.6. Quantification of Phenolic Compounds in B. nigra Seeds and Their Sprouts Using HPLC-DAD
2.7. Sprouting of B. nigra for Biological Assessment
2.8. Rat Experiment Design
2.9. Oxidative Stress Biomarkers
2.10. Measurement of Hematological Parameters
2.11. Immunoglobulin, Pro-Inflammation, and Anti-Inflammation Cytokine Assay
2.12. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolics and Antioxidant Capacities of B. nigra Seeds and Their Sprouts
3.2. Total Flavonoid and Flavonol Content in B. nigra Seeds and Their Sprouts
3.3. Total Carotenoid Content in B. nigra Seeds and Their Sprouts
3.4. Identification and Quantification of Phenolic Compounds in B. nigra Seeds and Their Sprouts
3.5. Effects of B. nigra Sprout Extract on Antioxidant Biomarkers in CYT-Induced Immunosuppression in Rats
3.6. Effects of B. nigra Sprout Extracts on Hematological Markers in CYP-Induced Immunosuppression in Rats
3.7. Effects of B. nigra Sprout Extract Administration on Immunoglobulins in CYP-Induced Immunosuppression in Rats
3.8. Effects of B. nigra Sprout Extracts on Pro- and Anti-Inflammatory Cytokines in CYP-Induced Immunosuppression in Rats
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nauman, S.M.; Mohammad, I. Role of Khardal Brassica nigra in Non Communicable Diseases: An overview. Int. J. Drug Dev. Res. 2015, 7, 137–144. [Google Scholar]
- Aires, A. Brassica Composition and Food Processing. In Processing and Impact on Active Components in Food; Elsevier: Amsterdam, The Netherlands, 2015; pp. 17–25. [Google Scholar]
- Ramirez, D.; Abellán-Victorio, A.; Beretta, V.; Camargo, A.; Moreno, D.A. Functional Ingredients from Brassicaceae Species: Overview and Perspectives. Int. J. Mol. Sci. 2020, 21, 1998. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Perles, R.; Mena, P.; Garcia-Viguera, C.; Moreno, D. Brassica Foods as A Dietary Source of Vitamin C: A Review. Crit. Rev. Food Sci. Nut. Res Rev. 2014, 54, 1076–1091. [Google Scholar]
- Moreb, N.; Murphy, A.; Jaiswal, S.; Jaiswal, A.K. Cabbage; Elsevier: Amsterdam, The Netherlands, 2020; pp. 33–54. [Google Scholar]
- Shankar, S.; Segaran, G.; Sundar, R.D.V.; Settu, S.; Sathiavelu, M. Brassicaceae-A Classical Review on Its Pharmacological Activities. Int. J. Pharm. Sci. Res. 2019, 55, 107–113. [Google Scholar]
- Argento, S.; Melilli, M.G.; Branca, F. Enhancing greenhouse tomato-crop productivity by using Brassica macrocarpa guss. Leaves for controlling root-knot nematodes. Agronomy 2019, 9, 820. [Google Scholar] [CrossRef]
- Nawaz, H.; Shad, M.A.; Muzaffar, S. Phytochemical Composition and Antioxidant Potential of Brassica. Brassica Germplasm Charact. Breed. Util. 2018, 1, 7–26. [Google Scholar]
- Ahmed, A.G.; Hussein, U.K.; Ahmed, A.E.; Kim, K.M.; Mahmoud, H.M.; Hammouda, O.; Jang, K.Y.; Bishayee, A. Mustard Seed (Brassica nigra) Extract Exhibits Antiproliferative Effect Against Human Lung Cancer Cells Through Differential Regulation of Apoptosis, Cell Cycle, Migration, and Invasion. Molecules 2020, 25, 2069. [Google Scholar] [CrossRef]
- Danlami, U.; Orishadipe Abayomi, T.; Lawal, D.R. Phytochemical, Nutritional and Antimicrobial Evaluations of the Aqueous Extract of Brassica nigra (Brassicaceae) Seeds. Am. J. Appl. Chem. 2016, 4, 11648. [Google Scholar] [CrossRef]
- Tian, Y.; Deng, F. Phytochemistry and Biological Activity Of Mustard (Brassica juncea): A Review. CyTA J. Food 2020, 18, 704–718. [Google Scholar] [CrossRef]
- Anand, P.; Murali, Y.; Tandon, V.; Murthy, P.; Chandra, R. Insulinotropic Effect of Aqueous Extract of Brassica nigra Improves Glucose Homeostasis in Streptozotocin Induced Diabetic Rats. Exp. Clin. Endocrinol. Diabetes 2009, 117, 251–256. [Google Scholar] [CrossRef]
- Li, J.; Zehentbauer, G.; Bunke, P.; Zent, J.; Ekanayake, A.; Kester, J. Isogard (TM) a Natural Anti-Microbial Agent Derived from White Mustard Seed. In Proceedings of the I International Symposium on Natural Preservatives in Food Systems, Princeton, NJ, USA, 30–31 March 2005; Volume 709, pp. 101–108. [Google Scholar]
- Alam, M.B.; Hossain, M.S.; Haque, M.E. Antioxidant and Anti-Inflammatory Activities of The Leaf Extract of Brassica nigra. Int. J. Pharm. Sci. Res. 2011, 2, 303–310. [Google Scholar]
- Mazumder, A.; Dwivedi, A.; Du Plessis, J. Sinigrin and Its Therapeutic Benefits. Molecules 2016, 21, 416. [Google Scholar] [CrossRef] [PubMed]
- Kiasalari, Z.; Khalili, M.; Roghani, M.; Sadeghian, A. Antiepileptic and Antioxidant Effect of Brassica nigra on Pentylenetetrazol-Induced Kindling in Mice. Iran. J. Pharm. Res. 2012, 11, 1209. [Google Scholar] [PubMed]
- Rajamurugan, R.; Selvaganabathy, N.; Kumaravel, S.; Ramamurthy, C.; Sujatha, V.; Thirunavukkarasu, C. Polyphenol Contents and Antioxidant Activity of Brassica nigra (L.) Koch. Leaf Extract. Nat. Prod. Res. 2012, 26, 2208–2210. [Google Scholar] [CrossRef]
- Rajamurugan, R.; Suyavaran, A.; Selvaganabathy, N.; Ramamurthy, C.H.; Reddy, G.P.; Sujatha, V.; Thirunavukkarasu, C. Brassica nigra Plays A Remedy Role in Hepatic and Renal Damage. Pharm. Biol. 2012, 50, 1488–1497. [Google Scholar] [CrossRef]
- Al-Qady, N.M.H.; Shaban, R.K. Physiological and Histological Effect of Captopril on Kidney and the Protective Role of Brassica nigra Seed Extract in Male Rats. Tikrit J. Pure Sci. 2020, 25, 27–32. [Google Scholar] [CrossRef]
- Ebert, A.W. Sprouts and Microgreens—Novel Food sources for Healthy Diets. Plants 2022, 11, 571. [Google Scholar] [CrossRef]
- Mewis, I.; Schreiner, M.; Nguyen, C.N.; Krumbein, A.; Ulrichs, C.; Lohse, M.; Zrenner, R. UV-B Irradiation Changes Specifically the Secondary Metabolite Profile in Broccoli Sprouts: Induced Signaling Overlaps with Defense Response to Biotic Stressors. Plant Cell Physiol. 2012, 53, 1546–1560. [Google Scholar] [CrossRef]
- Keshri, J.; Krouptiski, Y.; Abu-Fani, L.; Achmon, Y.; Bauer, T.S.; Zarka, O.; Maler, I.; Pinto, R.; Saldinger, S.S. Dynamics of Bacterial Communities in Alfalfa and Mung Bean Sprouts during Refrigerated Conditions. Food Microbiol. 2019, 84, 103261. [Google Scholar] [CrossRef]
- Sangronis, E.; Machado, C. Technology. Influence of Germination on The Nutritional Quality of Phaseolus vulgaris and Cajanus cajan. LWT Food Sci. Technol. 2007, 40, 116–120. [Google Scholar] [CrossRef]
- Martínez-Sánchez, A.; Allende, A.; Bennett, R.N.; Ferreres, F.; Gil, M.I. Microbial, Nutritional and Sensory Quality of Rocket Leaves as Affected by Different Sanitizers. Postharvest Biol. Technol. 2006, 42, 86–97. [Google Scholar] [CrossRef]
- Barillari, J.; Canistro, D.; Paolini, M.; Ferroni, F.; Pedulli, G.F.; Iori, R.; Valgimigli, L. Direct Antioxidant Activity of purified Glucoerucin, the Dietary Secondary Metabolite Contained in Rocket (Eruca sativa Mill.) Seeds and Sprouts. J. Agric. Food Chem. 2005, 53, 2475–2482. [Google Scholar] [CrossRef] [PubMed]
- Barakat, H.; Spielvogel, A.; Hassan, M.; El-Desouky, A.; El-Mansy, H.; Rath, F.; Meyer, V.; Stahl, U. The Antifungal Protein AFP from Aspergillus giganteus Prevents Secondary Growth of Different Fusarium Species on Barley. Appl. Microbiol. Biotechnol. 2010, 87, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, Y.M.; Sakr, S.S.; Albarrak, S.M.; Almundarij, T.I.; Barakat, H.; Hassan, M.F.Y. Antioxidative, Antidiabetic, and Hypolipidemic Properties of Probiotic-Enriched Fermented Camel Milk Combined with Salvia officinalis Leaves Hydroalcoholic Extract in Streptozotocin-Induced Diabetes in Rats. Antioxidants 2022, 11, 668. [Google Scholar] [CrossRef]
- Yuan, G.-f.; Sun, B.; Yuan, J.; Wang, Q.-M. Effects of Different Cooking Methods on Health-Promoting Compounds of Broccoli. J. Zhejiang Univ. Sci. B 2009, 10, 580–588. [Google Scholar] [CrossRef]
- Mohdaly, A.A.A.; Hassanien, M.F.R.; Mahmoud, A.; Sarhan, M.A.; Smetanska, I. Phenolics Extracted from Potato, Sugar Beet, and Sesame Processing By-Products. Int. J. Food Prop. 2013, 16, 1148–1168. [Google Scholar] [CrossRef]
- Kumaran, A.; Karunakaran, R.J. In vitro Antioxidant Activities of Methanol Extracts of Five Phyllanthus Species from India. LWT Food Sci. Technol. 2007, 40, 344–352. [Google Scholar] [CrossRef]
- Khalifa, I.; Barakat, H.; El-Mansy, H.A.; Soliman, S.A. Optimizing Bioactive Substances Extraction Procedures from Guava, Olive and Potato Processing Wastes and Evaluating Their Antioxidant Capacity. J. Food Chem. Nano. 2016, 2, 170–177. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, H.; Chen, J.; Fan, W.; Dong, J.; Kong, W.; Sun, J.; Cao, Y.; Cai, G. Evolution of Phenolic Compounds and Antioxidant Activity During Malting. J. Agric. Food Chem. 2007, 55, 10994–11001. [Google Scholar] [CrossRef]
- Kim, K.-H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic Acid Profiles and Antioxidant Activities of Wheat Bran Extracts and The Effect of Hydrolysis Conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Beutler, E. Improved Method for the Determination of Blood Glutathione. J. Lab. Clin. Med. 1963, 61, 882–888. [Google Scholar] [PubMed]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Giannopolitis, C.N.; Ries, S.K. Superoxide Dismutases: I. Occurrence in Higher Plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Aebi, H. Catalase In Vitro. Meth. Enzymol. 1984, 105, 121–126. [Google Scholar]
- Lee, H.Y.; Park, Y.M.; Lee, Y.H.; Kang, Y.G.; Lee, H.M.; Park, D.S.; Yang, H.J.; Kim, M.J.; Lee, Y.-R. Immunostimulatory Effect of Zanthoxylum schinifolium-based Complex Oil Prepared by Supercritical Fluid Extraction in Splenocytes and Cyclophosphamide-Induced Immunosuppressed Rats. Evid.-Based Complement. Alternat. Med. 2018, 2018, 8107326. [Google Scholar] [CrossRef]
- Khan, M.A.; Nasti, T.H.; Saima, K.; Mallick, A.I.; Firoz, A.; Wajahul, H.; Ahmad, N.; Mohammad, O. Co-Administration of Immunomodulator Tuftsin and Liposomised Nystatin Can Combat Less Susceptible Candida Albicans Infection in Temporarily Neutropenic Mice. FEMS Microbiol. Immunol. 2004, 41, 249–258. [Google Scholar] [CrossRef]
- Juto, P.; Settergren, B. Specific Serum IgA, IgG and IgM Antibody Determination by a Modified Indirect ELISA-Technique in Primary and Recurrent Herpes Simplex Virus Infection. J. Virol. Methods 1988, 20, 45–55. [Google Scholar] [CrossRef]
- Brink, N.; Szamel, M.; Young, A.R.; Wittern, K.P.; Bergemann, J. Comparative Quantification of IL-1β, IL-10, IL-10r, TNFα and IL-7 mRNA Levels in UV-Irradiated Human Skin In Vivo. Inflamm. Res. 2000, 49, 290–296. [Google Scholar] [CrossRef]
- Steel, R. Analysis of Variance I: The One-Way Classification; The McGraw-Hill: New York, NY, USA, 1997; pp. 139–203. [Google Scholar]
- Świeca, M.; Gawlik-Dziki, U.; Kowalczyk, D.; Złotek, U. Impact of Germination Time and Type of Illumination on the Antioxidant Compounds and Antioxidant Capacity of Lens culinaris Sprouts. Sci. Hortic. 2012, 140, 87–95. [Google Scholar] [CrossRef]
- Vadivel, V.; Biesalski, H.K. Effect of Certain Indigenous Processing Methods on The Bioactive Compounds of Ten Different Wild Type Legume Grains. J. Food Sci. Technol 2012, 49, 673–684. [Google Scholar] [CrossRef]
- Al-Qabba, M.M.; El-Mowafy, M.A.; Althwab, S.A.; Alfheeaid, H.A.; Aljutaily, T.; Barakat, H. Phenolic Profile, Antioxidant Activity, and Ameliorating Efficacy of Chenopodium quinoa Sprouts against CCl4-Induced Oxidative Stress in Rats. Nutrients 2020, 12, 2904. [Google Scholar] [CrossRef]
- Paśko, P.; Bartoń, H.; Zagrodzki, P.; Gorinstein, S.; Fołta, M.; Zachwieja, Z. Anthocyanins, Total Polyphenols and Antioxidant Activity in Amaranth and Quinoa Seeds and Sprouts During their Growth. Food Chem. 2009, 115, 994–998. [Google Scholar] [CrossRef]
- Wang, G.; Lei, Z.; Zhong, Q.; Wu, W.; Zhang, H.; Min, T.; Wu, H.; Lai, F. Enrichment of Caffeic Acid in Peanut Sprouts and Evaluation of Its In Vitro Effectiveness Against Oxidative Stress-Induced Erythrocyte Hemolysis. Food Chem. 2017, 217, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Generalić Mekinić, I.; Blažević, I.; Mudnić, I.; Burčul, F.; Grga, M.; Skroza, D.; Jerčić, I.; Ljubenkov, I.; Boban, M.; Miloš, M.; et al. Sea Fennel (Crithmum maritimum L.): Phytochemical Profile, Antioxidative, Cholinesterase Inhibitory and Vasodilatory Activity. J. Food Sci. Technol. 2016, 53, 3104–3112. [Google Scholar] [CrossRef]
- Efrem, M.; Negussie, R.; Sekwati-Monang, B.; Kobue-Lekalake, R.; Selebatso, T.; Setlalekgomo, M.; Haki, G. Effect of Germination on Polyphenol Contents and Antioxidant Activity in Mustard Seeds (Brassica nigra) Grown in Ethiopia. Int. J. Pharm. Sci. Res. 2022, 13, 4087–4092. [Google Scholar]
- Guo, X.; Li, T.; Tang, K.; Liu, R.H. Effect of Germination on Phytochemical Profiles and Antioxidant Activity of Mung Bean Sprouts (Vigna radiata). J. Agric. Food Chem. 2012, 60, 11050–11055. [Google Scholar] [CrossRef] [PubMed]
- Eva, Y.; Annisa, A. Effectiveness of Jicama Probiotic Yoghurt (Pachyrhizus Erosus) on Blood Glucose in Diabetic Mice. KnE. Life Sci. 2019, 4, 250. [Google Scholar] [CrossRef]
- Hasanein, P.; Felehgari, Z.; Emamjomeh, A. Preventive Effects of Salvia officinalis L. Against Learning and Memory Deficit Induced by Diabetes In Rats: Possible Hypoglycaemic and Antioxidant Mechanisms. Neurosci. Lett 2016, 622, 72–77. [Google Scholar] [CrossRef]
- Barakat, H.; Almundarij, T.I. Phenolic Compounds and Hepatoprotective Potential of Anastatica Hierochuntica Ethanolic and Aqueous Extracts Against CCl4-Induced Hepatotoxicity in Rats. J. Tradit. Chin. Med. 2020, 40, 947–955. [Google Scholar]
- Ebrahimzadeh, M.A.; Nabavi, S.M.; Nabavi, S.F.; Bahramian, F.; Bekhradnia, A.R. Antioxidant and Free Radical Scavenging Activity of H. officinalis L. Var. Angustifolius, V. odorata, B. hyrcana and C. speciosum. Pak. J. Pharm. Sci. 2010, 23, 29–34. [Google Scholar]
- Xu, B.; Chang, S.K.C. Phenolic Substance Characterization and Chemical and Cell-Based Antioxidant Activities of 11 Lentils Grown in the Northern United States. J. Agric. Food Chem. 2010, 58, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R.; Estrella, I.; Hernández, T.; Robredo, S.; Troszyńska, A.; Kosińska, A.; Pegg, R.B. Free Radical-Scavenging Capacity, Antioxidant Activity, and Phenolic Composition of Green Lentil (Lens culinaris). Food Chem. 2010, 121, 705–711. [Google Scholar] [CrossRef]
- Castaldo, L.; Izzo, L.; De Pascale, S.; Narváez, A.; Rodriguez-Carrasco, Y.; Ritieni, A. Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Nutraceutical Fennel Waste Extract. Molecules 2021, 26, 1968. [Google Scholar] [CrossRef] [PubMed]
- Khyade, V.B.; Lonkar, U.D. Effect of Moracin on DMBA-TPA induced skin cancer in the mice, Mus musculus (L). Ann. Plant Sci. 2013, 2, 412–419. [Google Scholar]
- Li, Z.; Di, H.; Cheng, W.; Ren, G.; Zhang, Y.; Ma, J.; Ma, W.; Yang, J.; Lian, H.; Li, X.; et al. Effect of the Number of Dark Days and Planting Density on the Health-Promoting Phytochemicals and Antioxidant Capacity of Mustard (Brassica juncea) Sprouts. Plants 2022, 11, 2515. [Google Scholar] [CrossRef]
- Carciochi, R.A.; Galván-D’Alessandro, L.; Vandendriessche, P.; Chollet, S. Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds. Plant Foods Hum. Nutr. 2016, 71, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Choo, C.; Waisundara, V.Y. Determination of the Total Antioxidant Capacity and Quantification of Phenolic Compounds of Different Solvent Extracts of Black Mustard Seeds (Brassica nigra). Int. J. Food Prop. 2015, 18, 2500–2507. [Google Scholar] [CrossRef]
- Nicácio, A.E.; Rodrigues, C.A.; Visentainer, J.V.; Maldaner, L. Evaluation of the QuEChERS Method for the Determination of Phenolic Compounds in Yellow (Brassica alba), Brown (Brassica juncea), and Black (Brassica nigra) Mustard Seeds. Food Chem. 2021, 340, 128162. [Google Scholar] [CrossRef]
- Golmohammadi, M.G.; Banaei, S.; Timar, M.; Abedi, A. Saponin Protects Against Cyclophosphamide-Induced Kidney and Liver Damage Via Antioxidant and Anti-Inflammatory Actions. Physiol. Int. 2023, 110, 108–120. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, A.G.W.; Riaz, K.; Deng, J.Y.; Ho, C.M.; Lin, H.Q.; Dong, T.T.X.; Lee, Y.-K.; Tsim, K.W.K. A Novel Combination Of Four Flavonoids Derived from Astragali radix Relieves the Symptoms of Cyclophosphamide-Induced Anemic Rats. FEBS Open Bio. 2017, 7, 318–323. [Google Scholar] [CrossRef]
- Keshari, A.K.; Srivastava, R.; Singh, P.; Yadav, V.B.; Nath, G. Antioxidant and Antibacterial Activity of Silver Nanoparticles Synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med. 2020, 11, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.A.; Hagrassi, A.M.; Hammam, O.; Soliman, A.M.; Ezzeldin, E.; Aziz, W.M. Brassica juncea L. (Mustard) Extract Silver NanoParticles and Knocking off Oxidative Stress, ProInflammatory Cytokine and Reverse DNA Genotoxicity. Biomolecules 2020, 10, 1650. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Bahadoran, Z.; Azizi, F. Functional foods-Based Diet as A Novel Dietary Approach for Management of Type 2 Diabetes and Its Complications: A Review. World J. Diabetes 2014, 53, 267–281. [Google Scholar] [CrossRef]
- El-Sebaey, A.M.; Abdelhamid, F.M.; Abdalla, O.A. Protective Effects of Garlic Extract Against Hematological Alterations, Immunosuppression, Hepatic Oxidative Stress, and Renal Damage Induced by Cyclophosphamide In Rats. Environ. Sci. Pollut. Res. 2019, 26, 15559–15572. [Google Scholar] [CrossRef] [PubMed]
- Aljutaily, T. Evaluating the Nutritional and Immune Potentiating Characteristics of Unfermented and Fermented Turmeric Camel Milk in Cyclophosphamide-Induced Immunosuppression in Rats. Antioxidants 2022, 11, 792. [Google Scholar] [CrossRef] [PubMed]
- Hsu, E. Immune System Receptors in Vertebrates: Immunoglobulins. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Shirani, K.; Hassani, F.V.; Razavi-Azarkhiavi, K.; Heidari, S.; Zanjani, B.R.; Karimi, G. Phytotrapy of Cyclophosphamide-Induced Immunosuppression. Environ. Toxicol. Pharmacol. 2015, 39, 1262–1275. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Li, C.; Shao, Y.; Chen, A. Polysaccharides from Spores of Cordyceps cicadae Protect against Cyclophosphamide-Induced Immunosuppression and Oxidative Stress in Mice. Foods 2022, 11, 515. [Google Scholar] [CrossRef]
- Zeng, Y.; Hu, X.; Yu, Z.; Wang, F.; Zhang, Z.; He, K.; Tian, H.; Yu, F. Immune Enhancement and Antioxidant Effects of Low Molecular-Weight Peptides Derived from Nibea japonica Muscles on Immune-Deficient Mice Induced by Cyclophosphamide. Process Biochem. 2021, 102, 42–50. [Google Scholar] [CrossRef]
- Yu, F.; He, K.; Dong, X.; Zhang, Z.; Wang, F.; Tang, Y.; Chen, Y.; Ding, G. Immunomodulatory Activity of Low Molecular-Weight Peptides from Nibea japonica Skin in Cyclophosphamide-Induced Immunosuppressed Mice. J. Funct. Foods 2020, 68, 103888. [Google Scholar] [CrossRef]
- Noh, E.M.; Kim, J.M.; Lee, H.Y.; Song, H.K.; Joung, S.O.; Yang, H.J.; Kim, M.J.; Kim, K.S.; Lee, Y.R. Immuno-enhancement effects of Platycodon grandiflorum extracts in splenocytes and a cyclophosphamide-induced immunosuppressed rat model. BMC Complement. Altern. Med. 2019, 19, 322. [Google Scholar] [CrossRef]
- Meulenbroek, A. Human IgG Subclasses: Useful Diagnostic Markers for Immunocompetence; CLB: New York, NY, USA, 2002. [Google Scholar]
- Mantis, N.J.; Rol, N.; Corthésy, B. Secretory IgA’s Complex Roles in Immunity and Mucosal Homeostasis in the Gut. Mucosal Immunol. 2011, 4, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Heyman, B.; Shulman, M.J. Structure, Function, and Production of Immunoglobulin M (IgM). In Encyclopedia of Immunobiology; Ratcliffe, M.J.H., Ed.; Academic Press: Oxford, UK, 2016; pp. 1–14. [Google Scholar]
- Mottet, M.; Goffinet, L.; Beckers, A.; Bodart, G.; Morrhaye, G.; Kermani, H.; Renard, C.; Martens, H.; Geenen, V. The Role of the Thymus in the Integrated Evolution of the Recombinase-Dependent Adaptive Immune Response and the Neuroendocrine System. Neuroimmunomodulation 2011, 18, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Valdez, Y.; Brown, E.M.; Finlay, B.B. Influence of the Microbiota on Vaccine Effectiveness. Trends Immunol. 2014, 35, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Boskabady, M.H.; Amin, F.; Shakeri, F. The Effect of Curcuma longa on Inflammatory Mediators and Immunological, Oxidant, and Antioxidant Biomarkers in Asthmatic Rats. Evid.-Based Complement. Alternat. Med. 2021, 2021, 4234326. [Google Scholar] [CrossRef]
- Shakeri, F.; Boskabady, M.H. Anti-inflammatory, Antioxidant, and Immunomodulatory Effects of Curcumin in Ovalbumin-Sensitized Rat. Biofactors 2017, 43, 567–576. [Google Scholar] [CrossRef]
- Han, H.-S.; Shin, J.-S.; Song, Y.-R.; Rhee, Y.K.; Cho, C.-W.; Ryu, J.H.; Inn, K.-S.; Hong, H.-D.; Lee, K.-T. Immunostimulatory Effects of Polysaccharides Isolated from Young Barley Leaves (Hordeum vulgare L.) with Dual Activation of Th1 And Th2 In Splenic T Cells and Cyclophosphamide-Induced Immunosuppressed Mice. Int. J. Biol. Macromol. 2020, 147, 954–964. [Google Scholar] [CrossRef]
- Ebokaiwe, A.P.; Ushang, O.R.; Ogunwa, T.H.; Kikiowo, B.; Olusanya, O. Quercetin Attenuates Cyclophosphamide Induced-Immunosuppressive Indoleamine 2,3-Dioxygenase in the Hippocampus and Cerebral Cortex of Male Wister Rats. J. Biochem. Mol. Toxicol. 2022, 36, e23179. [Google Scholar] [CrossRef]
- Millán, O.; Brunet, M. Cytokine-Based Immune Monitoring. Clin. Biochem. 2016, 49, 338–346. [Google Scholar] [CrossRef]
- Brocker, C.; Thompson, D.; Matsumoto, A.; Nebert, D.W.; Vasiliou, V. Evolutionary Divergence and Functions of The Human Interleukin (Il) Gene Family. Hum. Genom. 2010, 5, 30. [Google Scholar] [CrossRef]
- van der Poll, T.; Opal, S.M. Host–Pathogen Interactions in Sepsis. Lancet Infect. Dis. 2008, 8, 32–43. [Google Scholar] [CrossRef]
- Huang, M.; Yang, D.; Xiang, M.; Wang, J. Role of interleukin-6 In Regulation of Immune Responses to Remodeling after Myocardial Infarction. Heart Fail. Rev. 2015, 20, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Dillinger, B.; Ahmadi-Erber, S.; Lau, M.; Hoelzl, M.A.; Erhart, F.; Juergens, B.; Fuchs, D.; Heitger, A.; Ladisch, S.; Dohnal, A.M. IFN-γ and Tumor Gangliosides: Implications for the Tumor Microenvironment. Cell. Immunol. 2018, 325, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D.; Nichol, A. Inflammation, Immunity and Allergy. Anaesth. Intensive Care 2021, 22, 488–493. [Google Scholar] [CrossRef]
Sprouting Time (Day) | TPC (mg GAE g−1 dw) | DPPH (µmol TE g−1 dw) | ABTS (µmol TE g−1 dw) |
---|---|---|---|
Raw seeds | 37.91 ± 2.31 f | 77.52 ± 5.13 d | 118.05 ± 6.14 c |
1 | 55.44 ± 4.11 e | 68.36 ± 8.02 e | 96.66 ± 8.27 c |
2 | 53.84 ± 2.03 e | 78.45 ± 2.44 d | 97.09 ± 11.69 c |
3 | 74.85 ± 2.64 d | 109.09 ± 5.88 c | 159.49 ± 19.17 b |
4 | 84.22 ± 2.44 c | 114.92 ± 4.23 c | 169.8 ± 11.31 b |
5 | 92.70 ± 2.23 b | 133.58 ± 6.17 b | 187.75 ± 12.93 ab |
6 | 104.58 ± 3.25 a | 152.38 ± 8.48 a | 213.52 ± 14.32 a |
7 | 100.91 ± 3.11 a | 150.54 ± 3.08 a | 209.39 ± 1.17 a |
Sprouting Time (Day) | TF (mg QE g−1 dw) | TFL (mg QE g−1 dw) |
---|---|---|
Raw seeds | 19.34 ± 1.26 de | 6.34 ± 0.20 g |
1 | 6.56 ± 1.72 f | 4.90 ± 0.18 g |
2 | 17.33 ± 1.11 e | 11.8 ± 0.21 f |
3 | 28.09 ± 1.99 cd | 22.96 ± 0.41 e |
4 | 37.29 ± 4.69 c | 26.45 ± 1.40 d |
5 | 74.21 ± 5.58 b | 33.47 ± 1.41 c |
6 | 111.23 ± 4.46 a | 39.66 ± 1.56 a |
7 | 105.65 ± 2.78 a | 36.30 ± 0.64 b |
Sprouting Time (Day) | Carotenoids (mg g−1 dw) |
---|---|
Raw seeds | 3.93 ± 0.36 c |
1 | 7.76 ± 0.97 b |
2 | 8.10 ± 0.31 b |
3 | 8.25 ± 0.85 b |
4 | 8.71 ± 0.66 b |
5 | 9.52 ± 1.56 ab |
6 | 11.63 ± 1.05 a |
7 | 11.75 ± 0.61 a |
Components | No. | Compound | mg kg−1 | |||
---|---|---|---|---|---|---|
Raw | 3 Days | 6 Days | 7 Days | |||
Phenolics * | 1 | Pyrogallol | - | 19.00 | - | - |
2 | Quinol | - | 45.76 | - | - | |
3 | 3-Hydroxytyrosol | - | - | - | - | |
4 | Catechol | 69.72 | 173.71 | 27.14 | - | |
5 | p-Hydroxy benzoic acid | 105.22 | 251.30 | 33.72 | - | |
6 | Caffeic acid | 41.52 | 47.68 | 237.97 | - | |
7 | Chlorogenic acid | - | 9.01 | 90.20 | - | |
8 | Cinnamic acid | 4.68 | 4.01 | 302.40 | 25.78 | |
9 | Ellagic acid | - | 21.44 | 9.26 | - | |
10 | Vanillic acid | 27.35 | 19.57 | 75.56 | 64.18 | |
11 | Ferulic acid | 11.46 | 27.52 | 28.25 | 7.16 | |
12 | Gallic acid | 90.72 | 88.55 | - | 4.05 | |
13 | O-coumaric acid | - | 3.55 | 12.55 | 16.92 | |
14 | p-coumaric acid | 10.71 | 25.28 | 16.87 | 11.16 | |
15 | Benzoic acid | 127.70 | 274.47 | 2182.20 | 129.23 | |
16 | Rosmarinic acid | - | 403.72 | 749.55 | 222.56 | |
17 | Syringic acid | 286.56 | 499.82 | 8.11 | 40.73 | |
Flavonoids ** | 1 | Catechin | 333.44 | 154.59 | 25.13 | 511.82 |
2 | Kaempferol | - | 58.62 | 636.49 | 5693.18 | |
3 | Myricetin | 57.08 | 128.29 | 3778.81 | 287.02 | |
4 | Quercetin | 1031.83 | 3013.09 | 2386.90 | 1782.54 | |
5 | Rutin | - | 162.37 | 111.06 | 41.31 | |
6 | Resveratrol | 464.90 | 693.76 | 583.31 | 129.25 | |
7 | Naringenin | - | 133.66 | - | - |
Groups | Antioxidant Biomarkers | |||
---|---|---|---|---|
GSH (µg dL−1) | CAT (U L−1) | SOD (U L−1) | MDA (µ mol mL−1) | |
NR | 93.78 ± 9.28 ab | 128.16 ± 8.17 a | 105.37 ± 5.97 b | 21.85 ± 1.99 c |
CYP | 59.88 ± 5.35 c | 83.06 ± 7.34 d | 63.38 ± 3.17 d | 40.26 ± 4.11 a |
CYP+BN250 | 89.55 ± 5.79 b | 108.33 ± 8.59 c | 89.05 ± 2.89 b | 30.71 ± 3.09 b |
CYP+BN500 | 107.91 ± 7.64 a | 123.32 ± 9.72 a | 114.94 ± 4.59 a | 19.98 ± 1.49 c |
Groups | Hematological Parameters | ||
---|---|---|---|
WBCs [109 L−1] | Lymphocytes [109 L−1] | Neutrophils [109 L−1] | |
NR | 9.72 ± 0.16 a | 8.38 ± 0.07 a | 1.19 ± 0.05 a |
CYP | 6.29 ± 0.21 d | 5.11 ± 0.11 d | 1.03 ± 0.09 b |
CYP+BN250 | 8.12 ± 0.10 c | 6.91 ± 0.19 c | 0.89 ± 0.06 c |
CYP+BN500 | 9.24 ± 0.23 b | 7.69 ± 0.27 b | 1.31 ± 0.09 a |
Groups | Immunoglobulins (mg mL−1) | ||
---|---|---|---|
IgG | IgA | IgM | |
NR | 3.88 ± 0.58 a | 2.60 ± 0.18 a | 0.46 ± 1.80 a |
CYP | 1.89 ± 0.73 b | 1.40 ± 0.05 c | 0.19 ± 0.08 b |
CYP+BN250 | 2.41 ± 0.75 c | 2.09 ± 0.17 b | 0.40 ± 0.02 a |
CYP+BN500 | 3.19 ± 0.63 d | 2.36 ± 0.23 ab | 0.52 ± 0.06 a |
Groups | Cytokines (ng mL−1) | ||||
---|---|---|---|---|---|
IL-1 β | IL-6 | IL-10 | IL-13 | TNF-α | |
NR | 66.56 ± 5.23 a | 166.60 ± 3.04 b | 41.82 ± 4.62 a | 118.90 ± 2.73 a | 38.77 ± 3.46 a |
CYP | 33.60 ± 4.78 c | 107.67 ± 5.67 c | 24.73 ± 3.22 c | 78.71 ± 0.71 d | 24.81 ± 2.06 b |
CYP+BN250 | 49.78 ± 4.32 b | 180.77 ± 7.72 b | 33.99 ± 3.34 b | 99.11 ± 2.22 c | 31.81 ± 3.93 ab |
CYP+BN500 | 69.7 ± 6.53 a | 207.40 ± 3.72 a | 44.34 ± 2.64 a | 110.38 ± 1.62 b | 37.02 ± 2.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barakat, H.; Alkhurayji, R.I.; Aljutaily, T. Immune-Boosting Potentiating Properties of Brassica nigra Hydroalcoholic Extract in Cyclophosphamide-Induced Immunosuppression in Rats. Foods 2023, 12, 3652. https://doi.org/10.3390/foods12193652
Barakat H, Alkhurayji RI, Aljutaily T. Immune-Boosting Potentiating Properties of Brassica nigra Hydroalcoholic Extract in Cyclophosphamide-Induced Immunosuppression in Rats. Foods. 2023; 12(19):3652. https://doi.org/10.3390/foods12193652
Chicago/Turabian StyleBarakat, Hassan, Raghad I. Alkhurayji, and Thamer Aljutaily. 2023. "Immune-Boosting Potentiating Properties of Brassica nigra Hydroalcoholic Extract in Cyclophosphamide-Induced Immunosuppression in Rats" Foods 12, no. 19: 3652. https://doi.org/10.3390/foods12193652
APA StyleBarakat, H., Alkhurayji, R. I., & Aljutaily, T. (2023). Immune-Boosting Potentiating Properties of Brassica nigra Hydroalcoholic Extract in Cyclophosphamide-Induced Immunosuppression in Rats. Foods, 12(19), 3652. https://doi.org/10.3390/foods12193652