MCSNet+: Enhanced Convolutional Neural Network for Detection and Classification of Tribolium and Sitophilus Sibling Species in Actual Wheat Storage Environments
Abstract
:1. Introduction
2. Materials and methods
2.1. Targets
2.2. Data Collection
2.2.1. Image Acquisition and Dataset
2.2.2. Ground Truth Bounding Box
2.2.3. Data Augmentation and Training Dataset
2.3. Deep Convolutional Neural Network-Based Approach
2.3.1. Transfer Learning
2.3.2. Model Customization
Anchor Mechanism and Soft Non-Maximum Suppression (Soft NMS)
Position-Sensitive Prediction Model (PSPM)
2.4. Metric and Evaluation
2.5. Hyperparameters and Environment
3. Results
3.1. Comparison of Detection Results of Different Backbone Networks and Datasets
3.2. Experimental Results of Enhanced Model
3.3. Tribolium Geographical Strain Identification
4. Discussion
4.1. Technology
4.2. Data
4.3. Advantages of Deep-Learning-Based Target Detection for Storage Grain Pests in Complex Backgrounds
4.4. Advantages in Food Safety and Grain Quality Preservation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCS | Multilayer Convolutional Structure |
MCSNet | Multilayer Convolutional Structure Network |
CNN | Convolutional Neural Network |
Lab. | Laboratory |
mAP | mean Average Precision |
T. confusum | Tribolium confusum |
Rfb | Tribolium castaneum |
Cfb | Tribolium confusum |
SO | Sitophilus oryzae |
SZ | Sitophilus zeamais |
Rfb-CD | Tribolium castaneum-Chengdu |
Rfb-QH | Tribolium castaneum-Qihe |
Rfb-WH | Tribolium castaneum-Wuhan |
Cfb-BJ | Tribolium confusum-Beijing |
Cfb-GD | Tribolium confusum-Guangdong |
W | Width |
H | Height |
L | Length |
Co., Ltd. | Company limited |
DNN | Deep Neural Network |
RoI | Region of Interest |
R-CNN | Region-based Convolutional Neural Network |
RPN | Region Proposal Network |
VGG | Visual Geometry Group Network |
ResNet | Residual Network |
PSPM | Position-Sensitive Prediction Model |
RGB | Red Green Blue |
Pre- | Prediction |
fc | Fully connected |
Max- | Maximum |
ReLU | Rectified Linear Unit |
Soft-NMS | Soft Non-Maximum Suppression |
FCN | Fully Convolutional Network |
Eqn. | equation |
IoU | Intersection over Union |
AP | Average Precision |
std | Standard division |
TP | True Positive |
FP | False Positive |
FN | False Negative |
TN | True Negative |
CUDA | Compute Unified Device Architecture |
DDR | Double Data Rate |
GDDR | Graphics Double Data Rate |
GPU | graphics processing unit |
References
- Food and Agriculture Organization of United Nations. Save Food: Global Initiative on Food Losses and Waste Reduction; FAO: Rome, Italy, 2014; pp. 1–18. [Google Scholar]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. B 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed]
- The International Bank for Reconstruction and Development/The World Bank; FAO; NRI. Missing Food: The Case of Postharvest Grain Losses in Sub-Saharan Africa; Economic and Sector Work Report No. 60371-AFR; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2011; pp. 12–23. [Google Scholar]
- Asrar, M.; Ashraf, N.; Gogi, M.D.; Hussain, S.M.; Zia, K.; Rasool, B. Toxicity and repellence of plant oils against Tribolium castaneum (Herbst.), Rhyzopertha dominica (F.) and Trogoderma granarium (E.). Pak. Entomol. 2016, 38, 55–63. [Google Scholar]
- Sharon, M.; Abirami, C.V.K.; Algusundaram, K. Grain storage management in India. J. Postharvest Technol. 2014, 2, 12–24. [Google Scholar]
- Kumar, D.; Kalita, P. Reducting postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S.; Karunakaran, C.; Jayas, D.S.; White, N.D.G. Detection techniques for stored-product insects in grain. Food Control 2007, 18, 157–162. [Google Scholar] [CrossRef]
- Neupane, F.P. Efficacy of the botanicals against the cowpea weevil (Callosobruchus chinensis L.) and rice weevil (Sitophilus oryzae L.). J. Inst. Agric. Anim. Sci. 2022, 4, 87–93. [Google Scholar]
- Subedi, S.; GC, Y.D.; Thapa, R.B.; Rijal, J.P. Rice weevil (Sitophilus oryzae L.) host preference of selected stored grains in Chotwan Nepal. J. Inst. Agric. Anim. Sci. 2009, 30, 151–158. [Google Scholar]
- Shafique, M.; Ahmed, M.; Chaudhry, M.A. Feeding preference and development of Tribolium castaneum (Herbst.) in wheat product. Pak. J. Zool. 2006, 38, 27–31. [Google Scholar]
- Li, L.; Arbogast, R.T. The effect of grain breakage on fecundity, development, survival, and population increase in maize of Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 1991, 27, 87–94. [Google Scholar] [CrossRef]
- Khan, I.; Afsheen, S.; Din, N.; Khattak, S.K.; Khalil, S.K.; Hayat, Y.; Lou, Y. Appraisal of different wheat genotypes against angoumois grain moth, Sitotroga ceralella (Oliv.). Pak. J. Zool. 2010, 42, 161–168. [Google Scholar]
- Yadav, T.D.; Singh, S. Persistence toxicity and efficacy of four insecticides as jute fabric treatment to protect cereal and legume seeds. Ind. J. Entomol. 1994, 56, 146–155. [Google Scholar]
- Hulasara, R.B.; White, N.D.G. Intra and inter specific interactions among Tribolium castaneum and Cryptolestes ferrugineus in stored wheat at different insect densities. Phytoprotection 2003, 84, 19–26. [Google Scholar] [CrossRef]
- Bruce, H.B. The identify of Sitophilus oryzae. Ann. Entomol. Soc. Am. 1969, 62, 169–172. [Google Scholar]
- Baldwin, R.; Fasulo, T.R. Featured Creatures: Entomology and Nematology, Updated on April 2010. Available online: https://entnemdept.ufl.edu/creatures/urban/beetles/red_flour_beetle.htm (accessed on 15 June 2022).
- Schlipalius, D.I.; Valmas, N.; Tuck, A.G.; Jagadeesan, R.; Ma, L.; Kaur, R.; Ebert, P.R. A core metabolic enzyme mediates resistance to phosphine gas. Science 2012, 338, 807–810. [Google Scholar] [CrossRef]
- Kaur, R.; Ebert, P.R.; Walter, G.H.; Swain, A.J.; Schlipalius, D.I. Do phosphine resistance genes influence movement and dispersal under starvation? J. Econ. Entomol. 2013, 106, 2259–2266. [Google Scholar] [CrossRef] [PubMed]
- Demissie, G.; Tefera, T.; Tadesse, A. Importance of husk covering on field infestation of maize by Sitophilus zeamais Motsch (Coleoptera: Curculionidea) at Bako, Western Ethiopia. Afric. J. Biotechnol. 2008, 7, 3777–3782. [Google Scholar]
- Vásquez-Castro, J.A.; Baptista, G.C.D.; Trevizan, L.R.P.; Gadanha, C.D. Flight activity of Sitophilus oryzae (L) and Sitophilus zeamais Motsch (Coleoptera: Curculionidae) and its relationship with susceptibility to insecticides. Neotrop. Entomol. 2009, 38, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Giles, P.H.; Ashman, F. A study of pre-harvest infestation of maize by Sitophilus zeamais Motsch in the kenya highlands. J. Stored Prod. Res. 1971, 7, 69–83. [Google Scholar] [CrossRef]
- Chesnut, T.L. Flight habits of the maize weevil as related to field infestation of corn. J. Econ. Entomol. 1972, 65, 434–435. [Google Scholar] [CrossRef]
- Tefera, T.; Demissie, G.; Mugo, S.; Beyene, Y. Yield and agronomic performance of maize hybrids resistant to the maize weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Crop. Prot. 2013, 46, 94–99. [Google Scholar] [CrossRef]
- Trematerra, P.; Sciarretta, A. Spatial distribution of some beetles infesting a feed mill with spatio-temporal dynamics of Oryzaephilus surinamensis, Tribolium castaneum and Tribolium confusum. J. Stored. Prod. Res. 2004, 40, 363–377. [Google Scholar] [CrossRef]
- Sokoloff, A. The Biology of Tribolium with Special Emphasis on Genetic Aspects; Oxford University Press: Oxford, UK, 1974; Volume 2, pp. 628–630. [Google Scholar]
- Sousa, A.H.; Faroni, L.R.D.A.; Pimentel, M.A.G.; Guedes, R.N.C. Developmental and population growth rates of phosphine-resistant and -susceptible populations of stored-product insect pests. J. Stored Prod. Res. 2009, 45, 241–246. [Google Scholar] [CrossRef]
- Rees, D.P. Insects of Stored Grain: A Pocket Reference, 2nd ed.; CSIRO Publishing: Collingwood, Australia, 2004; pp. 53–54. [Google Scholar]
- Abebe, F.; Tefera, T.; Mugo, S.; Beyene, Y.; Vidal, S. Resistance of maize varieties to the maize weevil Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae). Afr. J. Biotechnol. 2009, 8, 5937–5943. [Google Scholar]
- Plague, G.R.; Gaelle, V.; Walsh, B.E.; Dougherty, K.M. Rice weevils and maize weevils (Coleoptera: Curculionidae) respond differently to disturbance of stored grain. Ann. Entomol. Soc. Am. 2010, 103, 683–687. [Google Scholar] [CrossRef]
- Aslam, A.; Sultana, S.; Das, S.R.; Howlader, A.J. DNA barcoding to resolve the confusion in identifying Tribolium confusum and Tribolium castaneum. J. Zool. 2019, 47, 333–342. [Google Scholar] [CrossRef]
- Yang, H.Y.; Zhao, H.Y.; Zhang, D.F.; Cao, Y.; Teng, S.W.; Pang, S.N.; Zhou, X.G.; Li, Y.Y. Auto-identification of two Sitophilus sibling species on stored wheat using deep convolutional neural network. Pest Manag. Sci. 2022, 78, 1925–1937. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: A daptive synthetic sampling approach for imbalanced learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 976–990. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Rosebrock, A. Deep Learning for Computer Vision with Python. Available online: https://www.pyimagesearch.com/deep-learning-computer-vision-python-book (accessed on 18 September 2019).
- Uğuz, S.; Uysal, N. Classification of olive leaf diseases using deep convolutional neural networks. Neural Comput. Appl. 2020, 33, 4133–4149. [Google Scholar] [CrossRef]
- Guirado, E.; Tabik, S.; Rivas, M.L.; Alcaraz-Segura, D.; Herrera, F. Whale counting in satellite and aerial images with deep learning. Sci. Rep. 2019, 9, 14259. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Patterm Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; IEEE Computer Society Press: Miami, FL, USA, 2009; pp. 248–255. [Google Scholar]
- Olsson, C.; Ryne, C.; Wallén, R.; Anderbrant, O.; Löfstedt, C. Male-produced sex pheromone in Tribolium confusum: Behaviour and investigation of pheromone production locations. J. Stored Prod. Res. 2006, 42, 173–182. [Google Scholar] [CrossRef]
- Zhang, S.F.; Wen, L.Y.; Bian, X.; Lei, Z.; Li, S.Z. RefineDet++: Single-shot refinement neural network for object detection. IEEE Trans. Circuits Syst. Video Technol. 2020, 99, 1–14. [Google Scholar] [CrossRef]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. IEEE Comput. Soc. 2015, 1, 1440–1448. [Google Scholar]
- Dai, J.F.; Li, Y.; He, K.M.; Sun, J. R-FCN: Object detection via region-based fully convolutional networks. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Lee, D.D., Luxburg, U.V., Garnett, R., Sugiyama, M., Guyon, I., Eds.; Curran Associates Inc.: New York, NY, USA, 2016; pp. 379–387. [Google Scholar]
- Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat. Compu. 2009, 21, 137–146. [Google Scholar] [CrossRef]
- Machart, P.; Ralaivola, L. Confusion matrix stability bounds for multiclass classification. arXiv 2012, arXiv:1202.6221. [Google Scholar]
- Chi, H.; Güncan, A.; Kavousi, A.; Gharakhani, G.; Atlihan, R.; Özgökçe, M.S. TWOSEX-MSChart: The key tool for life table research and education. Entomol. Gen. 2022, 42, 845–849. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
- Kavallieratos, N.G.; Andri´c, G.; Goli´c, M.P.; Nika, E.; Skourti, A.; Kljaji´c, P.; Papanikolaou, N.P. Biological features and population growth of two southeastern European Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae) strains. Insects 2020, 11, 218. [Google Scholar] [CrossRef]
- Patel, K.K.; Kar, A.; Jha, S.N.; Khan, M.A. Machine vision system: A tool for quality inspection of food and agricultural products. J. Food Sci. Technol. 2012, 49, 123–141. [Google Scholar] [CrossRef]
- Abdullah, M.Z.; He, H.J.; Zheng, C.; Sun, D.W.; Du, C.J.; Kamruzzaman, M.; Qin, J.; Chao, K.; Kim, M.S. Part 1: Fundamentals of Computer Vision Technology. In Computer Vision Technology for Food Quality Evaluation, 2nd ed.; Sun, D.W., Ed.; Academic Press: London, UK, 2016; pp. 3–107. [Google Scholar]
- Narendra, V.G.; Hareesh, K.S. Prospects of computer vision automated grading and sorting systems in agricultural and food products for quality evaluation—A review. Int. J. Comput. Appl. 2010, 2, 43–65. [Google Scholar]
- Davies, E.R. Machine Vision: Theory, Algorithms, Practicalities, 3rd ed.; Morgan Kaufmann: San Francisco, CA, USA, 2005; pp. 1–263. [Google Scholar]
- Wang, J.N.; Lin, C.; Ji, L.Q.; Liang, A. A new automatic identification system of insect images at the order level. Knowl.-Based Syst. 2012, 33, 102–110. [Google Scholar] [CrossRef]
- Wang, S.L.; Han, K.X.; Jin, J.F. Review of image low-level feature extraction methods for content-based image retrieval. Sensor Rev. 2019, 39, 783–809. [Google Scholar] [CrossRef]
- Jiang, Y.P.; Bian, B.; Wang, X.C.; Chen, S.F.; Li, Y.H.; Sun, Y. Identification of tomato maturity based on multinomial logistic regression with kernel clustering by integrating color moments and physicochemical indices. J. Food Process Eng. 2020, 43, e13504. [Google Scholar] [CrossRef]
- Araujo, J.M.M.; Peixoto, Z.M.A. A new proposal for automatic identification of multiple soybean diseases. Comput. Electron. Agr. 2019, 167, 9. [Google Scholar] [CrossRef]
- Zhuo, L.; Hu, X.C.; Jiang, L.Y.; Zhang, J. A color image edge detection algorithm based on color difference. Sens. Imaging. 2016, 17, 16. [Google Scholar] [CrossRef]
- Leow, L.K.; Chew, L.L.; Chong, V.C.; Dhillon, S.K. Automated identification of copepods using digital image processing and artificial neural network. BMC Bioinform. 2015, 16, S4. [Google Scholar] [CrossRef]
- Zhao, H.Q.; Shen, Z.R.; Yu, X.W. On computer-aided insect identification through math-morphology features. J. China Agric. Univ. 2022, 7, 38–42. [Google Scholar]
- Kumar, R. Insect Pests of Stored Grain: Biology, Behavior, and Mangement Strategies, 1st ed.; Apple Academic Press Inc.: New York, NY, USA, 2017; pp. 68–70. [Google Scholar]
- Palm, C. Color texture classification by integrative co-occurrence matrices. Pattern Recogn. 2004, 37, 965–976. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, C.J.; Chen, Q.S.; Li, Y.Y.; Qi, S.; Tian, L.; Ren, Y.L. Identification of species and geographical strains of Sitophilus oryzae and Sitophilus zeamais using the visible/near-infrared hyperspectral imaging technique. Pest Manag. Sci. 2015, 71, 1113–1121. [Google Scholar] [CrossRef]
- Singh, C.B.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging. J. Stored Prod. Res. 2009, 45, 151–158. [Google Scholar] [CrossRef]
- Bird’s Silos and Shelters: Profit from Quality Grain Storage. Available online: https://www.birdssilos.com.au/_files/ugd/f80507_eb00cba9790d40b787fc11fbecaf8a5e.pdf (accessed on 6 May 2022).
- Ahmad, R.; Hassan, S.; Ahmad, S.; Nighat, S.; Devi, Y.K.; Javeed, K.; Usmani, S.; Ansari, M.J.; Erturk, S.; Alkan, M.; et al. Stored grain pests and current advances for their management. In Postharvest Technology—Recent Advances, New Perspectives and Applications; Ahiduzzaman, M., Ed.; IntechOpen: London, UK, 2022; pp. 5–16. [Google Scholar]
- Quindoza, N.M.; Tiongson, R.L. Storage losses and their estimation. In Towards Integrated Commodity and Pest Management in Grain Storage; Semple, R.L., Hicks, P.A., Lozare, J.V., Castermans, A., Eds.; FAO: Rome, Italy, 1992; pp. 25–36. [Google Scholar]
- Gunasekaran, S. Computer vision technology for food quality assurance—Review. Trends Food Sci. Tech. 1996, 7, 245–256. [Google Scholar] [CrossRef]
- Aviara, N.A.; Fabiyi, O.E.; Ojediran, J.O.; Ogunniyi, O.I.; Onatola, I.T. Application of computer vision in food grain quality inspection, evaluation and control during bulk storage. In Proceedings of the 37th Annual Conference and Annual General Meeting—”Minna 2016”, Minna, Nigeria, 4–7 October 2016; pp. 109–119. [Google Scholar]
- Zayas, I.Y.; Flinn, P.W. Detection of insects in bulk wheat samples with machine vision. Trans. Am. Soc. Agric. Eng. 1998, 41, 883–888. [Google Scholar] [CrossRef]
Feature Extractor | Pretrain/ Test Data | Sample Size | AveP(Cfb) Mean ± Std (%) | AveP(Rfb) Mean ± Std (%) | mAP Mean ± Std (%) | Predict Speed Mean ± Std (s/img) | ||
---|---|---|---|---|---|---|---|---|
Training (72%) | Validation (18%) | Test (10%) | ||||||
VGG16 | ImageNet/ Field Tribolium W. | 17,975 ± 112 | 4516 ± 86 | 2499 ± 89 | 87.17 ± 1.16 | 87.38 ± 2.33 | 87.27±1.36 | 0.327±0.016 |
ResNet50 | 17,975 ± 112 | 4516 ± 86 | 2499 ± 89 | 88.64 ± 1.95 | 84.71 ± 3.75 | 86.68 ± 1.92 | 0.385 ± 0.027 | |
ResNet101 | 17,975 ± 112 | 4516 ± 86 | 2499 ± 89 | 84.88 ± 4.19 | 85.50 ± 2.73 | 85.17 ± 3.08 | 0.402 ± 0.021 | |
MCS | 17,975 ± 112 | 4516 ± 86 | 2499 ± 89 | 88.79 ± 2.43 | 87.28 ± 1.65 | 88.03 ± 1.52 | 0.319 ± 0.015 | |
VGG16 | ImageNet/Lab+Field Tribolium W. | 26,591 ± 220 | 6688 ± 66 | 3657 ± 265 | 92.62 ± 0.93 | 91.03 ± 0.98 | 91.83 ± 0.84 | 0.274 ± 0.011 |
ResNet50 | 26,591 ± 220 | 6688 ± 66 | 3657 ± 265 | 92.91 ± 0.90 | 89.64 ± 1.22 | 91.28 ± 0.83 | 0.369 ± 0.014 | |
ResNet101 | 26,591 ± 220 | 6688 ± 66 | 3657 ± 265 | 91.34 ± 1.09 | 89.60 ± 1.31 | 90.47 ± 0.99 | 0.358 ± 0.015 | |
MCS | 26,591 ± 220 | 6688 ± 66 | 3657 ± 265 | 92.99 ± 1.01 | 91.27 ± 0.76 | 92.14 ± 0.67 | 0.268 ± 0.006 | |
MCS | Lab SOSZ W./ Field Tribolium W. | 17,975 ± 112 | 4516 ± 86 | 2499 ± 89 | 92.78 ± 0.89 | 90.69 ± 0.77 | 91.74 ± 0.82 | 0.281 ± 0.008 |
Lab SOSZ W./Lab+Field Tribolium W. | 26,591 ± 220 | 6688 ± 66 | 3657 ± 265 | 93.34 ± 1.12 | 91.85 ± 0. 81 | 93.90 ± 0.87 | 0.259 ± 0.006 |
Anchor Scales | Data | RoI Generation Speed Mean ± Std (s/img) | Predict Speed Mean ± Std (s/img) | mAP Mean ± Std (%) |
---|---|---|---|---|
MCS-8,16,32 | Field Tribolium W. | 0.133 ± 0.001 b | 0.285 ± 0.004 c | 88.40 ± 0.83 c |
MCS-4,8,16,32 | 0.150 ± 0.016 b | 0.335 ± 0.031 bc | 88.92 ± 0.99 bc | |
MCS-8,16,24,32,48 | 0.148 ± 0.020 b | 0.338 ± 0.027 bc | 89.27 ± 0.79 b | |
MCS-8,16,24,32,48,56 | 0.151 ± 0.012 b | 0.360 ± 0.055 b | 88.50 ± 0.70 bc | |
MCS-4,8,16,24,32,48 | 0.225 ± 0.077 a | 0.460 ± 0.126 a | 90.40 ± 0.43 a |
Model | Data | Category | Test Sample Size | Precision Mean ± Std (%) | Recall Mean ± Ste (%) | AveP Mean ± Std (%) | mAP Mean ± Std (%) | Predict Speed Mean ± Std (s/img) |
---|---|---|---|---|---|---|---|---|
MCSNet+ | Lab. | Cfb | 709 ± 48 | 92.10 ± 1.44 | 98.31 ± 0.43 | 96.83 ± 0.42 | 96.83 ± 0.43 a | 0.193 ± 0.010 a |
Rfb | 481 ± 26 | 94.08 ± 2.36 | 97.37 ± 0.85 | 96.82 ± 0.51 | ||||
SO | 244 ± 7 | 93.46 ± 1.66 | 97.27 ± 2.25 | 93.89 ± 3.63 | 94.36 ± 3.28 a | 0.204 ± 0.003 a | ||
SZ | 182 ± 28 | 94.55 ± 2.40 | 97.07 ± 1.53 | 94.82 ± 3.29 | ||||
Field | Cfb | 990 ± 182 | 95.04 ± 2.42 | 95.76 ± 1.97 | 95.22 ± 1.47 | 94.27 ± 1.02 b | 0.226 ± 0.004 b | |
Rfb | 1531 ± 168 | 94.37 ± 2.36 | 96.88 ± 2.22 | 93.31 ± 1.59 | ||||
SO | 1079 ± 16 | 93.25 ± 2.36 | 94.16 ± 4.19 | 91.93 ± 1.23 | 92.67 ± 1.74 a | 0.240 ± 0.004 b | ||
SZ | 1367 ± 10 | 95.31 ± 0.94 | 97.50 ± 0.97 | 93.42 ± 2.69 | ||||
Lab+Field | Cfb | 1698 ± 174 | 95.22 ± 1.29 | 97.10 ± 1.79 | 95.49 ± 0.86 | 95.29 ± 0.55 c | 0.205 ± 0.005 c | |
Rfb | 2012 ± 163 | 94.82 ± 1.53 | 95.81 ± 1.49 | 95.09 ± 0.68 | ||||
SO | 1323 ± 17 | 90.59 ± 2.59 | 93.75 ± 1.16 | 94.38 ± 0.74 | 94.94 ± 0.70 a | 0.227 ± 0.005 c | ||
SZ | 1550 ± 13 | 92.51 ± 1.27 | 94.88 ± 0.83 | 95.50 ± 0.76 |
Geographical Strains | Test Samples Size | Precision Mean ± Std (%) | Recall Mean ± Ste (%) | AveP Mean ± Std (%) | Mean AveP Mean ± Std (%) |
---|---|---|---|---|---|
Cfb-BJ | 509 ± 80 | 88.4 ± 2.02 | 92.97 ± 0.97 | 85.04 ± 2.51 | 84.71 ± 1.33 |
Cfb-GD | 480 ± 114 | 87.83 ± 1.04 | 91.47 ± 1.71 | 84.38 ± 1.63 | |
Rfb-CD | 354 ± 94 | 91.53 ± 0.89 | 94.84 ± 1.37 | 89.74 ± 1.48 | 86.28 ± 1.20 |
Rfb-QH | 452 ± 125 | 90.97 ± 1.42 | 90.30 ± 2.40 | 86.46 ± 2.15 | |
Rfb-WH | 704 ± 171 | 89.85 ± 1.25 | 87.76 ± 1.34 | 82.64 ± 1.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Li, Y.; Xin, L.; Teng, S.W.; Pang, S.; Zhao, H.; Cao, Y.; Zhou, X. MCSNet+: Enhanced Convolutional Neural Network for Detection and Classification of Tribolium and Sitophilus Sibling Species in Actual Wheat Storage Environments. Foods 2023, 12, 3653. https://doi.org/10.3390/foods12193653
Yang H, Li Y, Xin L, Teng SW, Pang S, Zhao H, Cao Y, Zhou X. MCSNet+: Enhanced Convolutional Neural Network for Detection and Classification of Tribolium and Sitophilus Sibling Species in Actual Wheat Storage Environments. Foods. 2023; 12(19):3653. https://doi.org/10.3390/foods12193653
Chicago/Turabian StyleYang, Haiying, Yanyu Li, Liyong Xin, Shyh Wei Teng, Shaoning Pang, Huiyi Zhao, Yang Cao, and Xiaoguang Zhou. 2023. "MCSNet+: Enhanced Convolutional Neural Network for Detection and Classification of Tribolium and Sitophilus Sibling Species in Actual Wheat Storage Environments" Foods 12, no. 19: 3653. https://doi.org/10.3390/foods12193653
APA StyleYang, H., Li, Y., Xin, L., Teng, S. W., Pang, S., Zhao, H., Cao, Y., & Zhou, X. (2023). MCSNet+: Enhanced Convolutional Neural Network for Detection and Classification of Tribolium and Sitophilus Sibling Species in Actual Wheat Storage Environments. Foods, 12(19), 3653. https://doi.org/10.3390/foods12193653